中文分词算法
- 格式:doc
- 大小:107.50 KB
- 文档页数:13
tiktoken中文分词原理1.概述在自然语言处理(NL P)领域中,中文分词是一个重要的任务,它的目标是将连续的中文字符序列切分成有意义的词语。
ti kt ok en是一个开源的中文分词工具,它基于最大匹配算法和字典树的方法来实现中文分词。
本文将介绍t ik to ke n中文分词工具的原理及其运行过程。
2.最大匹配算法最大匹配算法是一种常用的中文分词算法,它基于词典中最长的词汇进行切分。
t ik to ken利用了最大匹配算法来进行分词。
具体而言,t ik to ken首先将待切分的句子按照最大切分长度划分为几个子句。
然后,它从每个子句的起始位置开始,逐渐增大切分长度,不断寻找匹配的词汇。
当找到匹配的词汇时,t ik to ke n将该词汇作为一个分词结果,并将切分位置移动到下一个子句的起始位置。
这个过程重复进行,直到所有子句都被分词为止。
最大匹配算法的一个关键问题是如何确定最大切分长度。
t ikt o ke n使用了统计信息和机器学习的方法来动态地确定最佳的最大切分长度,以提高分词的准确性。
3.字典树字典树(Tr ie)是一种树状数据结构,它能够高效地存储和查找字符串。
ti kt ok en利用了字典树来储存中文词汇信息,以支持最大匹配算法的快速匹配过程。
字典树的每个节点代表一个字符,从根节点到叶节点的路径表示一个完整的词汇。
ti kt ok e n在分词过程中通过比对待切分句子的字符与字典树节点的字符,来确定最大匹配的词汇。
4. ti ktoken的运行过程t i kt ok en的运行过程可以概括为以下几个步骤:4.1构建字典树t i kt ok en首先从一个大型的中文词汇库中提取出所有的词汇,并构建字典树。
这个字典树将作为最大匹配算法的匹配模型。
4.2切分子句t i kt ok en将待切分的句子按照标点符号或其他符号进行划分,形成若干个子句。
每个子句都将作为最大匹配算法的输入。
4.3最大匹配对于每个子句,ti kt o ke n从起始位置开始,逐渐增大最大切分长度,利用字典树进行匹配。
中文分词算法在专利文献中的应用研究作者:宋立峰来源:《海峡科学》2011年第07期[摘要]介绍了专利文献中中文分词的基本方法,主要分析了基于词类的错误驱动学习方法、条件随机场方法、期望最大值方法在分词方面的应用,并进行了对比实验。
[关键词]专利文献中文分词1引言专利文献包含全世界科学技术信息内容的90%[1],其中不仅包含技术也包括法律和经济信息,除了某些需要保密的领域,如军工行业,专利文献涉及了绝大部分工程技术领域,如果能有效利用这些信息,就可以避免重复研发,减少开发时间,降低开发成本,也可以有效防止侵犯他人合法权益,降低企业风险。
怎样才能高效地利用海量专利文献信息,从这些信息中查找到需要的资料,解决这个问题的关键是对专利文献进行精确快速的检索,而进行检索的最重要一步是对海量专利文献进行索引,没有索引就无法快速精确地检索到需要的信息,索引的基础则是对文献进行分词,分词的质量决定了索引的质量,一种好的分词方法可以大幅提高文献的查准率。
中文分词有两块难点,一个是分词的歧义,一个是未收录词的判断[2],专利文献的用词,有其自己的特点,存在着大量未收录的专业术语,而歧义词语仅占很小的一部分,在分词的时候必须重点考虑专业术语的切分,因为其对整体性能的影响是歧义影响的5倍[3]。
下节将重点描述这方面的内容。
2专利文献的用词特点我们首先需要研究专利文献的用词特点,通过了解掌握这些特点,可以利用这些规律,更好地进行分词处理,提升分词效率。
专利文献用词有以下几个特点:2.1具有专利文献特点的一些相对高频的词语,比如“本发明”、“特征”、“方法”、“一种”等,大部分的专利都会涉及这些词语。
