第7届中环杯六年级复赛
- 格式:doc
- 大小:45.50 KB
- 文档页数:2
工程问题知识点1:工程问题:由两个或两个以上单位(或人),共同去完成一件工作或一项工程,计算需要完成任务的时间,这一类应用题叫做“工程问题”。
题目中没有给出具体的总工程量,通常用单位“1”表示(即整体思想),并用“1÷工作时间”推算工作效率,用一个分数单位1n⎛⎫⎪⎝⎭表示。
基本数量关系与一般工作问题完全相同,即总工程量÷工作效率=工作时间;总工程量÷工作时间=工作效率知识点2:工程问题中的“牛吃草”问题工程问题中的“牛吃草”问题是工程问题的特殊形式,即题目条件里面有变量。
所以解答此类问题首先应该将工程问题中的条件与“牛吃草”中的“原有草量”、“新生长的草量”和“牛吃草”一一对应,而关键是确定工程问题里面的两个不变量,仿照“牛吃草”问题即:原有量和增加率。
所以类似的基本数量关系式有:增加率=(台(人)数×时间-台(人)数×时间)÷时间差;原有量=(台(人)数-增加率×1)×时间台(人)数=原有量÷时间+增加率×1;时间=原有量÷(台(人)数-增加率×1)通常把“牛吃草”的速度即减少的速度设为“1”份。
知识点3:解题的思考方法:解答工程问题时一定要认真审题,弄明白是完成全部工程,还是该工程的部分(即它的几分之几)?有几个人或单位参加工作?他们完成这项工程各自需要多少时间?推得各自的工效是几分之一?他们是同时开始、同时结束工作的,还是有先有后的?具体要求什么等等。
因为工程问题的条件可用多种形式提出,有的不以“工程”命题,有的与其他类型的题目结合,这样,工程问题的题目就复杂起来。
但复杂是可以向简单转化的,通过一定的手段,使其变为若干个基本题,解题的基本思路与方法是不变的。
因此,只要抓住工作总量、工作效率、工作时间三者的关系,细心分析,就能找到解题的途径、步骤和方法。
例1(基础)原计划由一支工程队修建一座公园,预计需要1年零6个月;现在为了加紧完工,又调来了两支工程队,已知两只工程队的工作效率相同,那么需要多久才能完工?(提高、尖子)原计划一个工程队铺设一条水管需要18天,开工6天之后抽调走工程队中23的人数去做其他的工作,那么一共需要多少天才能建成这座大桥?(基础)批改一批考卷,李老师单独做需要12小时,王老师和李老师一起批改,需要8小时,那王老师单独批改这份考卷需要多少时间?(提高、尖子)有一批书,小明9天可装订34,小丽20天可装订56,现小明和小丽合作共装订了6天,余下的由小丽来装订,问:装订完这批书共用多少天?例3(基础、提高)满一个水池的水,同时开①、②、③号阀门需要15小时;同时开①、③、⑤号阀门需要10小时;同时开①、③、④号阀门需要12小时;同时开②、④、⑤号阀门需要8小时。
第四届小学“但愿杯”全国数学邀请赛六年级第1试1.××(1×+1×)=________. 2.900000-9=________×99999.3.1.•2×1.•2•4+ 1927=________.4.假如a=,b=,c=,那么a,b,c中最大旳是________,最小旳是________. 5.将某商品涨价25%,若涨价后销售金额与涨价前销售金额相似,则销售量减少了____%.6.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们旳玻璃弹球将同样多。
”小刚说:“我若给你2个,我旳弹球数量将是你旳弹球数量旳三分之一。
”小明和小刚共有玻璃弹球________个。
7.一次测验中,小明答错了10道题,小刚答错了8道题,小强答对旳题旳数量等于小明与小刚答对题旳数量之和,且小强答错了3道题。
这次测验共有________道题。
8.一种两位数,加上它旳个位数字旳9倍,恰好等于100。
这个两位数旳各位数字之和旳五分之三是________。
9.将一种数A旳小数点向右移动两位,得到数B。
那么B+A是B-A旳_______倍.(成果写成分数形式)10.用10根火柴棒首尾顺次连接接成一种三角形,能接成不一样旳三角形有________个。
11.但愿小学举行运动会,全体运动员旳编号是从1开始旳持续整数,他们按左下图中实线所示,从第1珩第1列开始,按照编号从小到大旳次序排成一种方阵。
小明旳编号是30,他排在第3行第6列,则运动员共有________人。
12.将长为5,宽为3,高为1旳长方体木块旳表面涂上漆,再切成15块棱长为l 旳小正方体。
则三个面涂漆旳小正方体有________块。
13.如下图中,∠AOB 旳顶点0在直线l 上,已知图中所有不不小于平角旳角之和是400度,则∠AOB =____度。
14.如上图右,桌面上有A 、B 、C 三个正方形,边长分别为6,8,10。
第七届鹏程杯数学六年级比赛介绍赛事背景鹏程杯是一项以培养学生数学兴趣和提高数学能力为目标的数学竞赛活动。
第七届鹏程杯数学比赛针对六年级学生举行,旨在激发学生对数学的兴趣、培养解决问题的能力和团队合作精神。
本文将介绍比赛的组织形式、参赛条件、比赛内容和评奖标准等方面的内容。
比赛组织形式第七届鹏程杯数学六年级比赛分为个人赛和团队赛两个部分。
个人赛个人赛是比赛的第一阶段,参赛学生需独立完成一套试卷,试卷包含选择题、填空题和解答题。
比赛时间为90分钟,学生需要在规定时间内完成试卷,并将答案填写在答题卡上。
团队赛团队赛是比赛的第二阶段,个人赛的排名将决定团队赛的分组情况。
参赛学生将分组成为4-5人的团队,共同解决一套团队赛试卷。
团队赛试卷包含一些需要团队合作解答的问题,旨在培养学生的团队协作和沟通能力。
比赛时间为120分钟。
参赛条件鹏程杯数学六年级比赛对参赛学生有以下条件要求:1.参赛学生必须是六年级在校学生;2.参赛学生需要经过学校推荐或选拔。
比赛内容第七届鹏程杯数学六年级比赛的考试内容主要包括以下几个方面:1.数与式:包括整数、小数、分数、百分数、数轴等基本概念和运算规则;2.几何图形:包括平面图形和立体图形的性质与判断;3.数据与图表:包括数据收集、整理、分析与应用。
试题形式多样,既有选择题考查基础知识和计算能力,也有填空题和解答题考查对数学概念和解题方法的理解和应用能力。
评奖标准根据比赛的成绩情况,将对个人赛和团队赛进行分别评奖。
个人赛个人赛将根据试卷的总分进行排名,取前若干名获得一等奖、二等奖、三等奖。
团队赛团队赛将根据团队的总分进行排名,取前若干名获得一等奖、二等奖、三等奖。
此外,团队赛还将评选“最佳团队奖”,以表彰表现最出色的团队。
总结第七届鹏程杯数学六年级比赛旨在提高学生的数学能力和解题能力,激发学生对数学的兴趣。
比赛包括个人赛和团队赛两个阶段,采用不同的考题形式,旨在全面考察学生的数学知识和解题能力。
