高三数学月考试卷(理科)
- 格式:doc
- 大小:261.50 KB
- 文档页数:7
大联考湖南师大附中2025届高三月考试卷(三)数学时量:120分钟满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}0,1,2,3的真子集个数是()A .7B .8C .15D .162.“11x -<”是“240x x -<”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知角α的终边上有一点P 的坐标是)4,3(a a ,其中0a ≠,则sin2α=()A .43B .725C .2425D .2425-4.设向量a,b 满足+=-=a b a b ,则⋅a b 等于()A .B .2C .5D .85.若无论θ为何值,直线sin cos 10y x θθ⋅+⋅+=与双曲线2215x y m -=总有公共点,则m的取值范围是()A.1m ≥B .01m <≤C .05m <<,且1m ≠D .1m ≥,且5m ≠6.已知函数()2f x 的图象关于原点对称,且满足()()130f x f x ++-=,且当()2,4x ∈时,()()12log 2f x x m =--+,若()()2025112f f -=-,则m 等于()A .13B .23C .23-D .13-7.已知正三棱台111ABC A B C -所有顶点均在半径为5的半球球面上,且AB =11A B =()A .1B .4C .7D .1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有ab 个,下底有cd 个,共n 层的堆积物(如图所示),可以用公式()()()2266n nS b d a b d c c a ⎡⎤=++++-⎣⎦求出物体的总数,这就是所谓的“隙积术”,相当于求数列()()(),11,2ab a b a +++.()()()2,,11b a n b n cd ++-+-= 的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A .2B .6C .12D .20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若()202422024012202412x a a x a x a x +=++++ ,则下列正确的是()A .02024a =B .20240120243a a a +++= C .012320241a a a a a -+-++= D .12320242320242024a a a a -+--=- 10.对于函数()sin cos f x x x =+和()sin cos 22g x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,下列说法中正确的有()A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值点C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图象有相同的对称轴11.过点()0,2P 的直线与抛物线2:4C x y =交于()()1122,,,A x y B x y 两点,抛物线C 在点A 处的切线与直线2y =-交于点N ,作NM AP ⊥交AB 于点M ,则()A .5OA OB ⋅=-B .直线MN 恒过定点C .点M 的轨迹方程是()()22110y x y -+=≠D .AB MN选择题答题卡题号1234567891011得分答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数12,z z 的模长为1,且21111z z +=,则12z z +=_____.13.在ABC 中,角,,A B C 所对的边分别为,,a b c 已知5,4a b ==,()31cos 32A B -=,则sin B =_____.14.若正实数1x 是函数()2e e x f x x x =--的一个零点,2x 是函数()g x =()()3e ln 1e x x ---的一个大于e 的零点,则()122e ex x -的值为_____.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加25%的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按10%的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A B 、两方案的优劣.(结果精确到万元,参考数据:10101.1 2.594,1.259.313≈≈)如图,四棱锥P ABCD -中,底面ABCD 为等腰梯形,22AD AB BC ==2=.点P 在底面的射影点Q 在线段AC 上.(1)在图中过A 作平面PCD 的垂线段,H 为垂足,并给出严谨的作图过程;(2)若2PA PD ==.求平面PAB 与平面PCD 所成锐二面角的余弦值.已知函数()()e sin cos ,x f x x x f x =+-'为()f x 的导数.(1)证明:当0x ≥时,()2f x '≥;(2)设()()21g x f x x =--,证明:()g x 有且仅有2个零点.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b +=>>的两个焦点为12,F F P、为椭圆C 上一动点,设12F PF ∠θ=,当23πθ=时,12F PF ∆.(1)求椭圆C 的标准方程.(2)过点()0,2B 的直线l 与椭圆交于不同的两点(M N M 、在,B N 之间),若Q 为椭圆C上一点,且OQ OM ON =+,①求OBM OBNSS ∆∆的取值范围;②求四边形OMQN 的面积.飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投掷出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投掷次数X 的均值()()1(k E X kP k ∞===∑()1lim n n k kP k ∞→=⎫⎛⎫⎪ ⎪⎝⎭⎭∑;(2)对于两个离散型随机变量,ξη,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记()()()()()(1211,,mni i i j j j i j i p x p x p x y p y p y p x ξη========∑∑,)j y .)ξη1x 2x ...n X 1y ()11,p x y ()21,p x y ...()1,n p x y ()21p y 2y ()12,p x y ()22,p x y ...()2,n p x y ()22p y ...⋯⋯...⋯...my ()1,m p x y ()2,m p x y ...(),n m p x y ()2m p y ()11p x ()12p x ...()1n p x 1若已知i x ξ=,则事件{}j y η=的条件概率为{}j i P y x ηξ===∣{}{}()()1,,j i i j i i P y x p x y P x p x ηξξ====.可以发现i x ηξ=∣依然是一个随机变量,可以对其求期望{}{}()111mi j j i j i E x y P y x p x ηξηξ===⋅===∑∣∣.()1,mj i j j y p x y =∑(i )上述期望依旧是一个随机变量(ξ取值不同时,期望也不同),不妨记为{}E ηξ∣,求{}E E ηξ⎡⎤⎣⎦∣;(ii )若修改游戏规则,需连续掷出两次6点飞机才能起飞,记0ξ=表示“甲第一次未能掷出6点”,1ξ=表示“甲第一次掷出6点且第二次未能掷出6点”,2ξ=表示“甲第一次第二次均掷出6点”,η为甲首次使得飞机起飞时抛掷骰子的次数,求E η.炎德・英才大联考湖南师大附中2025届高三月考试卷(三)数学参考答案题号1234567891011答案C A C B B D A B BC ACD BC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合{}0,1,2,3共有42115-=(个)真子集.故选C .2.A 【解析】解不等式240x x -<,得04x <<,解不等式11x -<,得02x <<,所以“11x -<”是“240x x -<”的充分不必要条件.3.C 【解析】根据三角函数的概念,2442sin cos 2tan 24tan ,sin23311tan 25y a x a αααααα======+,故选C .4.B 【解析】()()()22111911244⎡⎤⋅=+--=-=⎣⎦a b a b a b .5.B 【解析】易得原点到直线的距离1d ==,故直线为单位圆的切线,由于直线与双曲线2215x y m -=总有公共点,所以点()1,0±必在双曲线内或双曲线上,则01m <≤.6.D 【解析】依题意函数()f x 的图象关于原点对称,所以()f x 为奇函数,因为()()()133f x f x f x +=--=-,故函数()f x 的周期为4,则()()20251f f =,而()()11f f -=-,所以由()()2025112f f -=-可得()113f =,而()()13f f =-,所以()121log 323m --=,解得13m =-.7.A 【解析】上下底面所在外接圆的半径分别为123,4r r ==,过点112,,,A A O O 的截面如图:22222121534,543,1OO OO h OO OO =-==-∴=-=,故选A .8.B 【解析】由题意,得6,6c a d b =+=+,则由()()()772223866b d a b d c c a ⎡⎤++++-=⎣⎦得()()7[26212(6b b a b b a ++++++6)]()762386a a ++-=,整理得()321ab a b ++=,所以773aba b +=-<.因为,a b 为正整数,所以3ab =或6.因此有6,3a b ab +=⎧⎨=⎩或5,6.a b ab +=⎧⎨=⎩而63a b ab +=⎧⎨=⎩无整数解,因此6ab =.故选B .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令0x =,则01a =,故A 错误;对于B :令1x =,则20240120243a a a +++= ,故B 正确;对于C :令1x =-,则012320241a a a a a -+-++= ,故C 正确;对于D ,由()202422024012202412x a a x a x a x +=++++ ,两边同时求导得()20232202312320242024212232024x a a x a x a x ⨯⨯+=++++ ,令1x =-,则12320242320244048a a a a -++-=- ,故D 错误.故选BC .10.ACD 【解析】()()32sin ,2sin 2sin 4244f x x g x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.令()0f x =,则,4x k k ππ=-+∈Z ;令()0g x =,则3,4x k k ππ=+∈Z ,两个函数的零点是相同的,故选项A 正确.()f x 的最大值点是()2,,4k k g x ππ+∈Z 的最大值点是32,4k k ππ-+∈Z ,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为2πω可知()f x 与()g x 有相同的最小正周期2π,故选项C 正确.曲线()y f x =的对称轴为,4x k k ππ=+∈Z ,曲线()y g x =的对称轴为5,4x k k ππ=+∈Z ,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.设直线AB 的方程为2y tx =+(斜率显然存在),221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立22,4,y tx x y =+⎧⎨=⎩消去x 整理可得2480x tx --=,由韦达定理得12124,8x x t x x +==-,A .22121212124,84444x x y y OA OB x x y y =⋅=⋅=+=-+=- ,故A 错误;B .