2.2由于多数专利文献带有很强的专业性,有大量未登录在词典的词语,比如“二十二碳六烯酸”、“星地应答机”等技术词汇,很难进行正确的分词,这点很难解决。
2.3专利文献中为了表达一种复杂的功能或仪器,往往带有多个定语,比如“双测向多臂井径测量仪器”、“高精度非垂直截面可旋转测量仪器”等等,这给我们分词带来了一定的困难。
中文分词入门之最大匹配法发表于2009年01月12号由52nlp中文分词在中文信息处理中是最最基础的,无论机器翻译亦或信息检索还是其他相关应用,如果涉及中文,都离不开中文分词,因此中文分词具有极高的地位。
中文分词入门最简单应该是最大匹配法了,当年师兄布置给我的第一个学习任务就是实现最大匹配法的分词算法(正向、逆向)。
记得当时对自己参考学习最有帮助的是北大詹卫东老师“中文信息处理基础”的课件和源程序,不过他实现的是mfc程序,词表存储在数据库里。
自己实现时用纯c++实现,利用hash_map 存储词表。
这里我介绍一下相关的知识和一个简单的程序示例,部分参考自詹老师的讲义。
正向最大匹配法算法如下所示:(注:以上最大匹配算法图来自于詹老师讲义)逆向匹配法思想与正向一样,只是从右向左切分,这里举一个例子:输入例句:S1=”计算语言学课程有意思” ;定义:最大词长MaxLen = 5;S2= ” “;分隔符= “/”;假设存在词表:…,计算语言学,课程,意思,…;最大逆向匹配分词算法过程如下:(1)S2=”";S1不为空,从S1右边取出候选子串W=”课程有意思”;(2)查词表,W不在词表中,将W最左边一个字去掉,得到W=”程有意思”;(3)查词表,W不在词表中,将W最左边一个字去掉,得到W=”有意思”;(4)查词表,W不在词表中,将W最左边一个字去掉,得到W=”意思”(5)查词表,“意思”在词表中,将W加入到S2中,S2=” 意思/”,并将W从S1中去掉,此时S1=”计算语言学课程有”;(6)S1不为空,于是从S1左边取出候选子串W=”言学课程有”;(7)查词表,W不在词表中,将W最左边一个字去掉,得到W=”学课程有”;(8)查词表,W不在词表中,将W最左边一个字去掉,得到W=”课程有”;(9)查词表,W不在词表中,将W最左边一个字去掉,得到W=”程有”;(10)查词表,W不在词表中,将W最左边一个字去掉,得到W=”有”,这W是单字,将W 加入到S2中,S2=“ /有/意思”,并将W从S1中去掉,此时S1=”计算语言学课程”;(11)S1不为空,于是从S1左边取出候选子串W=”语言学课程”;(12)查词表,W不在词表中,将W最左边一个字去掉,得到W=”言学课程”;(13)查词表,W不在词表中,将W最左边一个字去掉,得到W=”学课程”;(14)查词表,W不在词表中,将W最左边一个字去掉,得到W=”课程”;(15)查词表,“意思”在词表中,将W加入到S2中,S2=“课程/ 有/ 意思/”,并将W从S1中去掉,此时S1=”计算语言学”;(16)S1不为空,于是从S1左边取出候选子串W=”计算语言学”;(17)查词表,“计算语言学”在词表中,将W加入到S2中,S2=“计算语言学/ 课程/ 有/ 意思/”,并将W从S1中去掉,此时S1=”";(18)S1为空,输出S2作为分词结果,分词过程结束。
中文bpe分词(原创实用版)目录1.中文分词的重要性2.BPE 分词方法的原理3.BPE 分词方法的优势4.BPE 分词方法的实际应用5.总结正文一、中文分词的重要性中文文本与英文文本在处理上存在很大差异,其中一个关键因素就是中文没有明确的词语边界。
英文文本通过空格可以清晰地划分单词,而中文文本则需要进行分词处理,将连续的文本切分成有意义的词汇单元。
中文分词在自然语言处理、信息检索、文本挖掘等领域具有重要意义。