第七届华杯赛复赛试题及解答1.=2.1999年2月份,我国城乡居民储蓄存款月末佘额是56767亿元,比月初佘额增长l8%.请问:我国城乡居民储蓄存款2月初余额是多少亿元精确到时亿元3.环形跑道周长400米,甲、乙两名运动员同时顺时针自起点出发,甲每分钟跑400米,乙每分钟跑375米.问:多少时间后甲、乙再次相遇4.两个整数的最小公倍数是1925,这两个整数分别除以它们的最大公约数,得到两个商的和是16,写出这两个整数;5.数学考试有一题是计算4个分数,,,的平均值,小明很粗心,把其中1个分数的分子和分母抄颠倒了;问:抄错后的平均值和正确的答案最大相差多少6.果品公司购进苹果5.2万千克,每千克进价是0.98元,付运费等开支l840元,预计损耗为1%.如果希望全部进货销售后能获利l7%,那么每千克苹果零售价应当定为多少元7.计算:19+199+1999+…+=8.“新新”商贸服务公司,为客户出售货物收取3%的服务费,代客户购物品收取2%服务费;今有一客户委托该公司出售自产的某种物品和代为购置新设备;已知该公司共扣取了客户服务费264元,客户恰好收支平衡;问:所购置的新设备花费了多少元9.一列数,前3个是l,9,9,以后每个都是它前面相邻3个数字之和除以3所得的余数,问:这列数中的第l999个数是几10.将l一一9这九个数字填入下图的9个圆圈中,使每个三角形和直线上的3个数字之和都相等;写出一个答案即可11.如图,在一个正方体的两对侧面的中心各打通一各长方体的洞,在上下侧面的中心打通一各圆柱的洞.已知正方体边长为10厘米,侧面上的洞口时边长为4厘米的正方形,上下侧面的洞口时直径为4厘米的圆,求下图立体的表面积和体积取π=3.1412.九个边长分别为l,4,7,8,9,10,l4,15,18的正方形可以拼成一个长方形;问:这个长方形的长和宽是多少请画出这个长方形的拼揍图;1.解原式=÷+×=×+=2.解2月初余额是 56767÷1十18%≈48108亿元.3.解400÷400-375=16分钟答:16分钟后,甲、乙再次相遇即甲比乙多跑一圈4.解1925=5×5×7×11两个商都是1925的约数,互质,而且和为16,所以这两个商分别为5、111925÷5=385,1925÷11=175这两个整数是385与1755.解,,,因此,抄错后的平均值与正确答案最大相差÷4=6.解==l.2元答:每千克零售价应定为1.2元7.解原式=-1999×1=.8.解设出售的货物为x元,购置的设备花费了y元,则1即3x+2y=2640033-2×3得5y=26400-3×264所以 y==5121.6元答:购置的设备花费5121.6元9.解直接计算,这个数列为1.9,9,1,1,2,1,1,1,0,2,0,2,1,0,0,1,1,2,…自第17项起,第4至第16项重复出现,而1999-3÷16-4+1=153 (7)因此第1999个数即第10=3+7个数是0.10.解三阶幻方是众所周知的右图,将幻方的三行填在三条直线上,并使三列分别在三个三角形上,这就得到如下的一种填法:11.解表面积为6×-4×-2×π×+2×4×4×6+π×4×6+2×-π×≈785.12平方厘米,体积为-2××10+-π××6≈668.64立方厘米.12.解长方形的面积是=1056,长方形的宽显然≥18.而1056=22×48=24×44=32×33.但18只有与4相加得22,多出的18-4无法与其它数相加得出22,所以宽不是22,同理,宽不是24,因而长方形的宽是32,长是33.具体拼法如图。
中环杯、小机灵杯试题精选【1】1.四个球,编号为1,2,3,4,将他们分放到编号为1,2,3,4的四只箱子里,每箱一个,则至少有一箱恰使球号与箱号相同的放法有几种?2. 用数码1,2,3,4.....9各恰好两次,构成不同的质数,使它们的和尽可能小,则该和最小是几?【2】一班,二班,三班各有二人作为数学竞赛优胜者, 6人站一排照相, 要求同班同学不站在一起, 有( ) 种不同的站法?【3】一版邮票有20行20列,共400张邮票,称由3张同一行或同一列相连的邮票组成的纸块为"三联".小亮想剪出尽可能多的三联,他最多能得到几块三联?【4】第一次在1,2两数之间写上3;第二次在1,3之间和3,2之间分别写上4,5;以后每一次都在已写上的两个相邻数之间,再写上这两个相邻数之和。
这样的过程共重复8次,那么所以数的和是多少?【5】一次测验共有5道试题,测试后统计如下:有81%的同学做对第1题,有85%的同学做对第2题,有91%的同学做对第3题,有74%的同学做对第4题,有79%的同学做对第5题。
如果做对3道或3道以上试题的同学为考试合格。
请问:这次考试的合格率最多达百分之几?最少达百分之几?【6】把156支铅笔分成n堆(n>等于2),要求每堆一样多且为偶数支。
有()种分法。
【7】七个相同的羽毛球,放在四个不同的盒子里, 每个盒子里至少放一个, 不同的放法有( ) 种.【8】由甲城开往乙城的汽车每隔1小时一班逢整点出发,由乙城开往甲城的汽车每隔1小时一班但逢半点(30分)出发。
从一个城市到另一个城市需要6小时,假定汽车行驶在同一高速公路上,那么一辆开往乙城的汽车最多能遇到()辆开往甲城的汽车。
【9】一群公猴、母猴和小猴共38只,每天共摘桃子266个。
已知每只公猴每天摘桃10个,每只母猴每天摘桃8个,每只小猴每天摘桃5个,并且公猴比母猴少4只,那么,这群猴子中小猴有多少只?这道题目除了设X做以外还有别的方法吗?【10】甲、乙两列车分别从A,B两站同时相向开出,已知甲车的速度与乙车速度的比为3:2,C站在A,B两站之间。
浓度问题要区分两种物体的差别,我们可以根据物体的特点,采取不同的方式和方法,如可鉴别两种物体的形状、颜色、质量的差别。
但是,要想比较两种不同的但却盛在完全相同的容器里的糖水,比较哪个容器里的糖水更甜,就不能用以上的方法进行区分了。
哪个糖水更甜,就是说哪个容器里的糖水更浓一些,这就是我们要学习的浓度问题。
1.我们把糖与糖水的重量的比值称为糖水的浓度,同样,我们把盐与盐水的重量的比值称为盐水的浓度。
2.将糖溶于水就得到了糖水,其中糖叫溶质,水叫溶剂,糖水叫溶液。
如果水的量不变,那么糖加得越多,糖水就越甜,也就是说糖水的甜度是由糖(溶质)与糖水(溶液糖水)两者质量的比值决定的,这个比值就叫糖水的含糖量。
3.在同一种重量单位里,溶质、溶剂、溶液以及浓度之间有以下关系:溶质质量+溶剂质量=溶液质量4.有关浓度配比问题还经常用到下面的关系式:溶液重量=溶质重量+溶剂重量溶液重量=溶质重量÷浓度溶剂重量=溶液重量×(1-浓度)5.解答浓度问题,根据题意列方程解答比较容易。
在列方程时,要注意寻找题目中的等量关系。
6.浓度问题主要分为下列四种,应用相应技巧处理往往事半功倍:①稀释问题:由浓度高的溶液经过添加溶剂变成浓度低的溶液的过程成为稀释。
在这种稀释的过程中,只是溶剂增加了,溶质的重量是不变的,这是解这类问题的关键。
②加浓问题:由浓度低的溶液经过添加溶质或蒸发掉溶剂的方式转化为浓度高的溶液的过程成为加浓。
在这个加浓的过程中,既可添加溶质又可蒸发掉溶剂,要根据题目的条件,选择恰当的方式,正确解答。
③两种溶液的配制问题:在浓度问题中有这样一类题,是把原有的两种或两种以上不同重量、不同浓度的溶液,混合在一起配成某种新浓度的溶液。
这是浓度的配制问题,解这类问题较多的是利用列方程的方法解答,因为混合前后的溶质是不变的。
④溶液互换问题:浓度中溶液互换问题,就是先后把一个容器的溶液倒入对方容器中,再求混合后各自的浓度等问题。
五年级应用题牛吃草学生版单块地简单牛吃草1. 牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周,那么它可供多少头牛吃18周?2. 有一块匀速生长的草场,可供12头牛吃25天,或可供24头牛吃10天.那么它可供几头牛吃20天?3. 青青一牧场,牧草喂牛羊; 放牛二十七,六周全吃光.改养廿三只,九周走他方;若养二十一,可作几周粮?(注:“廿”的读音与“念”相同.“廿”即二十之意.)题目翻译过来是:一牧场长满青草,27头牛6个星期可以吃完,或者23头牛9个星期可以吃完.若是21头牛,要几个星期才可以吃完?(注:牧场的草每天都在生长)4. 牧场上长满牧草,每天牧草都匀速生长.这片牧场可供10头牛吃20天,可供15头牛吃10天.供25头牛可吃几天?5.牧场上有一片匀速生长的草地,可供27头牛吃6周,或供23头牛吃9周.那么它可供21头牛吃几周?6.由于天气逐渐冷起来,牧场上的草不仅不生长,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可以供多少头牛吃10天?7.由于天气逐渐变冷,牧场上的草每天以均匀的速度减少.经计算,牧场上的草可供20头牛吃5天,或可供16头牛吃6天.那么,可供11头牛吃几天?8.