抛物线C 在点A 处的切线为21124x x x y ⎛⎫=+ ⎪⎝⎭,当2y =-时,11121244282222x x x x x t x x =-=-=+=-,即()2,2N t -,直线MN 的方程为()122y x t t +=--,整理得xy t=-,直线MN 恒过定点(0,0),故B 正确;C .由选项B 可得点M 在以线段OP 为直径的圆上,点O 除外,故点M 的轨迹方程是()()22110y x y -+=≠,故C 正确;D.222t MN +==,AB =则()2221412222t AB MNt +⎫==+,,m m =≥则12ABm MN m ⎛⎫=- ⎪⎝⎭,设()1,f m m m m =-≥,则()2110f m m=+>',当m ≥,()f m 单调递增,所以()min f m f==,故D 错误.故选BC .三、填空题:本题共3小题,每小题5分,共15分.12.1【解析】设()()12i ,,i ,z a b a b z c d c d =+∈=+∈R R ,因为21111z z +=,所以2122111z zz z z z +=.因为11221,1z z z z ==,所以121z z +=,所以()()i i i 1a b c d a c b d -+-=+-+=,所以1,0a c b d +=+=,所以()()12i 1z z a c b d +=+++=.13.74【解析】在ABC 中,因为a b >,所以A B >.又()31cos 32A B -=,可知A B-为锐角且()sin 32A B -=.由正弦定理,sin 5sin 4A aB b ==,于是()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦.将()cos A B -及()sin AB -的值代入可得3sin B B =,平方得2229sin 7cos 77sin B B B ==-,故7sin 4B =.14.e 【解析】依题意得,1211e e 0x x x --=,即()()12311122e e ,0,e ln 1e 0x x x x x x -=>---=,即()()3222e ln 1e ,e x x x --=>,()()()131122e e e e ln 1x x x x x ∴-==--,()()()()()()211ln 111112212e e ln 1e ,e e ln 1e e x x x x x x x x -+++⎡⎤∴-=--∴-=--⎣⎦,又22ln 1,ln 10,x x >->∴ 同构函数:()()1e e ,0x F x x x +=->,则()()312ln 1e F x F x =-=,又()()111e e e e e 1e x x x x F x x x +++=-+=-+',00,e e 1,e 10x x x >∴>=∴-> ,又()()1e 0,0,x x F x F x +>'>∴单调递增,()()()3122212222e ln 1e e ln 1,e e e ex x x x x x ---∴=-∴===.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为()1010110%26⨯+≈(万元).……(3分)(2)A 方案10年共获利:()()1091.2511125%125%33.31.251-+++++=≈- (万元),……(5分)到期时银行贷款本息为()1010110%25.9⨯+≈(万元),所以A 方案净收益为:33.325.97-≈(万元),……(7分)B 方案10年共获利:()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= (万元),……(9分)到期时银行贷款本息为()()()()101091.11.11110%110%110%17.51.11-++++++=≈- (万元),……(11分)所以B 方案净收益为:23.517.56-≈(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接PQ ,有PQ ⊥平面ABCD ,所以PQ CD ⊥.在ACD 中,2222cos 54cos AC AD CD AD CD ADC ADC ∠∠=+-⋅⋅=-.同理,在ABC 中,有222cos AC ABC ∠=-.又因为180ABC ADC ∠∠+= ,所以()1cos ,0,1802ADC ADC ∠∠=∈ ,所以60ADC ∠= ,3AC =故222AC CD AD +=,即AC CD ⊥.又因为,,PQ AC Q PQ AC ⋂=⊂平面PAC ,所以CD ⊥平面PAC .CD ⊂平面PCD ,所以平面PCD ⊥平面PAC .……(5分)过A 作AH 垂直PC 于点H ,因为平面PCD ⊥平面PAC ,平面PCD ⋂平面PAC PC =,且AH ⊂平面PAC ,有AH ⊥平面PCD .……(7分)(2)依题意,22AQ PA PQ DQ =-=.故Q 为,AC BD 的交点,且2AQ ADCQ BC==.所以2222326,333AQ AC PQ PA AQ ===-.过C 作直线PQ 的平行线l ,则,,l AC CD 两两垂直,以C 为原点建立如图所示空间直角坐标系,则:()()36131,0,0,0,,0,3,0,,,03322D P A B ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()326232613261,0,0,0,,0,,,,,3333263CD CP AP BP ⎛⎛⎛===-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .设平面PCD 的法向量为(),,x y z =m ,则()0,0,3CD x CP y ⎧⋅==⎪⎨⋅=+=⎪⎩m m取()0,=-m .同理,平面PAB的法向量)1=-n ,1cos<,3⋅>==m n m n m n ……(14分)故所求锐二面角余弦值为13.……(15分)17.