二、BPE 分词方法的原理BPE(Backward Prefix-suffix)分词方法是一种基于字典的分词方法。
该方法通过遍历输入文本,动态构建一个有向无环图(DAG),并利用该图进行分词。
具体原理如下:1.构建字典:首先根据输入文本构建一个字典,存储每个字符或词语的出现频率及其前缀和后缀信息。
2.遍历输入文本:从输入文本的开始位置开始,依次将字符或词语添加到字典中,并更新它们的前缀和后缀信息。
3.动态规划:利用字典中的信息,通过动态规划算法计算每个字符或词语的分词概率。
4.切分词语:根据分词概率,从输入文本的末尾开始,向前切分出有意义的词语。
三、BPE 分词方法的优势BPE 分词方法具有以下优势:1.能够处理未登录词:BPE 分词方法可以识别字典中不存在的词语,如新词、专有名词等。
2.切分精度高:BPE 分词方法可以根据词语在文本中的上下文信息进行切分,从而获得较高的切分精度。
3.鲁棒性好:BPE 分词方法能够处理各种复杂的输入文本,如包含歧义、重复、噪音等。
四、BPE 分词方法的实际应用BPE 分词方法在许多自然语言处理任务中都有广泛应用,如文本分类、情感分析、机器翻译等。
通过 BPE 分词方法,可以有效提高这些任务的性能和准确性。
五、总结作为一种基于字典的中文分词方法,BPE 分词方法具有处理未登录词、切分精度高、鲁棒性好等优势。
《汉语分词的主要技术及其应用展望》一、汉语自动分词的提出词具有语音、语义和结构三大特征,其语义特征表现在必须具备一定的意义,表明客观现实中的某一事物的性质、特征、行为和关系等,没有意义的词是不存在的。
词里包含有两种不同性质的意义:词汇意义和语法意义。
词的结构特征表现在词在结构上是一个不可分割的整体,其意义不是它的几个构成成分(如果存在的话)的意义的简单总和。
人们在阅读时,大脑有一个模糊的分词过程,它是与视觉到声音的转换和语义理解交叉或同时进行的,并以语感的形式体现出来,由于文化修养和知识水平的差异,不同的人对词和非词,词和词组的预感差别很大。
因而人工分词的同一性得不到保证。
北京航空学院曾做过一个实验,三十余个具有高中文化水平的青年对五百字的一个语言材料人工分词,同一率只有50%左右。
在大篇文字材料处理时,人工分词不仅速度慢,长时间单调枯燥工作也使错误切分次数大大增加。
这些都表明人工分词不能满足汉字处理现代化的要求,但要对书面汉语实现计算机自动分词,并非易事,这与汉语特性有很大关系。
与印欧语系相比,现代汉语至少在四个方面于分词不利:第一,汉语的词不分写,而且词无明确的形态标志,这给计算机进行汉语的词法分析带来一大障碍。
其次,汉语是一种无形态变化的分析型语言,缺乏明显的句法形式标记,其语法主要靠虚词和不同的词序来实现。
第三,汉语的形态不发达,增加了语言的表层结构对语义的依赖性,所以,汉语句子成分的语法作用强烈依赖于该成分的意义。
第四,汉语构词具有极大的灵活性和自由性。
只要词汇意义和语言习惯允许,就能组合起来,没有限制。
如果在自动分词处理时,既不进行语法分析,也不进行语义理解,只是机械的匹配比较,那很容易实现,但必然会出现许多错误切分,而要提高分词精度,就必须进行语法分析和语义理解,于是就引发了一系列耐人寻味的问题。
汉语词自动切分是计算机中文信息处理的第一步,也是计算机科学界、语言文字学界以及信息管理学界所面临的挑战性难题,这一“瓶颈”的解决是计算机自然语言理解、人工智能、信息检索、机器翻译和自动文摘等领域突破的关键, 长期以来一直困扰着这一研究领域的许多专家学者。
bert 中文分词方法
BERT(Bidirectional Encoder Representations from Transformers)是一个基于Transformer的预训练模型,主要用于自然语言处理任务。