林子里有猴子喜欢吃的野果,23只猴子可在9周内吃光,21只猴子可在12周内吃光,问如果要4周吃光野果,则需有多少只猴子一起吃?(假定野果生长的速度不变)多块地简单牛吃草1.东升牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在东升牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?2.有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的3倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地上的草.问几头牛10天能同时吃完两块草地上的草?3.有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?4.17头牛吃28公亩的草,84天可以吃完;22头牛吃同样牧场33公亩的草54天可吃完,几头牛吃同样牧场40公亩的草,24天可吃完?(假设每公亩牧草原草量相等,且匀速生长)5.(2008第九届“中环杯”小学生思维能力训练活动五年级决赛)11头牛10天可吃完5公顷的草地上的草,12头牛14天可以吃完6公顷的草地上的草.假设每公顷草地上的草量相等,每天新长出来的草量相等,每头牛每天的吃草量也相等,那么8公顷草地可供19头牛吃多少天?6.有三片牧场,场上草长得一样密,而且长得一样快.它们的面积分别是133公顷、10公顷和24公顷.已知12头牛4星期吃完第一片牧场的草,21头牛9星期吃完第二片牧场的草,那么多少头牛18星期才能吃完第三片牧场的草?7.一个农夫有面积为2公顷、4公顷和6公顷的三块牧场.三块牧场上的草长得一样密,而且长得一样快.农夫将8头牛赶到2公顷的牧场,牛5天吃完了草;如果农夫将8头牛赶到4公顷的牧场,牛15天可吃完草.问:若农夫将这8头牛赶到6公顷的牧场,这块牧场可供这些牛吃几天?8.如图,一块正方形的草地被分成完全相等的四块和中间的阴影部分,已知草在各处都是同样速度均匀生长.牧民带着一群牛先在①号草地上吃草,两天之后把①号草地的草吃光(在这2天内其他草地的草正常生长).之后他让一半牛在②号草地吃草,一半牛在③号草地吃草,6天后又将两个草地的草吃光.然后牧民把13的牛放在阴影部分的草地中吃草,另外23的牛放在④号草地吃草,结果发现它们同时把草场上的草吃完.那么如果一开始就让这群牛在整块草地上吃草,吃完这些草需要多少时间?混合、变化型牛吃草1.一块匀速生长的草地,可供16头牛吃20天或者供100只羊吃12天.如果一头牛一天吃草量等于5只羊一天的吃草量,那么这块草地可供10头牛和75只羊一起吃多少天?2.(第六届希望杯六年级二试)有一片草场,草每天的生长速度相同.若14头牛30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量).那么,17头牛和20只羊多少天可将草吃完?3.一片茂盛的草地,每天的生长速度相同,现在这片青草16头牛可吃15天,或者可供100只羊吃6天,而4只羊的吃草量相当于1头牛的吃草量,那么8头牛与48只羊一起吃,可以吃多少天?4.现在有牛、羊、马吃一块草地的草,牛、马吃需要45天吃完,于是马、羊吃需要60天吃完,于是牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?5.有一牧场,17头牛30天可将草吃完,19头牛则24天可以吃完.现有若干头牛吃了6天后,卖掉了4头牛,余下的牛再吃两天便将草吃完.问:原来有多少头牛吃草(草均匀生长)?6.一片草地,可供5头牛吃30天,也可供4头牛吃40天,如果4头牛吃30天,又增加了2头牛一起吃,还可以再吃几天?牛吃草典型变例Ⅰ检票付款1.早晨6点,某火车进口处已有945名旅客等候检票进站,此时,每分钟还有若干人前来进口处准备进站.这样,如果设立4个检票口,15分钟可以放完旅客,如果设立8个检票口,7分钟可以放完旅客.现要求5分钟放完,需设立几个检票口?2.火车站的检票处检票前已有一些人等待检票进站,假如每分钟前来检票处排队检票的人数一定,那么当开一个检票口时,27分钟后就无人排队;当开两个检票口时,12分钟就无人排队.如果要在6分钟后就无人排队,那么至少需要开个检票口.3.(第七届中环杯五年级决赛)某火车站检票口在检票前已经有一些人在排队,检票开始后每分钟有10人前来排队检票,一个检票口每分钟能检票25人.如果只有一个检票口,检票开始8分钟后就没有人排队;如果有两个检票口,那么检票开始后()分钟就没有人排队.4.画展8:30开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点就不再有人排队;如果开5个入场口,8点45分就没有人排队.求第一个观众到达的时间.5.某超市平均每小时有60人排队付款,每一个收银台每小时能应付80人,某天某时段内,该超市只有一个收银台工作,付款开始4小时就没有顾客排队了,如果当时有两个收银台工作,那么付款开始__ ________小时就没有人排队了.Ⅱ进、排水6.(第五届希望杯六年级二试)2006年夏天,我国某地区遭遇了严重干旱,政府为了解决村名饮水问题,在山下的一眼泉水旁修了一个蓄水池,每小时有40立方米泉水注入池中.第一周开动5台抽水机2.5小时就把一池水抽完,接着第二周开动8台抽水机1.5小时就把一池水抽完.后来由于旱情严重,开动13台抽水机同时供水,请问几小时可以把这池水抽完?7.一水库原有存水量一定,河水每天均匀入库.5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干.若要求6天抽干,需要多少台同样的抽水机?8.一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水,8小时淘完.如果要求2小时淘完,要安排多少人淘水?9.北京密云水库建有10个泄洪洞,现在水库的水位已经超过安全线,并且水量还在以一个不变的速度增加,为了防洪,需要调节泄洪的速度,假设每个闸门泄洪的速度相同,经测算,若打开一个泄洪闸,30个小时以后水位降至安全线;若同时打开两个泄洪闸,10个小时后水位降至安全线.根据抗洪形势,需要用2个小时使水位降至安全线以下,则至少需要同时打开泄洪闸的数目为多少个?10.(2008年五年级希望杯二试)有一个蓄水池装了9根相同的水管,其中一根是进水管,其余8根是出水管.开始时,进水管以均匀的速度不停地向蓄水池注水.后来,想打开出水管,使池内的水全部排光.如果同时打开8根出水管,则3小时可排尽池内的水;如果仅打开5根出水管,则需6小时才能排尽池内的水.若要在4.5小时内排尽池内的水,那么应当同时打开多少根出水管?11.一个蓄水池有1个进水口和15个出水口,水从进水口匀速流入.当池中有一半的水时,如果打开9个出水口,9小时可以把水排空.如果打开7个出水口,18小时可以把水排空.如果是一满池水,打开全部出水口放水,那么经过时分水池刚好被排空.12.一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?13. 一个装满了水的水池有一个进水阀及三个口径相同的排水阀,如果同时打开进水阀及一个排水阀,则30分钟能把水池的水排完,如果同时打开进水阀及两个排水阀,则10分钟把水池的水排完.问:关闭进水阀并且同时打开三个排水阀,需要多少分钟才能排完水池的水?14. 由于环境恶化、气候变暖,官厅水库的水在匀速减少,为了保证水库的水量,政府决定从上游的壶流河水库以及册田水库分别向官厅水库进行调水,已知这两个水库的每个闸门放水量是相同的,如果同时打开壶流河水库的5个闸门30小时可以使官厅水库水量达到原来的标准,如果同时打开册田水库的4个闸门40小时可以使官厅水库水量达到原来的标准,如果24小时使官厅水库水量达到原来的标准,问需同时打开两个水库的几个闸门?15. 