【解析】(1)由()e cos sin x f x x x =++',设()e cos sin x h x x x =++,则()e sin cos x h x x x '=-+,当0x ≥时,设()()e 1,sin x p x x q x x x =--=-,()()e 10,1cos 0x p x q x x ''=-≥=-≥ ,()p x ∴和()q x 在[)0,∞+上单调递增,()()()()00,00p x p q x q ∴≥=≥=,∴当0x ≥时,e 1,sin x x x x ≥+≥,则()()()e sin cos 1sin cos sin 1cos 0x h x x x x x x x x x '=-+≥+-+=-++≥,∴函数()e cos sin x h x x x =++在[)0,∞+上单调递增,()()02h x h ∴≥=,即当0x ≥时,()2f x '≥.……(7分)(2)由已知得()e sin cos 21x g x x x x =+---.①当0x ≥时,()()()e cos sin 220,x g x x x f x g x ≥''=++-=-∴ 在[)0,∞+上单调递增,又()()010,e 20g g πππ=-<=->∴ 由零点存在定理可知,()g x 在[)0,∞+上仅有一个零点.……(10分)②当0x <时,设()()2sin cos 0e x x xm x x --=<,则()()2sin 10exx m x '-=≤,()m x ∴在(),0∞-上单调递减,()()01m x m ∴>=,()e cos sin 20,e cos sin 20x x x x g x x x '∴++-<∴=++-<,()g x ∴在(),0∞-上单调递减,又()()010,e 20g g πππ-=-<-=+> ,∴由零点存在定理可知()g x 在(),0∞-上仅有一个零点,综上所述,()g x 有且仅有2个零点.……(15分)18.【解析】(1)设()00,,P x y c 为椭圆C 的焦半距,12122F PF p S c y ∆=⋅⋅,00y b <≤ ,当0y b =时,12F PF S 最大,此时()0,P b 或()0,P b -,不妨设()0,P b ,当23πθ=时,得213OPF OPF π∠∠==,所以c =,又因为12F PF S bc ∆==,所以1,b c ==从而2,a =∴椭圆C 的标准方程为2214x y +=.……(3分)(2)由题意,直线l 的斜率显然存在.设()()1122: 2.,,,l y kx M x y N x y =+.……(4分)1112OBM S OB x x ∆∴=⋅=,同理,2OBN S x ∆=.12OBM OBN S xS x ∆∆∴= (6))联立()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,……(8分)()()()22223164121416430,4k k k k ∴∆=-⨯⨯+=->∴>.……(9分)又121212221612,0,,1414k x x x x x x k k-+==>∴++ 同号.()()2222122121212216641421231414k x x x x k k x x x x kk-⎛⎫ ⎪++⎝⎭∴===+++.()22212122364641616,4,,42143331434x x k k x x k k ⎛⎫>∴=∈∴<++< ⎪⎛⎫+⎝⎭+ ⎪⎝⎭ .令()120x x λλ=≠,则116423λλ<++<,解得()()11,11,3,,11,333OBM OBN S S λ∆∆⎛⎫⎛⎫∈∴∈ ⎪ ⎪⎝⎭⎝⎭ .……(12分)(3)()1212,,OQ OM ON Q x x y y =+∴++.且四边形OMQN 为平行四边形.由(2)知()12121222164,41414k x x y y k x x k k-+=∴+=++=++,22164,1414kQ k k -⎛⎫∴ ⎪++⎝⎭.而Q 在椭圆C 上,2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭.化简得2154k =.……(14分)∴线段161219357115224MN ==⋅+,……(15分)O到直线MN的距离d == (16))OMQN 574S MN d ∴=⋅=四边形.……(17分)19.【解析】(1)()115,1,2,3,66k P X k k -⎛⎫==⨯= ⎪⎝⎭ ,所以()()215111,1,2,3,,5126666nk n k k k P X k k kP k n =⎛⎫⋅====⨯+⨯+⨯ ⎪⎝⎭∑ ,记211112666n n S n =⨯+⨯++⨯ ,则2311111126666n n S n +=⨯+⨯++⨯ .作差得:1211111511111111661666666556616nn n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- ,所以()16111661,555566556n nn n n k n S kP k S n =⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+==-+⎢⎥ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑.故()()()116616lim lim 5565nn n n k k E X kP k kP k n ∞∞∞→→==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑.……(6分)(2)(i ){}E ηξ∣所有可能的取值为:{},1,2,,i E x i n ηξ== ∣.且对应的概率{}{}()()()1,1,2,,i i i p E E x p x p x i n ηξηξξ====== ∣∣.所以{}{}()()()()()111111111,,,nnmn m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫⎡⎤==⋅=⋅= ⎪⎣⎦ ⎪⎝⎭∑∑∑∑∑∣∣又()()()()21111111,,,nmmnmn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑,所以{}E E E ηξη⎡⎤=⎣⎦∣.……(12分)(ii ){}{}{}12355101,;12,;22,63636E E p E E p E p ηξηηξηη==+===+====∣∣,{}()()5513542122636363636E E E E E ηηξηηη⎡⎤==++++⨯=+⎣⎦∣,故42E η=.……(17分)。