在中文分词方面,BERT并没有专门的设计,因为它本质上是一个基于字的分词方法,而非基于词的分词方法。
这意味着BERT在处理中文文本时,会将每个字作为一个基本单位,而不是将整个词作为一个单位。
尽管BERT没有专门的中文分词方法,但它在中文NLP 任务中仍然表现出色。
这是因为BERT的预训练任务包括掩码语言模型和下一句子预测,这些任务有助于模型理解句子的上下文信息和语义关系。
这使得BERT在处理中文文本时,能够自动学习并理解词的边界和含义。
当使用BERT进行中文分词时,你可以将句子中的每个字作为输入,然后利用BERT的模型结构和预训练参数进行预测。
具体来说,你可以将句子中的每个字作为一个token 输入到BERT模型中,然后获取模型输出的每个token的表示向量。
接着,你可以使用这些表示向量来进行后续的任务,如命名实体识别、情感分析等。
需要注意的是,尽管BERT本身没有专门的中文分词方法,但你可以结合其他中文分词工具或算法来提高分词效果。
例如,你可以使用基于统计的分词方法、基于规则的分词方法或基于深度学习的分词方法来对BERT的输出进行后处理,
以获得更准确的分词结果。
总之,BERT在中文分词方面采用的是基于字的分词方法,没有专门的中文分词工具。
但你可以结合其他分词方法或算法来提高分词效果。
中文bpe分词
(最新版)
目录
1.中文分词的重要性
2.BPE 分词方法的概述
3.BPE 分词的具体操作步骤
4.BPE 分词的优势与不足
5.应用实例与未来发展
正文
一、中文分词的重要性
中文文本与英文等拉丁字母文字不同,没有明确的词语边界,这给文本处理带来了诸多困难。
中文分词就是指将连续的文本切分成有意义的独立词汇的过程,它在自然语言处理、信息检索、机器翻译等领域具有重要的应用价值。
二、BPE 分词方法的概述
BPE(Backward Prefix-suffix)分词方法是一种基于字典的分词方法,其核心思想是基于前缀和后缀构建有向无环图(DAG),并通过最短路径算法求解最优分词结果。
相较于传统的基于词典的分词方法,BPE 分词具有更强的适应性和通用性。
三、BPE 分词的具体操作步骤
1.构建字典:首先需要构建一个包含所有可能的前缀和后缀的字典。
2.构建有向无环图:根据字典中的前缀和后缀,构建一个有向无环图。
3.求解最短路径:采用最短路径算法(如 Dijkstra 算法)在有向无环图中求解最优分词结果。
4.得到分词结果:根据最短路径算法的结果,得到最终的分词结果。
四、BPE 分词的优势与不足
1.优势:BPE 分词方法具有较强的适应性和通用性,可以应对不同领域和风格的文本,且分词效果较好。
2.不足:BPE 分词方法的计算复杂度较高,对计算资源有一定要求;此外,由于其基于字典构建,对于新词的识别能力较弱。
五、应用实例与未来发展
BPE 分词方法在许多自然语言处理任务中都取得了良好的效果,例如文本分类、情感分析、机器翻译等。
jieba分词原理
jieba分词是一种基于统计和规则的中文分词工具。
它采用了基于前缀词典实现高效词图扫描的方法,同时利用了HMM模型进行未登录词识别,并通过了Viterbi算法实现中文分词。
jieba分词的算法步骤如下:
1. 构建前缀词典:jieba首先会生成一个前缀词典,将词库中的词按照字的前缀进行切分。
这可以大幅提高后续词图扫描的效率。
2. 生成词图:将待分词的文本转化为有向无环图(DAG),其中每个节点都代表了具体的片段。
这个图的目的是为了在后续步骤中进行词的组合。
3. 动态规划引擎:jieba使用了动态规划算法(Viterbi算法)来对词图进行路径搜索,找出最有可能的词组合。
这个算法同时也考虑了词的概率和语义等因素。
4. HMM模型:为了识别未登录词,jieba还采用了隐马尔可夫模型(HMM)进行标注。