小方用一个有洞的杯子从水缸里往三个同样的容积的空桶中舀水.第一个桶距水缸有1米,小方用3次恰好把桶装满;第二个桶距水缸有2米,小方用4次恰好把桶装满.第三个桶距水缸有3米,那么小方要多少次才能把它装满(假设小方走路的速度不变,水从杯中流出的速度也不变)16. (2008年五年级陈省身杯)有一个水池,池底存了一些水,并且还有泉水不断涌出.为了将水池里的水抽干,原计划调来8台抽水机同时工作.但出于节省时间的考虑,实际调来了9台抽水机,这样比原计划节省了8小时.工程师们测算出,如果最初调来10台抽水机,将会比原计划节省12小时.这样,将水池的水抽干后,为了保持池中始终没有水,还应该至少留下 台抽水机.17. 如下图,有一个敞口的立方体水箱,在其侧面一条高线的三等分点出有两个排水孔A 和B ,它们排水的速度是恒定的.从上面给水箱注水,如果打开A 孔,关闭B 孔,那么经过20分钟可将水箱注满;如果关闭A 孔,打开B 孔,那么需要22分钟才能注满.若两个孔都打开,则注满水箱需要多长时间?18. 甲乙两个相同的长方体水箱,在它们的侧面上分别有排水孔A 和B .A 孔和B 孔与底面的距离分别是水箱高度的56和12,且排水速度相同.现在以相同的速度一起给两水箱注水,并通过管道使A 孔排出的水直接流入乙水箱,这样经过了70分钟后,甲乙水箱同时被注满.移掉甲水筒,乙箱的B 孔仍存在,那么按照上述的速度给乙箱注水,水箱从空到满需要多少分钟?Ⅲ 电梯19. 在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从站台到地面有 级台阶.20. 两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级梯级,女孩每秒可走2级梯级,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒.问:该扶梯共有多少级梯级?21. (第七届中环杯中小学生思维能力训练活动初预(六)年级复赛活动内容)某人从向下运动着的自动扶梯步行而下,每步一级,共走了30级到达底层.在到达底层后,他又返身奔上这一自动扶梯,也是每步一级,一共走了60级到达上层.设这人向上奔走的速度是他向下步行速度的3倍,并且上下来回都是匀速运动,那么自动扶梯停止后,一共能看到( )扶梯.Ⅳ行程22. 小明从甲地步行去乙地,出发一段时间后,小亮有事去追赶他,若骑自行车,每小时行15千米,3小时可以追上;若骑摩托车,每小时行35千米,1小时可以追上;若开汽车,每小时行45千米, 分钟能追上.23. 有固定速度行驶的甲车和乙车,如果甲车以现在速度的2倍追赶乙车,5小时后甲车追上乙车;如果甲车以现在速度的3倍追赶乙车,3小时后甲车追上乙车,那么如果甲车以现在的速度去追赶乙车,问:几个小时后甲车追上乙车?甲乙24.快、中、慢三车同时从A地出发沿同一公路开往B地,途中有骑车人也在同方向行进,这三辆车分别用7分钟、8分钟、14分钟追上骑车人.已知快车每分钟行800米,慢车每分钟行600米,中速车的速度是多少?25.小新、正南、妮妮三人同时从学校出发到公园去.小新、正南两人的速度分别是每分钟20米和每分钟16米.在他们出发的同时,风间从公园迎面走来,分别在他们出发后6分钟、7分钟、8分钟先后与小新、正南、妮妮相遇,求妮妮的速度.Ⅴ工程以及变量工程26.仓库里原有一批存货,以后继续运货进仓,且每天运进的货一样多.用同样的汽车运货出仓,如果每天用4辆汽车,则9天恰好运完;如果每天用5辆汽车,则6天恰好运完.仓库里原有的存货若用1辆汽车运则需要多少天运完?27.甲、乙、丙三个仓库,各存放着数量相同的面粉,甲仓库用一台皮带输送机和12个工人,5小时可将甲仓库内面粉搬完;乙仓库用一台皮带输送机和28个工人,3小时可将仓库内面粉搬完;丙仓库现有2台皮带输送机,如果要用2小时把丙仓库内面粉搬完,同时还要多少个工人?(每个工人每小时工效相同,每台皮带输送机每小时工效也相同,另外皮带输送机与工人一起往外搬运面粉)28.某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派15个工人砌砖墙,14天可以把砖用完,如果派20个工人,9天可以把砖用完,现在派若干名工人砌了6天后,调走6名工人,其余工人又工作4天才砌完,问原来有多少工人来砌墙?29.食品厂开工前运进一批面粉,开工后每天运进相同数量的面粉,如果派5个工人加工食品30天可以把面粉用完,如果派4个工人,40天可以把面粉用完,现在派4名工人加工了30天后,又增加了2名工人一起干,还需要几天加工完?Ⅵ其他30.假设地球上新生成的资源增长速度是一定的,照此计算,地球上的资源可供110亿人生活90年;或供90亿人生活210年.为了使人类能够不断繁衍,地球上最多能养活多少人?31.两只蜗牛由于耐不住阳光的照射,从井顶逃向井底.白天往下爬,两只蜗牛白天爬行的速度是不同的,一只每天爬20分米,另一只每天爬15分米.黑夜往下滑,两只蜗牛滑行的速度都是相同的.结果一只蜗牛恰好用5个昼夜到达井底,另一只蜗牛恰好用6个昼夜到达井底.求井深.32.为了保护渔业资源,春夏季封海,9月份开始捕鱼,而且只准捕捞大鱼,如果用100只船在附近海域可捕捞2个月,由于天气不断转冷,鱼群均匀减少,60只船只能捕捞3个月,问几只船可捕捞2个半月?一课一练1.牧场有一片青草,每天长势一样,已知70头牛24天把草吃完,30头牛60天把草吃完,则头牛96天可以把草吃完.2.一牧场放牛58头,7天把草吃完;若放牛50头,则9天吃完.假定草的生长量每日相等,每头牛每日的吃草量也相同,那么放多少头牛6天可以把草吃完?3.由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少.如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供多少头牛吃12天?4.由于天气逐渐冷起来,牧场上的草不仅不长,反而以固定的速度在减少.如果某块草地上的草可供25头牛吃4天,或可供16头牛吃6天,那么可供10头牛吃多少天?5.有一块1200平方米的牧场,每天都有一些草在匀速生长,这块牧场可供10头牛吃20天,或可供15头牛吃10天,另有一块3600平方米的牧场,每平方米的草量及生长量都与第一块牧场相同,问这片牧场可供75头牛吃多少天?6.三块牧场,场上的草长得一样密,而且长得一样快,它们的面积分别是3公顷、10公顷和24公顷.第一块牧场饲养12头牛,可以维持4周;第二块牧场饲养25头牛,可以维持8周.问第三块牧场上饲养多少头牛恰好可以维持18周?7.4头牛28天可以吃完10公顷牧场上全部牧草,7头牛63天可以吃完30公顷牧场上全部牧草,那么60头牛多少天可以吃完40公顷牧场上全部牧草?(每公顷牧场上原有草量相等,且每公顷牧场上每天生长草量相等)8.有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?9.一片牧草,每天生长的速度相同.现在这片牧草可供20头牛吃12天,或可供60只羊吃24天.如果1头牛的吃草量等于4只羊的吃草量,那么12头牛与88只羊一起吃可以吃几天?10.一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天.如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?11.一片匀速生长的牧草,如果让马和牛去吃,15天将草吃尽;如果让马和羊去吃,20天将草吃尽;如果让牛和羊去吃,30天将草吃尽.