成都2024~2025学年度上期高2025届十月考试数学试卷(答案在最后)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项填涂在答题卡相应位置.1.已知集合{}1,2,4A =,2{|20}B x N x x =∈+-≤,则A B = A.{}2,1,0,1,2,4-- B.{}0,1,2,4 C.{}1,2,4D.{}12.2024年巴黎奥运会中国代表队获得金牌榜第一,奖牌榜第二的优异成绩.首金是中国组合黄雨婷和盛李豪在10米气步枪混合团体赛中获得,两人在决赛中14次射击环数如右图,则A.盛李豪的平均射击环数超过10.6B.黄雨婷射击环数的第80百分位数为10.65C.盛李豪射击环数的标准差小于黄雨婷射击环数的标准差D.黄雨婷射击环数的极差小于盛李豪射击环数的极差3.已知0.10.6a =,0.6log 0.3b =,0.6log 0.4c =,则a ,b ,c 的大小关系为A.b c a>> B.a b c>> C.c b a>> D.a c b>>4.已知实数a ,b ,c 满足a b c >>,且0a b c ++=,则下列说法正确的是A.22ab cb > B.222a c c a+≥ C.||||a b > D.0ab bc +>5.“函数2()ln(22)f x x ax =-+的值域为R”的一个充分不必要条件是A.[2,2]- B.(0,2⎤⎦C.(,2[2,)⎤-∞+∞⎦U D.[2,)+∞6.核燃料是重要的能量来源之一,在使用核燃料时,为了冷却熔化的核燃料,可以不断向反应堆注入水,但会产生大量放射性核元素污染的冷却水,称为核废水.核废水中含有一种放射性同位素氚,它有可能用辐射损伤细胞和组织,影响生物的繁殖和生态平衡.已知氚的半衰期约为12年,则氚含量变成初始量的110000大约需要经过()年.(lg 20.3010≈)A.155 B.159C.162D.1667.若函数()y f x =的图象如图1所示,则如图2对应的函数可能是A.(12)y f x =-B.1(1)2y f x =-C.(12)y f x =-- D.1(1)2y f x =--8.已知函数11,0,()2221,0.x x x f x x ⎧+>⎪=⎨⎪-≤⎩,则方程()(3)2f x f x +-=的所有根之和为A.0B.3C.6D.9二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求。
2018-2019学年福建省龙岩高级中学高三(上)第二次月考数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.设全集,集合,,则A. B. C. D.【答案】B【解析】解:集合,,,故选:B.先求出集合M,N,由补集和交集的定义,可得答案.本题考查的知识点是集合的交,并,补混合运算,难度不大,属于基础题.2.若且则是的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】D【解析】解:当,,故不能推出;满足条件,取,,不能推出是的既不充分又不必要故选:D.对a与b进行赋值,然后说明是否推出,以及能否推出,从而可得结论.本题主要考查了必要条件、充分条件与充要条件的判断,以及赋值法的应用,同时考查了分析问题的能力,属于基础题.3.已知下列命题:命题“若,则”的逆否命题为“若,则”;命题p:,使得,则¬:,均有;“”是“”的充分不必要条件.其中真命题的个数为A. 0B. 1C. 2D. 3【答案】C【解析】解:命题“若,则”的逆否命题为“若,则”,故正确;命题p:,使得,则¬:,均有,故错误;“”“,或”,故“”是“”的充分不必要条件,故正确.故选:C.根据四种命题,特称命题的否定及充要条件的定义,逐一分析给定三个命题的真假,可得答案.本题以命题的真假判断与应用为载体,考查了四种命题,特称命题的否定及充要条件的定义,难度不大,属于基础题.4.设,则A. B. C. D.【答案】C【解析】解:,,所以,,,所以,即.故选:C.利用指数函数和对数函数的性质分别判断取值范围,然后比较大小即可.本题主要考查利用指数函数和对数函数的性质比较数的大小,比较基础.5.函数的定义域是A. B. C. D.【答案】B【解析】解:要使函数有意义需,解得.故选:B.依题意可知要使函数有意义需要且,进而可求得x的范围.本题主要考查了对数函数的定义域属基础题.6.设函数,则满足的x的取值范围是A. B. C. D.【答案】D【解析】解:当时,的可变形为,,.当时,的可变形为,,故答案为.故选:D.分类讨论:当时;当时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可.本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.7.已知幂函数的图象过点,且,则m的取值范围是A. 或B.C.D.【答案】D【解析】解:设幂函数,由它的图象过点,可得,解得,所以;再根据,得,解得,所以m的取值范围是.故选:D.由条件利用幂函数的定义,求得函数的解析式,再根据函数的单调性求出m的范围.本题主要考查了幂函数的定义与应用问题,属于基础题目.8.已知函数为定义在上的偶函数,且在上单调递增,则的解集A. B. C. D.【答案】C【解析】解:由得,,则在上递增,在上递减,,所以.故选:C.利用函数的奇偶性求出b,利用函数的单调性求解不等式即可.本题考查函数的单调性以及函数的奇偶性的应用,考查计算能力.9.函数在定义域内零点的个数为A. 0B. 1C. 2D. 3【答案】C【解析】解:由题意,函数的定义域为;由函数零点的定义,在内的零点即是方程的根.