它通过训练大量的中文语料库,学习词的出现概率和词性等信息,从而提高分词的准确性和鲁棒性。
5. 词性标注和歧义处理:jieba还可以对分词结果进行词性标注和歧义处理。
它可以根据具体需求,将分词结果进一步细分为名词、动词、形容词等不同的词性,并通过上下文信息来消
除歧义。
总的来说,jieba分词利用前缀词典、词图、动态规划引擎和HMM模型等技术手段,实现了高效、准确的中文分词。
它在许多中文文本处理任务中都被广泛应用,如信息检索、自然语言处理等。
ik分词器分词原理IK分词器(IKAnalyzer)是一款针对中文文本的智能分词器,其为搜索引擎、虚拟客服交互、搜索导航系统等提供智能分词服务,是目前中文处理领域应用最广泛、使用最多的中文分词器。
分词器使用算法能够自动对中文文本进行分词处理,其原理主要分为以下四部分:1.库算法:IK分词器使用词库算法来处理中文文本。
使用词库算法时,先分析出每个文本中的词语,然后从词库中找出其中的名词、动词等词,最终将文本中的每个词按规则匹配出来。
2.向分词:使用双向分词算法时,会将文本从左到右、从右到左依次拆分,以最大概率的分词结果来分析文本。
这样就能将一个文本拆分成尽可能多的最短的词语,使搜索更加准确简单。
3. N-最短路径:使用N-最短路径算法时,会构建一个有向图,将其中每个点都看作是文本中的一个词,而每个边都会携带一个权值,表示两个词之间的词性分析结果。
然后在有向图中搜索出来一条最优的路径,从而得到一个最优的分词结果。
4. HMM算法:HMM算法是一种基于隐马尔科夫模型的算法,是计算机语言处理领域常用的算法之一。
使用HMM算法时,先搭建一个隐马尔科夫模型,然后根据文本中的每个词语来计算概率,最终得到一个最优的分词结果。
以上就是IK分词器分词原理的总结,基于这四种分词算法,IK 分词器能够对中文文本进行准确的分词处理,为文本信息搜索提供了可靠的技术基础。
IK分词器的分词原理是以中文文本的分词为基础的,它是通过新颖的语言处理技术,将文本中的内容进行语义解析,最后得出准确有效的分词结果。
IK分词器可以针对文本内容,根据文本中出现的词语,使用词库算法来处理文本,通过双向分词算法从中提取出尽可能多的最短的词语,从而保证搜索的准确性。
此外,IK分词器还使用N-最短路径算法和HMM算法,可以从中构建出一个有向图,搜索出最优的路径,从而完成文本的分词处理。
综上所述,IK分词器具有易用性高、计算效率高、速度快等优点,为新型搜索引擎等提供可靠的技术基础,是当前中文分词领域应用最广泛、使用最多的分词器。
感知机分词器的工作原理感知机分词器是一种常见的中文分词算法,其工作原理是基于感知机模型和特征提取。
感知机模型是由Rosenblatt于1958年提出的一种二分类线性模型,它可以在训练过程中逐渐调整权重,找到一个最佳的分类超平面。
在感知机分词器中,我们将每个字符视为一个特征,用来判断该字符是否属于一个词语的一部分。
模型通过学习一组权重来判断每个字符的分类。
感知机分词器可以通过迭代学习的方式不断更新权重,以提高分词的准确性。
特征提取是感知机分词器的关键步骤。
在中文分词中,常用的特征有:1. 单个字特征:以每个字为单位,将其转化为一个特征。
例如,对于句子“我爱中国”,特征可以是:我、爱、中、国。
2. 边界特征:以每个字的左右边界为特征。
例如,对于句子“我爱中国”,特征可以是:^我、我爱、爱中、中国。
3. 词典特征:将分词结果放入一个词典中,将存在于词典中的词作为特征。
例如,对于句子“我爱中国”,如果词典中包含“我爱”和“中国”这两个词,那么这两个词就作为特征。
4. 词性标注特征:将每个字的词性作为特征。
例如,对于句子“我爱中国”,特征可以是:我/nr、爱/v、中国/ns。