已知牛和羊每天的吃草量的和等于马每天的吃草量.现在让马、牛、羊一起去吃草,几天可以将这片牧草吃尽?12.有一牧场长满牧草,每天牧场匀速生长.这个牧场可供17头牛吃30天,可供19头牛吃24天.现有若干头牛吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,求原有牛的头数.13.某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,若同时开5个检票口则需30分钟,若同时开6个检票口则需20分钟.如果要使队伍10分钟消失,那么需同时开几个检票口?14.画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.15.一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果3人淘水40分钟可以淘完;6人淘水16分钟可以把水淘完,那么,5人淘水几分钟可以把水淘完?16.有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完.这桶酒每天漏掉的酒可供几人喝一天?17.一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?18.有一泉水池,泉水匀速涌出.如果用甲水管抽10小时,可把满池水抽干;如果用乙水管抽5小时,可把满池水抽干;如果用甲、乙两管合抽2小时,也可把满池水抽干.问泉水被抽干后又经过多少小时可涌满水池?19.一个水池装一个进水管和三个同样的出水管.先打开进水管,等水池存了一些水后,再打开出水管.如果同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,那么5分钟后水池空.那么出水管比进水管晚开多少分钟?20.一个水池,地下水从四壁渗入,每小时渗入该水池的水是固定的.当这个水池水满时,打开A管,8小时可将水池排空;打开B管,10小时可将水池排空;打开C管,12小时可将水池排空.如果打开、两管,将水池排空需要多少时间?、两管,4小时可将水池排空,那么打开B CA B21.自动扶梯以匀速由下往上行驶,两个急性子的孩子嫌扶梯走的太慢,于是在行驶的扶梯上,男孩每秒向上走1梯级,女孩每3秒钟走2梯级.结果男孩用50秒到达楼上,女孩用60秒到达楼上.该楼梯共有多少级?22.甲、乙、丙三车同时从A地出发到B地去.甲、乙两车的速度分别是每小时60千米和每小时48千米.有一辆卡车同时从B地迎面开来,分别在它们出发后6小时、7小时、8小时先后与甲、乙、丙车相遇,求丙车的速度.23.某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派250个工人砌砖墙,6天可以把砖用完,如果派160个工人,10天可以把砖用完,现在派120名工人砌了10天后,又增加5名工人一起砌,还需要再砌几天可以把砖用完?24.甲、乙、丙三个煤窑有同样多的煤,如果用一台皮带输送机和12个工人5小时可把甲煤窑的煤全部装车;如果用一台皮带输送机和28个工人3小时可把乙煤窑的煤全部装车.现在要用两台皮带输送机和若干个工人2小时把丙煤窑的煤全部装车,则需要用多少工人?25.某面粉厂,可储存全厂45日的用麦量.当仓库无货时,一辆大卡车去运,除了供应车间生产外,5日可将仓库装满;若用2辆小卡车去运,9日可运满.如用1辆大卡车和2辆小卡车同时去运,几日能仓库装满?题库补充1.由于打字员的辞职,一个公司积压下一批需要打印的材料,而且每天还要新增加固定数量需要打印的材料.假设材料以页计数,每个打字员的打字速度是相同的、固定的(单位是页/天).如果公司聘任5名打字员,24天就恰好打完所有材料;如果公司聘任9名打字员,12天就恰好打完所有材料.公司聘任了苦干名打字员,工作8天之后,由于业务减少,每天新增的需要打印的材料少了一半,结果这些打字员共用40天才恰好完成打字工作.问:公司聘任了多少名打字员?2.某玩具厂有四个车间,某周是质量检查周,现每个车间都原有a个产品,且每个车间每天都生产b个成品,质检科派出若干名检验员于星期一、星期二检验其中两个车间原有的与这两天生产的所有的成品.然后,星期三至星期五检验另两个车间原有的与本周生产的所有的成品.假定每个检验员每天检验的成品数相同.试问:(1)这若干名检验员1天检验多少个成品?(用含a、b的算式表示)(2)若1名质检验员1天能检验45b个成品,则质检科至少派出多少名检验员?3.某企业现有九个车间,现在每个车间原有的成品一样多,每个车间每天生产的成品也一样多,有A、B两组检验员,其中A组有8名检验员,他们先用两天将第一、第二两个车间的所有成品(指原有的和后来生产的)检验完毕后,再去检验第三、第四两个车间的所有成品,又用去了三天时间;同时,用这五天时间,B组的检验员检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,每个车间原有的成品为a件,每个车间每天生产b件成品.(1)试用a、b表示B组检验员检验的成品总数;(2)求出B组检验员的人数.。
知识要点 浓度问题的内容与我们实际的生活联系很紧密,就知识点而言它包括小学所学2个重点知识:百分数,比例。
1、 浓度问题中的基本量:1)溶质:通常为盐水中的“盐”,糖水中的“糖”,酒精溶液中的“酒精”等2)溶剂:一般为水,部分题目中也会出现煤油等3)溶液:溶质和溶液的混合液体。
4)浓度:溶质质量与溶液质量的比值。
2、 在同一种重量单位里,溶质、溶剂、溶液以及浓度之间有以下关系:浓度=100%100%⨯=⨯溶质重量溶质重量溶质重量+溶剂质量溶液重量3、 有关浓度配比问题还经常用到下面的关系式:=+溶液重量溶质重量溶剂重量=÷溶液重量溶质重量浓度1=⨯-溶剂重量溶液重量(浓度)4、 浓度问题主要分为下列四种,应用相应技巧处理往往事半功倍:①稀释问题:由浓度高的溶液经过添加溶剂变成浓度低的溶液的过程成为稀释。
在这种稀释的过程中,只是溶剂增加了,溶质的重量是不变的,这是解这类问题的关键。
②加浓问题:由浓度低的溶液经过添加溶质或蒸发掉溶剂的方式转化为浓度高的溶液的过程成为加浓。
在这个加浓的过程中,既可添加溶质又可蒸发掉溶剂,要根据题目的条件,选择恰当的方式,正确解答。
③两种溶液的配制问题:在浓度问题中有这样一类题,是把原有的两种或两种以上不同重量、不同浓度的溶液,混合在一起配成某种新浓度的溶液。
这是浓度的配制问题,解这类问题较多的是利用列方程的方法解答,因为混合前后的溶质是不变的。
④溶液互换问题:浓度中溶液互换问题,就是先后把一个容器的溶液倒入对方容器中,再求混合后各自的浓度等问题。
解答这类问题,要认真审题,分步解答,必要时可采取列表法分析解答。