令,,在一个坐标系中画出两个函数的图象:由图得,两个函数图象有两个交点,故方程有两个根,即对应函数有两个零点.故选:C.先求出函数的定义域,再把函数转化为对应的方程,在坐标系中画出两个函数,的图象求出方程的根的个数,即为函数零点的个数.本题考查了函数零点、对应方程的根和函数图象之间的关系,通过转化和作图求出函数零点的个数.10.设的两根是、,则A. B. C. D.【答案】D【解析】解:的两根是、,和是方程的两个根,则,;.故选:D.根据方程的根以及根与系数的关系,求得和的值,再利用换底公式计算的值.本题考查了方程的根以及根与系数的关系应用问题,也考查了换底公式应用问题,是基础题.11.某同学在研究函数时,分别给出下面几个结论:等式在时恒成立;函数的值域为;若,则一定有;函数在R上有三个零点.其中正确结论的序号是A. B. C. D.【答案】B【解析】解:易知函数的定义域为R,且,故函数为奇函数故正确;当时,,该函数在上递增,且时,;当时,.结合奇偶性,作出的图象如下:易知函数的值域是,故正确;结合函数为定义域内的增函数,所以正确;又时,,令得,故此时只有一个零点0,显然是奇函数,故该函数只有一个零点,所以错误.故正确的命题是.故选:B.可以先研究函数的奇偶性,然后做出函数的图象,据此求解.本题考查了函数的性质一般先研究定义域,然后判断函数的奇偶性、单调性等性质作为突破口,有一些要结合函数的图象加以分析,注意数形结合的思想的应用.12.对于函数在定义域内的任意实数x及,都有及成立,则称函数为“Z函数”现给出下列四个函数:;其中是“Z函数”的是A. B. C. D.【答案】A【解析】解:如图是偶函数,不满足;是偶函数,不满足;如图满足,将的图象向左平移m个单位后,图象恒在原图象上方,即;满足,将的图象向左平移m个单位后,图象不恒在原图象上方,即不满足;故是“Z函数”的是.故选:A.首先判断是否满足,只有,满足,再将它们的图象向左平移,观察是否都在原图形的上方,如果是即为“Z函数”.本题考查分段函数的图象及应用,考查函数的性质和图象平移,考查数形结合的能力,属于中档题.二、填空题(本大题共4小题,共20.0分)13.函数的的图象必经过定点______.【答案】【解析】解:由对数函数的性质可知,当时,即时,,即函数恒过定点,故答案为:.由对数函数的性质可知,当真数为1时,对数式的值为0,故令真数可求y可得定点本题考点是对数型函数过定点的问题解决此类题通常是令真数为1取得定点的坐标属于对数函数性质考查题.14.已知奇函数满足,且当时,,则的值为______.【答案】【解析】解:,当时,,故答案为:由已知可得,由已知函数为奇函数可得,,代入可求本题主要考查了函数的周期性、函数的奇偶性,对数运算性质的应用,属于函数知识的综合应用.15.已知函数,对于满足的任意、,给出下列结论:;;;,其中正确结论的序号是______.【答案】【解析】解:为R上的单调增函数,故满足的任意,,总有,即,,故错误;设,则,令,,则,,可得在上为增函数,则,即,故正确;,,由,得,故对任意,有,而函数在所给的区间上导数值恒大于1,故正确;说明函数为凹函数,由的图象可知此函数在上确为凹函数,故正确.正确结论的序号是:.故答案为:.利用函数的单调性直接分析错误;构造函数,利用导数研究其单调性,可得正确;求出函数的导函数,可得故对任意,有,由此判断正确;利用函数的凹凸性判断.本题考查指数函数的图象和性质,考查利用导数研究函数的单调性,是中档题.16.已知函数在区间上不单调,则实数m的取值范围为______.【答案】【解析】解:;在上不单调;在上有极值;即方程在上有解;,;;;实数m的取值范围为:.故答案为:.先求导数,,根据在上不单调,从而有在上有解,从而可得到,这样根据x的范围即可求出实数m的范围.考查函数单调性的定义,函数导数符号和函数单调性的关系,以及函数极值的概念及判断方法,指数函数的单调性.。
2021-2022学年陕西省渭南市韩城市西庄中学高三(上)第一次月考数学试卷(理科)一、选择题(共12小题,每小题5分,共60分).1.已知集合M={y|y=x2﹣1,x∈R},N={x|y=},则M∩N=()A.[﹣1,2]B.[﹣1,+∞)C.[2,+∞)D.∅2.已知a,b∈R,那么是3a<3b成立的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.设函数y=f(x)在x=x0处可导,且=1,则f′(x0)等于()A.﹣B.﹣C.1D.﹣14.函数f(x)=x+lnx﹣3的零点位于区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.函数(﹣π≤x≤π且x≠0)的图象是()A.B.C.D.6.已知函数f(x)=,满足对任意x1≠x2,都有<0成立,则实数a的取值范围是()A.(0,1]B.(0,]C.(0,3]D.(0,)7.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,1)C.(1,+∞)D.(4,+∞)8.已知,则tanα=()A.B.C.D.9.sin20°sin10°﹣cos10°sin70°=()A.B.﹣C.D.﹣10.设,则a,b,c的大小关系为()A.b>a>c B.a>b>c C.c>b>a D.a>c>b11.函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f (x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]12.已知f′(x)是奇函数f(x)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣1,0)∪(0,1)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(本题共4小题,每题5分,共计20分)13.已知P(﹣1,3)为角α终边上的一点,则=.14.函数y=的定义域是.15.已知f(x)在R上是奇函数,且满足f(x+2)=f(﹣x),当x∈(0,2)时,f(x)=2x2,则f(2019)等于.16.有下列说法:①α=﹣5是第一象限角;②函数y=a(x﹣1)+2(a>0,且a≠1)的图象恒过的定点是(0,1);③若α为第三象限角,则终边在二四象限;④终边在y轴上的角的集合是.