在特征提取之后,感知机分词器会将提取到的特征与预先设置的权重进行计算。
计算的结果越接近于0,表示该字符越可能是一个词的一部分;计算的结果越大于0,表示该字符越可能不是一个词的一部分。
通过计算,感知机分词器可以判断每个字符是否是一个词语的组成部分,进而实现分词的任务。
感知机分词器在训练过程中采用的是在线学习的方法。
在线学习是一种逐步调整权重的方式,具体步骤如下:1. 初始化权重:将所有特征的权重初始化为0。
2. 遍历训练数据:对于每个训练样本,根据模型的输出和标签计算误差。
3. 更新权重:根据误差更新权重系数。
如果模型正确分类样本,则权重保持不变;如果模型错误分类样本,则更新权重,使预测结果更接近正确结果。
4. 重复上述步骤:重复以上步骤,直到达到预设的迭代次数或者满足停止条件。
1最大匹配法(Forward Maximum Matching method, FMM法):选取包含6-8个汉字的符号串作为最大符号串,把最大符号串与词典中的单词条目相匹配,如果不能匹配,就削掉一个汉字继续匹配,直到在词典中找到相应的单词为止。
匹配的方向是从右向左。
逆向最大匹配法(Backward Maximum Matching method, BMM法):匹配方向与MM法相反,是从左向右。
实验表明:对于汉语来说,逆向最大匹配法比最大匹配法更有效。
给定串:我是中国人从左往右最长匹配优先:读入‘我’,一个字当然是一个词再读入‘是’,查表找‘我是’,不在表中,则‘我’是一个独立的词,‘是’还要下一步判断读入‘中’‘是中’肯定不在表内,那‘是’也是一个独立的词,‘中’还要下一步判断读入‘果’,‘中国’在表内再读入‘人’,’中国人‘也在表内,此时全部读完,’中国人‘是一个次结果就是:我是中国人从右往左也类似最近折腾毕业论文,搞得人没心情写blog了。
于是觉得不如把毕业论文里的东西贴出来当blog算了。
这里主要介绍了我自己的中文分词算法,我觉得它比现在开源代码比较多的中文匹配法要好多了。
这里的内容没有任何背景知识啥的,毕竟论文里的背景知道我也是从网上粘贴的,呵呵!因此这篇文章的内容可能适合做搜索引擎的人。
如果要了解中文分词算法在搜索引擎中的重要性,或者最大匹配法的思想与过程,请去网上搜吧,资料还是蛮多的。
1.1.1 最大匹配法分词的缺陷尽管最大匹配法分词是常用的解决的方案,但是无疑它存在很多明显的缺陷,这些缺陷也限制了最大匹配法在大型搜索系统中的使用频率。
最大匹配法的问题有以下几点:一、长度限制由于最大匹配法必须首先设定一个匹配词长的初始值,这个长度限制是最大匹配法在效率与词长之间的一种妥协。
我们来看一下以下两种情况:(1)词长过短,长词就会被切错。
例如当词长被设成5时,也就意味着它只能分出长度为5以下词,例如当这个词为“中华人民共和国”长度为7的词时,我们只能取出其中的5个字去词库里匹配,例如“中华人民共”,显然词库里是不可能有这样的词存在的。
因此我们无法下确的划分出“中华人民共和国”这样的词长大于5的词。
(2)词长过长,效率就比较低。
也许有人会认为既然5个字无法满足我们的分词要求,何不将词长加大,例如加到10或者100,毕竟这个世界超过100个字长的词还是很少见的,我们的词长问题不就解决了?然而当词长过长时,我们却要付出另一方面的代价:效率。
效率是分词算法、甚至是整个算法理论体系的关键,毕竟算法书里所有的高深的查询或排序算法都是从效率出发的,否则任何笨办法都可以解决分词效率低的问题。
设想到我们把字长设成100个词时,我们必须将词从100开始一直往下匹配直到找到要查的字为止,而我们大多数词的字长却只有两三个字,这意味着前97次的匹配算法是徒劳的。
因此我们必须要在词长与效率之间进行妥协,既要求分词尽量准确,又要求我们的词长不能太长。