浓度问题基本浓度问题1.(1)将10克糖溶入100克水中,该糖水的浓度是多少?(精确到0.1%)(2)一个容器中装有20%的酒精溶液1000克,那么该容器的酒精是多少克?2.将75%的酒精溶液32克稀释成浓度为40%的稀酒精,需加入水多少克?3.浓度为20%的糖水40克,要把它变成浓度为40%的糖水,需加多少克糖?.5、解浓度问题的一般方法1)十字交叉法:(甲溶液浓度大于乙溶液浓度)形象表达:A B =甲溶液质量乙溶液质量B A =甲溶液与混合溶液的浓度差混合溶液与乙溶液的浓度差注:十字交叉法在浓度问题中的运用也称之为浓度三角,浓度三角与十字交叉法实质上是相同的.浓度三角的表示方法如下:::乙溶液质量甲溶液质量z-y x-zz-y x-z乙溶液浓度y %甲溶液浓度x %混合浓度z%2)寻找溶液配比前后的不变量,依靠不变量建立等量关系列方程(列方程解应用题是解决浓度问题时非常常用的一种重要方法)4.爷爷有16%的糖水50克:(1)要把它稀释成10%的糖水,需要水多少克?(2)若要把它变成30%的糖水需要加糖多少克?5.现有浓度为10%的盐水8千克,要得到浓度为20%的盐水,用什么方法可以得到,具体如何操作?6.A、B两杯食盐水各有40克,浓度比是3:2.在B中加入60克水,然后倒入A中________克.再在A、B中加入水,使它们均为100克,这时浓度比为7:3.7.买来蘑菇10千克,含水量为99%,晾晒一会儿后,含水量为98%,问蒸发掉多少水份?8.将含农药30%的药液,加入一定量的水以后,药液含药24%,如果再加入同样多的水,药液含药的百分比是________.9.在浓度为40%的酒精溶液中加入5千克水,浓度变为30%,再加入多少千克酒精,浓度变为50%?两种溶液混合1.甲容器有浓度为2%的盐水180克,乙容器中有浓度为9%的盐水若干克,从乙取出240克盐水倒入甲.再往乙倒入水,使两个容器中有一样多同样浓度的盐水.问:(1)现在甲容器中食盐水浓度是多少?(2)再往乙容器倒入水多少克?2.甲、乙两只装有糖水的桶,甲桶有糖水60千克,含糖率为4%,乙桶有糖水40千克,含糖率为20%,两桶互相交换多少千克才能使两桶糖水的含糖率相等?3.某种溶液由40克食盐浓度15%的溶液和60克食盐浓度10%的溶液混合后再蒸发50克水得到,那么这种溶液的食盐浓度为多少?4.有浓度为20%的盐水300克,要配制成40%的盐水,需加入浓度为70%的盐水多少克?5.现有浓度为10%的盐水20千克,在该溶液中再加入多少千克浓度为30%的盐水,可以得到浓度为22%的盐水?6.甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合。
2024年第九届青少年综合素质与科技创新能力测评(小学六年级)科学初评考试时间:60分钟满分:80分一、单选题(每小题只有一个选项符合题意。
每小题1.5分,共20题,30分)1.食物金字塔也叫膳食宝塔,共分为( )层。
A.三层B.四层C.五层D.六层2.在做验证光的传播路线的实验时,三张卡纸上打洞的位置是( )。
A.不同的B.相同的C.任意的D.两张相同,一张不相同3.制作蜡烛的过程中,下列属于化学变化的是( )。
A.将蜡烛切成碎屑B.加热蜡屑成蜡油C.将蜡油倒入模型中D.点燃蜡烛4.世界上第一台天文望远镜是( )。
B C DAA.中国天眼B.伽利略望远镜C.射电望远镜D.哈勃空间望远镜5.一把剪刀就是一个组合工具,那么剪刀组合了( )。
A.轮和杠杆B.斜面与轮C.斜面与杠杆D.轴与斜面6.科学家受( )的启发,研制出装在宇宙飞船密封舱里的气味监视仪,不仅可以净化空气,而且在空气泄漏时还能发出警报。
A.蝴蝶翅膀C.昆虫触角 D.蝙蝠脚爪B.苍蝇复眼7.下面属于昼夜交替对生物产生影响的是( )。
A.动物在夏天和冬天会更换毛发B.植物在春天发芽,夏天生长,秋天结果C.鱼类洄游越冬D.黎明来临前公鸡会打鸣8.天空中富含臭氧的大气层是( )。
A.中间层B.对流层C.平流层D.电离层9.提出“物竞天择”的科学家是( )。
C.林奈A.列文虎克B.卡文迪许 D.达尔文10.蜗牛头上的“角”的主要功能是( )。
A.捕食B.防护C.照明D.探路11.关于星座,下列描述不正确的是( )。
A.天上亮晶晶的小星星都是炽热、巨大的发光气体球,也就是行星B.星座是人们为星空里的恒星划分的区域,并发挥想象为其命名C.北斗七星是大熊星座的一部分,北极星是小熊星座中最亮的恒星D.星座可以帮助我们辨别方向12.下列不属于“骆驼耐旱”的是( )。
A.驼峰里可以贮存水分B.嘴巴宽大,可多吃食物C.鼻孔可关闭D.驼峰里可以贮存能量13.飞行的子弹、滚动的球、流动的水都属于( )。
六年级中环杯参考答案(本答案仅供参考)一.1. 2010;2. 2;3. 9;4. 364cm ;5. 14;6. 132160; 7.17600; 8. 136二、1.A 大;A-B=20111; 2. S=12.56;3. 甲:27元; 乙:18.2元; 4.上海市第九届“中环杯”六年级思维训练题1:计算: 。
2:a 、b 、c 、……j 十个字母分别代表0、1、2、……9十个数码中的某一个,已知下列算式:①h ×g=h ,②,③,④,⑤。
其中形如 的数表示十位数字为x ,个位数字是y 的两位数,则j= 。
3: 式中□分别将2、4、6、8填入。
最多可有 个算式。
4:纯循环小数 写成最简分数时,分子与分母之和是58,则。
5:现有自然数带余除法算式A ÷B=C ……8,如果其中A-B+C=2178,则A= 。
6:甲、乙两人在长400米的直路上来回慢跑,速度分别为3米/秒和2.5米/秒。
他们同时在两端相向出发,20分钟内共相遇次。
7:Q比P多20%,R比P少10%,则R比Q少x%,x= 。
8:15名运动员进行乒乓单循环赛,每名运动员与其它运动员赛了一场,如果1号运动员胜了x1场,2号运动员胜了x2场,……15号运动员胜了x15场,则x1+x2+……+x15= 。
9:某地举行篮球赛,规定每个队都要与其它各队比赛一场。
每胜一场得2分,败一场得0分,平一场各得一分。
在计算所有队得分总数时,统计四次得到不同结果:1054,1055,1056,1057。
经复核,其中只有一个数字是正确的,参加篮球赛共有个队。
10:如图:大长方形被两条直线分成三个小长方形和一个正方形,其中上面的两个小长方形的面积之和是13cm2,右面的两个小长方形的面积之和是33cm2,图中四个小图形的边长都是整数,且正方形面积最大,则原长方形面积为cm2。
11:求(共计2008层)的值为。
12:如图,由14个大小相同的正方形组成的图形,试问能不能把它们剪成7个相邻两个方格组成的长方形,说明你的理由。
题型一、填空题二、动手动脑题共计得分第十届“中环杯”小学生思维能力训练活动三年级决赛一、填空题:(每题5分,共50分。
)1.计算:2401-2009+199+1209=()。
2.一堆糖一共15颗,老师拿走一些后,8个学生正好平分了剩下的糖,那么老师拿走了()颗糖。
3.M 是两位数,如果M÷11=A ……B ,当A+B 的和最大时,M=穴雪。
4.20个孩子排成一排,从第1个孩子开始报数,要求每相邻4个孩子报出来的数字和为28。
已知第2个孩子报出的数字为6,第7个孩子报出的数字为8,第12个孩子报出的数字为4,则第5个孩子报出的数字为()。
5.小王和小明出去吃午饭。
小王带了50元,小明带了30元,他们各自买了一份相同的快餐。
已知小王剩下的钱是小明剩下的钱的3倍,则他们午饭一共花了()元。
6.一辆小轿车上还有一只备用轮胎,一次长途旅行中,司机适当地调换轮胎,使每只轮胎的行程相同。
小轿车共行了600千米,那么每只轮胎平均行()千米。
7.小林与小胖比赛爬楼梯,小林跑到第6楼时,小胖恰好跑到第5楼。
以这样的速度,小林跑到第31楼时,小胖跑到第()楼。
8.31个同学要坐船过河,渡口处只有一条能载6人的小船穴无船工雪。
他们要全部渡过河去,至少要使用这条小船渡河()次。
9.有A 、B 、C 三人,一位是导演,一位是编辑,一位是司机。
已知A 的年龄比编辑大,司机的年龄比导演大,编辑的年龄比C 大。
那么,这三人中,导演是(),编辑是(),司机是()。
10.仓库存有一批钢材,由两个汽车队负责运往工地。
已知甲队单独运要29天,乙队每天可运30吨。
现在由甲、乙两队同时运输,运了8天之后,甲队的汽车坏了一辆,每天少运5吨,结果又运了4天才全部运完。
那么这批钢材共有()吨。
二、动手动脑题:(每题10分,共50分。
)1.如图,将两个任意大小的三角形部分重叠,它们的公共部分是由3条线段组成的。
那么经过你的摆放后,它们的公共部分的边数最大可能是多少?请画出示意图。