其中,正确的说法是.三、解答题(本题共6小题,共70分)17.计算下列各值①;②;③sin cos+sin cos.18.设f(x)=log a(1+x)+log a(3﹣x)(a>0,a≠1),且f(1)=2.(1)求a的值及f(x)的定义域.(2)求f(x)在区间[0,]上的最大值.19.小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,(万元).在年产量不小于8万件时,(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(Ⅰ)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入﹣固定成本﹣流动成本)(Ⅱ)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?20.已知函数f(x)=f'(0)e x+x2﹣(f(0)﹣1)x.(1)求函数f(x)的解析式;(2)若函数g(x)=f(x)﹣mx在[1,2]上单调递增,求m的取值范围.21.已知函数f(x)=x4﹣x3﹣x2+cx+1有三个极值点.(1)求c的取值范围;(2)若存在c=27,使函数f(x)在区间[a,a+2]上单调递减,求a的取值范围.22.已知函数f(x)=ln(1+x)﹣x+x2(k≥0).(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间.参考答案一、选择题(共12小题,每小题5分,共60分).1.已知集合M={y|y=x2﹣1,x∈R},N={x|y=},则M∩N=()A.[﹣1,2]B.[﹣1,+∞)C.[2,+∞)D.∅【分析】求出M中y的范围确定出M,求出N中x的范围确定出N,找出两集合的交集即可.解:由M中y=x2﹣1≥﹣1,得到M=[﹣1,+∞),由N中y=,得到4﹣x2≥0,解得:﹣2≤x≤2,即N=[﹣2,2],则M∩N=[﹣1,2],故选:A.2.已知a,b∈R,那么是3a<3b成立的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【分析】直接利用集合间的关系,进一步利用充分条件和必要条件的应用求出结果.解:由于知a,b∈R,当,整理得0<a<b;故3a<3b,当3a<3b时,整理得:a<b,故那么是3a<3b成立的充分不必要条件,故选:C.3.设函数y=f(x)在x=x0处可导,且=1,则f′(x0)等于()A.﹣B.﹣C.1D.﹣1【分析】变形利用导数的运算定义即可得出.解:∵=(﹣)=(﹣)f′(x0)=1,∴f′(x0)=﹣,故选:A.4.函数f(x)=x+lnx﹣3的零点位于区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【分析】对f(x)进行求导,得到其单调性,再利用零点定理进行判断;解:函数f(x)=x+lnx﹣3,(x>0)∴f′(x)=1+,可得f′(x)>0,f(x)为增函数,f(1)=1+0﹣3=﹣2<0,f(2)=2+ln2﹣3=ln2﹣1<0,f(3)=3+ln3﹣3=ln3>0,∵f(2)f(3)<0,所以f(x)的零点所在区间为(2,3),故选:C.5.函数(﹣π≤x≤π且x≠0)的图象是()A.B.C.D.【分析】判断函数的奇偶性排除选项,利用特殊值判断即可.解:函数(﹣π≤x≤π且x≠0),f(﹣x)=(﹣x+)(﹣sin x)=(x﹣)sin x=f(x),函数是偶函数,排除选项C、D.当x=时,f()=()×<0,排除A,故选:B.6.已知函数f(x)=,满足对任意x1≠x2,都有<0成立,则实数a的取值范围是()A.(0,1]B.(0,]C.(0,3]D.(0,)【分析】根据已知条件及减函数的定义知f(x)在R上是减函数,所以y=a x在(﹣∞,0)上是减函数,y=(a﹣3)x+4a在[0,+∞)上是减函数,所以a x>1,(a﹣3)x+4a≤4a≤1,这样即可得到,解该不等式组即得a的取值范围.解:由已知条件知f(x)在R上是减函数;∴;∴解得0<a;∴a的取值范围为(0,].故选:B.7.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,1)C.(1,+∞)D.(4,+∞)【分析】求出函数的定义域,利用复合函数单调性之间的关系进行求解即可.解:由x2﹣2x﹣8>0得x>4或x<﹣2,设t=x2﹣2x﹣8,则当x>4时,g(x)为增函数,此时y=lnt为增函数,则f(x)为增函数,即f(x)的单调递增区间为(4,+∞),故选:D.8.已知,则tanα=()A.B.C.D.【分析】利用诱导公式和同角的三角函数关系求出sinα、cosα的值,即可求得tanα.解:因为cos(α+)=﹣sinα=,所以sinα=﹣;又因为﹣<α<0,所以cosα==,所以tanα==﹣.故选:D.9.sin20°sin10°﹣cos10°sin70°=()A.B.﹣C.D.﹣【分析】已知利用诱导公式,两角差的正弦函数公式,特殊角的三角函数值即可计算得解.解:sin20°sin10°﹣cos10°sin70°=cos70°•sin10°﹣cos10°sin70°=sin(10°﹣70°)=﹣sin60°=﹣.故选:B.10.设,则a,b,c的大小关系为()A.b>a>c B.a>b>c C.c>b>a D.a>c>b【分析】利用指数函数、对数函数的单调性直接求解.解:∵0=log31<a=log32<log33=1,log32<b=ln2<lne=1,c=>50=1,∴a,b,c的大小为c>b>a.故选:C.11.函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f (x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.12.已知f′(x)是奇函数f(x)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣1,0)∪(0,1)D.