尽管我们可能找到这样一个比较优化的字长值使两者都达到比较满足的状态,但是毕竟不管我们怎么设定,总会有些太长词分出来,或者带来效率问题。
二、效率低效率低是最大匹配法分词必然会来的问题。
即使我们可以将字长设成相当短,例如5(注意,我们不能再缩短字长了,毕竟字长为5以上的词太多了,我们不能牺牲分词的准确),然而当我们的大数词长为2时,至少有3次的匹配算法是浪费掉的。
回想一下算法书里提到的最简单的字符匹配与KMP算法之间天差地别的效率,我们知道通过某种方法,这些浪费的掉的匹配时间是可以补回来的。
三、掩盖分词歧义中文是如此复杂的语言,它的表达方式如此之多,语法文法如此精妙,机械的电脑是很难理解这么复杂的语言,因此它必然会带来歧意性,以下是两个简单的例子:A.“有意见分歧” (正向最大匹配和逆向最大匹配结果不同)有意/ 见/ 分歧/有/ 意见/ 分歧/B.“结合成分子时” (正向最大匹配和逆向最大匹配结果相同)结合/ 成分/ 子时/由于词的歧义性使我们在使用最大匹配法分词会产生错误的结果,而且使用正向分词与逆向分词往往会产生截然不同的结果。
尽管使用回溯法或计算计算词的使用频率,可以使出现歧义的可能性减少,但是我们知道,这样的结果是不可避免的,因为中文的变化实在太多了。
四、最大匹配的并不一定是想要的分词方式最大匹配法基于的理念是找到最大的匹配词,但有的时候除了最大匹配词外,我们也可能只需要这个词的一部分。
例如“感冒解毒胶囊”是一个完整的词,按照最大匹配法我们无法对它进行拆分了,这样我们输入“感冒”的时候就根本搜不到我们需要的词。
这是我们需要的吗?做为生产这种药的厂商,它肯定希望用户输入“感冒”甚至“解毒”,我们都能查到对应的内容。
1.2 设计自己的中文分词算法1.2.1 设计目标基于对分词算法的理解和对最大匹配法分词的分析,我们知道我们必须提出不同的解决方案,使分词算法的效率、分词的长度限制甚至歧义处理上得到提高。
因此我们提出了如下的设计目标:一、高效中文分词算法必须要高效,毕竟效率对于搜索引擎的重要性是不言而喻的。
而且我们面对的是海量的数据,而不是一篇几百字或几千字的文章,效率的差别的影响可能会使最后运行效率差几个小时甚至几天。
因此我希望我们设计的算法一定要比最大匹配法高,毕竟我们已经常看到最大匹配法的很多次匹配都是浪费在无用功上了,肯定有办法把这些浪费的时间节省回来。
二、无长度限制最大匹配法的长度限制真是很讨厌的事,我们很难找到词长与效率的之间的平衡。
为什么我们需要长度的限制?为什么我们不能设计出任何词长的词(只要词库中存在)都可以分出来?三、歧义包容我们相信长度限制的问题总是可以解决的,因为虽然长度限制这个问题很难,但是它是有规律可循的,它是严谨的科学。
但是当我们碰到中文歧义时,我知道不管我们怎么努力,它仍然是不可能彻底解决的。
因为中文实在太博大精深了,即使有极强的人工智能和机器学习功能,这样的错误仍然是难以避免。
既然无法避免?我们为什么不换一个角度去考虑?我们为什么不可以将出现歧义的各种可能性都包含进去,作为分词的参考。
例如上述的“有意见分歧”的两种分词方法:有意/ 见/ 分歧/有/ 意见/ 分歧/为什么我们不能把这样两种结果都拿来分词呢?毕竟分词的目的是为了搜索,而不是为了教小孩读出。
如果把两种分词的可能性都告诉搜索引擎,搜索引擎会很高兴的,因为这下不管是“有意”还是“意见”,它都可以搜到了。
这就是我提出来另一个目标:歧义包容。
1.2.2 算法的突破口—词库虽然我们的目标已经确定下来了,但是要想出一个更好的算法却是非常难的事。
毕竟算法需要的是灵感与突发奇想,这与系统的架构设计和面向对象的设计与编者编码刚好是相反的,象设计模式或重构这样的东西我们需要的实践、总结、再实践。
而算法需要的却是当我们在山重水复疑无路的时候会换个角度思考。