第4讲同余定理同余定理是奥数考试中最常考的题型,同时也是数论知识中最具有代表性的知识之一。
本讲将带领大家一起领略巧妙的数论方法,相信大家一定会被同余的意想不到的魅力所吸引。
若a c ÷余数为m ,b c ÷余数为n ,则()a b c +÷的余数等于()m n c +÷的余数;()a b c -÷的余数等于()m n c -÷的余数(m n >)或()m c n c +-÷的余数(m n <)。
a b c ⨯÷的余数等于m n c ⨯÷的余数。
特别的,当m n =时,()a b -是c 的倍数。
若两个整数a 、b 被同一个非零自然数c 除,余数相同,那么称a 、b 对于m 同余,用式子表示为(mod )a b c ≡.编写说明知识要点【例1】 有三个自然数a ,b ,c ,其中a 除以c 的余数是1,b 除以c 的余数是2,a b +恰好是c 的倍数,求c 的值。
【分析】 根据同余定理,a b +除以c 的余数是3,而a b +恰好是c 的倍数,所以3c =。
【拓展】 已知:6a b c -=,其中a 、b 、c 均为正整数,且b 除以6的余数是3,则a 除以6的余数是多少?【分析】 a b -是6的倍数,所以a 和b 除以6的余数相同,a 除以6的余数是3。
【温馨提醒】这边可以帮助学生总结出和(或差)的余数等于余数的和(或差)的余数。
【例2】 135********⨯⨯⨯⨯⨯的乘积除以8的余数是多少?【分析】1,3,5,7,9,…,2007,2009除以8的余数分别为1,3,5,7,1,3,5,7,…,1,3,5,7,1,1357⨯⨯⨯除以8的余数是1,所以135********⨯⨯⨯⨯⨯除以8的余数是1。
【温馨提示】这边可以帮助学生总结出积的余数等于余数的积的余数。
【拓展】 234199077777+++++的末两位是多少?【分析】 要求末两位,可以转化为求其除以100的余数是多少,7除以100余数是7,27除以100余数是49,37343=除以100余数为43,472401=除以100余数是1,54777=⨯除以100的余数是7,依此类推,余数是以7,49,43,1循环的,199044972÷=,所以所有余数的和是(749431)49774949756+++⨯++=,49756除以100的余数是56,所以和的末两位是56。
知识概述1.列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,然后解出未知数的值。
2.列方程解应用题的优点就在于可以使未知数直接参加运算。
3.用方程法应用题时,首先可以通过公式或画图找出等量关系式,然后观察哪些量是已知的,哪些量是未知的,再决定设哪个量为x,其它量用含x的式子来表示,最后列出方程解答。
4.列方程解应用题的一般步骤:(1)弄清题意,找出未知数,并用x表示;(2)根据题中数量之间的等量关系,列方程;(3)解方程;(4)检验,写出答案。
列方程解应用题方程法作为小学阶段重要的解题工具,在应用题的解题方面有“万能钥匙”之称,所以掌握方程法解决应用问题的解题方法和策略对于提升杯赛中应用题的正确率尤为关键。
名师点题甲、乙两人共有160本书,甲的3倍比乙的2倍多20本,两人各有多少本书?(列方程求解)【解析】解:设甲有x本书,则乙有(160-x)本。
依题意列方程3x-2(160-x)=203x+2x=20+320x=68 160-68=92(本)答:甲有68本书,乙有92本数。
笼子里关着一些鸡和兔,从上面数,头有75个;从下面数,腿有236只。
问,鸡、兔各几只?【解析】解:设鸡有x只,则兔有(75-x)只,依题意有2x+4×(75-x)=236300-2x=236x=32 75-32=43(只)答:笼子里有鸡32只,兔43只。
一些桔子分给若干个人,每人6个还多10个,如果每人9个则少5个。
问这些桔子有多少个?【解析】解:设有x个人,依题意有6x+10=9x-53x=15x=5 6×5+10=40(个)答:这些桔子有40个。
【巩固拓展】1.(第八届小机灵竞赛试题)小明、小亮、小刚三位小朋友去钓鱼,数一数他们钓鱼的条数,发现:小明钓的鱼是小亮的4倍,小亮钓的鱼比小刚少5条,小刚钓的鱼比小明少7条。
小明钓到()条。
【解析】解:设小亮钓到x条,则小明钓到4x条,依题意有x+5=4x-73x=12x=4 4×4=16(条)答:小明钓到16条。
知识要点一、分数基本认识1.两个正整数p 、q 相除,可以用分数(fraction )pq表示。
即p p q q ÷=,其中p 为分子,q 为分母。
2.分数的基本性质:分数的分子和分母都乘以或都除以同一个不为零的数,所得的分数与原分数的大小相等。
即:()0,0,0a a k a k b k n b b k b k⨯÷==≠≠≠⨯÷ 如:223655315⨯==⨯,88426060415÷==÷。
3.分子和分母互质的分数,叫做最简分数。
如56,其中5和6互质,56是最简分数。
4.如果分数的分子和分母中一个是奇数,另一个是偶数,那么这个分数一定是最简分数。
5.把一个分数的分子与分母的公因数约去的过程,称为约分(cancelling )。
如:122232182333⨯⨯==⨯⨯。
6.将异分母的分数分别化成与原分数大小相等的同分母的分数,这个过程叫做通分。
7.分数大小的比较:先通分,使分数的分母相同,然后比较两个分数的分子,分子大的分数原分数就较大。
如比较56和78第一步:通分,6和8的最小公倍数是24,通分后5542066424⨯==⨯,7732188324⨯==⨯。
第二步:比较分子大小,2120> 第三步:得出结论,21202424>,所以7586>。
分数初步知识要点二、分数的四则运算(结果用最简分数或带分数表示): 1、分数的加减(1)同分母分数相加减,分母不变,分子做加减。
即a c a cb b b --=。
如:51426663-== (2)异分母分数相加减,先通分,然后按照同分母分数加减法的法则进行计算。
如:25858531312121212124--=-===。
(3)分子比分母小的分数叫做真分数(proper fraction ),分子大于或者等于分母的分数叫做假分数(improper fraction )。
(4)一个正整数与一个真分数相加所成的数叫做带分数(mixed fraction )(5)带分数与假分数的相互转化:c c ab c ab c a a b b b b b +=+=+=。
第七届“中环杯”小学生思维能力训练活动四年级复赛活动内容一、填空题:(请把正确答案填在括号内,每题5分,共50分)1.()++++÷=()。
141914319143319143331914333319432.()⨯-⨯=()。
9999995555552222229999993.已知:3232∆∇=,那么为x()。
xa b a b a b a b,,又知,7993∆=+∇=-4.如果把1、2、3、4、5、6、7、8这八个数字组成两个四位自然数,再将这两个四位自然数相减,那么得出最小的自然数差是()。
5.幼儿园中有红、黄、蓝、白四种颜色的积木玩具各若干件,每个小朋友可以从中任取一件或两件,那么至少有()个小朋友去取,才能保证有3各小朋友取的积木是完全一样的。
6.四()1班同学买了一批牙膏送给敬老院的老人,如每位老人送4支,则多8支;如每位送5支,则缺65支;那么敬老院里有()位老人,这批牙膏共有()支。
7.有一串这样的数字:2、0、0、6、0、6、2、0、0、6、0、6、2、0、0、6、0、6 共2006个数。
其中共有()个0,()个2,()个6。
8.15个互不相同的自然数(不包括0)相加,和是2004。
将这15个数从小到大排列,要求第10个数尽可能大。
第10个数最大是()。
9.左图中两个四边形都是正方形,而且外边大正方形的边长为4厘米,求图中阴影部分的面积是()10.一批零件,由甲、乙两人合作,30天可以完成。
现在由甲先制作22天后,两人再合作,12天,剩下的零件还需要乙单独制作16天才能完成。
又知甲每天比乙少生产4个零件,照这样完成任务,乙共做了()个零件。
二、动手动脑筋:(每题5分,共50分)1.某幢居民楼原有8台空调,后来又增加了4台。
但由于线路老化,如果同时打开9台或9台以上空调就会烧断保险丝,这样最多只能同时使用8台空调。
那么,现在24小时内平均每台空调最多可以运行多少小时?请写出简要的计算过程。
一、选择题(每题5分,共25分)1. 下列各数中,既是质数又是合数的是()A. 11B. 14C. 15D. 162. 一个三位数,百位上的数字比十位上的数字大2,十位上的数字比个位上的数字大1,这个三位数是()A. 254B. 264C. 324D. 4233. 小华有一些橘子,第一天吃了总数的1/3,第二天吃了剩下的1/2,这时还剩8个橘子,小华原来有多少个橘子?()A. 24B. 36C. 48D. 604. 小明从家到学校有三种方式:步行、骑自行车和乘坐公交车。
步行需要15分钟,骑自行车需要5分钟,乘坐公交车需要10分钟。
如果小明想用最短的时间到达学校,他应该选择哪种方式?()A. 步行B. 骑自行车C. 乘坐公交车D. 任意一种方式都可以5. 一个长方形的长是12厘米,宽是5厘米,这个长方形的周长是()A. 22厘米B. 26厘米C. 30厘米D. 32厘米二、填空题(每题5分,共25分)6. 0.3乘以0.4等于(),它是一个(),一个()。
7. 下列数中,质数有(),合数有(),既是质数又是合数的有()。
8. 一个数的2/5等于16,这个数是()。
9. 5个2/3相加的和是()。
10. 一个长方形的面积是30平方厘米,如果长是5厘米,那么宽是()厘米。
三、解答题(每题10分,共30分)11. 小明有一袋糖果,第一天吃掉了总量的1/4,第二天吃掉了剩下的1/3,这时还剩12颗糖果。
请问小明原来有多少颗糖果?12. 一个正方形的周长是24厘米,如果将这个正方形的边长增加2厘米,那么它的面积增加了多少平方厘米?13. 小华和小明一起收集邮票,小华收集了45张,小明的邮票数是小华的2倍,两人一共收集了多少张邮票?四、应用题(每题10分,共20分)14. 小红和小刚一起做家务,小红每小时做1.5件,小刚每小时做2件。
如果他们一起工作3小时,一共能完成多少件家务?15. 一辆汽车从甲地出发前往乙地,全程300千米。
行程问题知识点1:追及与相遇问题三个基本量:路程、速度、时间最原始公式:路程=速度×时间⑴基本相遇追及问题:路程和=速度和×相遇时间;路程差=速度差×追击时间;⑵多次相遇问题:①直线路线上多次相遇:第一次相遇,路程和=1倍全程以后每次相遇,路程和=2倍全程②环形路线上多次相遇:每次相遇,路程和=1圈路线周长每次追及,路程差=1圈路线周长⑶多人相遇问题:每次只同时考虑两个人的相遇或追及过程。
(基础)甲、乙两车同时从A、B两地相向而行,在距B地54千米处相遇。
他们各自到达对方车站后立即返回原地,途中又在距A地42千米处相遇。
求两次相遇地点的距离。
(提高、尖子)甲、乙两人从相距40千米的A,B两地相向往返而行,甲每小时行4千米,甲出发2小时后乙才出发,乙每小时行6千米,两人相遇后继续行走,他们第二次相遇的地点距离A地多少千米?(基础)甲、乙两车分别从A 、B 两地同时相向开出,甲车的速度是50千米/时,乙车的速度是40千米/时,当甲车驶过A 、B 距离的13多50千米时,与乙车相遇。
A 、B 两地相距多少千米?(提高、尖子)甲、乙两列火车的速度比是5∶4,乙车先出发,从B 站开往A 站,当走到离B 站72千米的地方时,甲车从A 站出发开往B 站。
两车相遇的地方离A ,B 两站的距离比是3∶4,那么,A ,B 两站之间的距离是多少千米?甲、乙、丙三人同时从东村到西村去,甲骑自行车,每小时比乙快4千米,比丙快7.5千米,甲走40千米到达西村后立即按原路原速度返回,在距西村10千米处与乙相遇,丙走多少小时和甲相遇?(基础、提高)(第七届“中环杯”学生思维能力训练活动复赛)某人骑车上下班,下班的速度比上班的速度慢16,因此下班比上班多用5分钟,那么上班需要( )分钟。
(尖子)一支解放军部队从驻地乘车赶往某地抗洪抢险,如果行驶1个小时后,将车速提高五分之一,就可比预定时间提前20分钟赶到;如果先按原速度行驶72千米,再将车速提高三分之一,就可比预定时间提前30分钟赶到。
第七届中环杯中小学生思维能力训练活动 初预(六)年级复赛活动内容 一、 填空题:(请把正确答案填在括号里,每题5分,共50分) 1. ()2244412777123456123455123457-⨯=-⨯()
()23410......11212(123)(123)(1234)(12......9)(123.....10++++=⨯++⨯++++⨯++++++⨯+++=()())
2.有一个是三位数,如果把它加上3,那么新的三位数的各个数字之和就减少到原三位数各位数字之和的13。
满足此条件的所有三位数是( ) 4. 甲、乙两个车间原有人数比例是4:3,甲车间调48人到乙车间后,甲、乙两个车间的人数比变为2:3.那么,甲车间原来有( ),乙车间原来有( )人。
5. 有甲、乙、丙、丁、戊五个人各有数量不同的钱,如果把乙的钱的一半给了甲,丙的钱的13给了乙。
丁的钱的14给了丙,戊的钱的16
给了丁,最后五个人都留有60块钱,则原来5个人拥有的钱是:甲( )元,乙( )元,丙( )元,丁( )元,戊( )元。
6. 某人从向下运动着的自动扶梯步行而下,每步一级,共走了30级到达底层。
在到达底层后,他又返身奔上这一自动扶梯,也是每步一级,一共走了60级到达上层。
设这人向上奔走的速度是他向下步行速度的3倍,并且上下来回都是匀速运动,那么自动扶梯停止后,一共能看到( )扶梯。
7. 数学兴趣小组增加10名女生后,男生站总人数的60%,再增加30名男生后,男生占总人数的75%,原来男生有( )人,女生有( )人。
8. 商店将某种型号的女式皮鞋按进价的150%定价,然后再实行9折酬宾,另外买满300元再送60元的优惠,结果每双皮鞋获利45元。
那么,每双女式皮鞋的进价是( )元。
9. 某人骑车上下班,下班的速度比上班的速度慢16
,因此下班比上班多用5分钟,那么上班需要( )分钟。
10. A 、B 、C 、D 、E 五个人完成一项任务,若A 、B 、C 、D 四人合作,需要6天完成,若
B 、
C 、
D 、
E 四人合作,需要8天完成,若A 、E 两人合作,需要12天完成,那么E 一个人单独完成任务,要( )才能完成。
三、动手动脑题:(每题10分,共50分)
1. 右图是用16个相同的等腰直角三角形拼成的,其中只有6个正方形。
如果想得到13个中间无空心的正方形应该如何用这16个等腰直角三角形来拼?请画出示意图。
2. 这是一张台球桌面的示意图,图中所有的小方格都是正方形,在A 处有一个小球。
现在
沿AB方向将球击出,请问小球与桌面沿碰撞几次后可到达M处?试在图上画出小球由点A 至点M的运动路径。
3. 将1-8这8个数字分别填入下图的8个空格中,要求相邻两格中,右边的数比左边的大,下边的数比上边的大。
请问满足要求的填法共有多少种?请将其中的一种填法填入图中。
4. 有36个棋子,放在下面左图中,正好上、下、左、右每边共10个棋子。
如果将棋子总数减少12个,要求每边的棋子数还是10个,那么,棋子应该怎么放?请在下面图中画出(左图中已经画出棋子个数。
)
5. 将右图划分成大小,形状相同的四块,并且每块都带有一个小圆圈,划分线路请画在下图中。