但是分词算法的突破口在哪里呢?我们必须要有一个词库,我们必须将全文中的词与词库去匹配,这一切都是不可避免的。
真正要改善是就是我们的匹配过程,我们要减少匹配过程中的浪费,我们要解决匹配中的词长限制。
但是我们有什么办法呢?每次的匹配我们必须要去词库中查找一次。
怎么改善这样的做法?我们总是把优化的思路定格在更好的匹配算法,更好地处理词条和全文。
但是真正束缚我们的却是词库!是基于关系数据库的词库,我们需要的对词库的改造,我们要让我们的词库更适合用于匹配与分词!这是几十年来关系数据库带给我们的思维:我们查找的词是数据库的某条记录,通过表格与关系代数,我们总能找到这个词。
但是正是关系数据库的这种思维束缚着我们,关系数据库让我们的数据结构及关联表达得清楚又简单,并使某些查询的效率变得很高。
但是这不适用于中文分词,有的时候退到几十年前流行的数据库模型也许更适合。
这就是层次数据库。
我们要做的是将关系数据库的词按字打散,并存放到层次数据库中。
以下就是一个示例:红色的字表示树上面的字串是可以单独组成一个词的,例如“感冒”它本身是词库里可以找到的词,所有红色的表示的是终止符。
而黄色则表示树上面的字串是无法单独成词的,例如“感冒解”是不存在的词。
真的很奇妙,词库经过这样的改装后,所有的匹配的思维都变掉了。
任何一个句子都会打散成单字去与树状结构的单字去匹配,词的长度变成了树的高度,每一次的匹配变成了树的遍历,而这种遍历的效率竟然都是线性的!1.2.3 中文分词算法设计有了以上的中文词库后,我们分词算法设计就水到渠成的。
首先我们来看一下分词的步骤:(1)首先将要分的全文按标点符号打散成一个一个的句子。
这算是预处理的一个步骤,目的是让我们处理的句子短,效率更高。
毕竟中间有标点符号的词是不存在的。
(注:真正实现时我们是基于lucene的SimpleAnalyzer来做的,因为SimpleAnalyzer本身就是为了将全文打散成句子,因此我们没必要耗费体力去实现这一步)。
(2)我们开始将要处理的句子在树状结构中遍历,如果找到匹配的就继续,如果遇到红色的终止符,我们就发现这个词是一个完整的词了,这样我们就可以把这个词作为一个一个分词了。
(3)从分词后的下一字开始继续做步骤2这样的遍历,如此循环往复就将词分完了。
可以看到,我们字符匹配效率几乎是线性的!我们所要做的只是取出每一个字去树上找到相应的匹配,每次的匹配代价都是O(1)(如果词库用Hash表的话),这样匹配下来的时间复杂度就是字符串本身的长度!对于一个长度为n的字符串来说,它的分词复杂度是O(n)。
而最大匹配的平均复杂度是O(n2)。
当然我们这里没有考虑歧义包容与分支处理等情况,但即使加上这些我们复杂度仍然是有限的。
1.2.4 中文分词算法的实现细节一、建立词库有了改装词库的基本思想后,建立词库的步骤变得很简单,但是仍然会有好多的细节需要注意。
首先是词库的保存格式。
现在最常用的保存数据的方式当然是关系数据库,其次是文件系统中的二进制文件。
显然关系数据库对于我们并不适用,而自定义的二进制文件则实现起来比较困难,而且读写的效率也会有问题。
因为我们想到了最简单的方法是利用java的serialization的功能,把整个内存中的树状结构直接序列化成磁盘的文本文件是最方便的!而且读写的效率也会相当的高。
第二个问题是树的父子节点的导航。
我们的树并不是一颗二叉树,父亲的子节点会有好多!尤其是第一层,我们会把词库中所有的首字都取出来作为根节点的子节点,这意味着如果首字有4000个的话,根节点就有4000个儿子。
当然随着树层数的增多,节点的儿子数也会减少,毕竟以“感冒”开头的词在整个词库也只有四十多个,而以“感冒清”开头的词则只有两三个了。
这意味着如果设计得不合理,我们树的匹配遍历过程并不完全是线性的。