(﹣∞,﹣1)∪(1,+∞)【分析】根据题意构造函数g(x)=,由求导公式和法则求出g′(x),结合条件判断出g′(x)的符号,即可得到函数g(x)的单调区间,根据f(x)奇函数判断出g(x)是偶函数,由f(﹣1)=0求出g(﹣1)=0,结合函数g(x)的单调性、奇偶性,再转化f(x)>0,由单调性求出不等式成立时x的取值范围.解:由题意设g(x)=,则g′(x)=∵当x>0时,有xf′(x)﹣f(x)>0,∴当x>0时,g′(x)>0,∴函数g(x)=在(0,+∞)上为增函数,∵函数f(x)是奇函数,∴g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,g(x)在(﹣∞,0)上递减,由f(﹣1)=0得,g(﹣1)=0,∵不等式f(x)>0⇔x•g(x)>0,∴或,即或,即有x>1或﹣1<x<0,∴使得f(x)>0成立的x的取值范围是:(﹣1,0)∪(1,+∞),故选:B.二、填空题(本题共4小题,每题5分,共计20分)13.已知P(﹣1,3)为角α终边上的一点,则=.【分析】由题意利用任意角的三角函数定义可求sinα,cosα的值,代入所求即可计算得解.解:P(﹣1,3)为α角终边上一点,可得sinα==,cosα=﹣,所以==.故答案为:.14.函数y=的定义域是{x|}.【分析】由根式内部的代数式大于等于0,然后求解三角不等式得答案.解:由2sin x+1≥0,得sin x.∴,k∈Z.∴函数y=的定义域是{x|}.故答案为:{x|}.15.已知f(x)在R上是奇函数,且满足f(x+2)=f(﹣x),当x∈(0,2)时,f(x)=2x2,则f(2019)等于﹣2.【分析】利用奇函数的定义以及已知的恒等式,求出函数的周期,然后利用周期转化f (2019)即可.解:因为f(x)在R上是奇函数,则f(﹣x)=﹣f(x),则f(x+2)=f(﹣x)=﹣f(x),所以f(x+4)=﹣f(x+2)=f(x),故函数f(x)的周期为4,所以f(2019)=f(505×4﹣1)=f(﹣1)=﹣f(1)=﹣2×1=﹣2.故答案为:﹣2.16.有下列说法:①α=﹣5是第一象限角;②函数y=a(x﹣1)+2(a>0,且a≠1)的图象恒过的定点是(0,1);③若α为第三象限角,则终边在二四象限;④终边在y轴上的角的集合是.其中,正确的说法是①③.【分析】利用任意角的概念和性质、指数型函数过定点的性质,逐项判断即可.解:对于①,α=﹣5≈﹣286.5°∈(﹣360°,﹣270°),是第一象限角,①正确;对于②,令x﹣1=0,得y=3,故函数y=a(x﹣1)+2(a>0,且a≠1)的图象恒过的定点(1,3),②错误;对于③,α为第三象限角,则,k∈Z,所以,当k为偶数时,终边落在第二象限,k为奇数时,终边落在第四象限,故③正确;对于④,当k为偶数时,(k∈Z)终边落在x轴上,故④错误.故答案为:①③.三、解答题(本题共6小题,共70分)17.计算下列各值①;②;③sin cos+sin cos.【分析】根据题意,直接计算可得答案.解:①原式=+×=25+4=29;②原式=dx+xdx=×π+=+;③原式=﹣sin cos+(﹣sin)(﹣cos)=(﹣×)+×=0.18.设f(x)=log a(1+x)+log a(3﹣x)(a>0,a≠1),且f(1)=2.(1)求a的值及f(x)的定义域.(2)求f(x)在区间[0,]上的最大值.【分析】(1)由f(1)=2,求出a的值,由对数的真数大于0,求得x的取值范围,即得定义域;(2)化简f(x),考查f(x)在区间[0,]上的单调性,求出最大值.解:(1)∵f(x)=log a(1+x)+log a(3﹣x)(a>0,a≠1),∴f(1)=log a2+log a2=2log a2=2,∴a=2;∴f(x)=log2(1+x)+log2(3﹣x),∴,解得﹣1<x<3;∴f(x)的定义域是(﹣1,3).(2)∵f(x)=log2(1+x)+log2(3﹣x)=log2(1+x)(3﹣x)=log2[﹣(x﹣1)2+4],且x∈(﹣1,3);∴当x=1时,f(x)在区间[0,]上取得最大值,是log24=2.19.小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x万件,需另投入流动成本为W(x)万元,在年产量不足8万件时,(万元).在年产量不小于8万件时,(万元).每件产品售价为5元.通过市场分析,小王生产的商品能当年全部售完.(Ⅰ)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入﹣固定成本﹣流动成本)(Ⅱ)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?【分析】(I)根据年利润=销售额﹣投入的总成本﹣固定成本,分0<x<8和当x≥8两种情况得到L与x的分段函数关系式;(II)当0<x<8时根据二次函数求最大值的方法来求L的最大值,当x≥8时,利用基本不等式来求L的最大值,最后综合即可.解:(I)因为每件产品售价为5元,则x(万件)商品销售收入为5x万元,依题意得:当0<x<8时,L(x)=5x﹣()﹣3=﹣x2+4x﹣3,当x≥8时,L(x)=5x﹣(6x+﹣38)﹣3=35﹣(x+),∴L(x)=.(II)当0<x<8时,L(x)=﹣(x﹣6)2+9,此时,当x=6时,L(x)取得最大值9;当x≥8时,L(x)=35﹣(x+)≤35﹣2=15,此时,当x=即x=10时,L(x)取得最大值15;∵9<15,∴年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润是15万元.20.已知函数f(x)=f'(0)e x+x2﹣(f(0)﹣1)x.(1)求函数f(x)的解析式;(2)若函数g(x)=f(x)﹣mx在[1,2]上单调递增,求m的取值范围.【分析】(1)求出原函数的导函数,取x=0求得f(0),进一步求得f′(0),则函数解析式可求;(2)把问题转化为g'(x)=e x+2x﹣m≥0在[1,2]上恒成立,分离参数m,再求出函数y=e x+2x在[1,2]上的最小值,则答案可求.解:(1)∵f(x)=f′(0)e x+x2﹣(f(0)﹣1)x,∴f′(x)=f′(0)e x+2x﹣f(0)+1,令x=0,解得f(0)=1,则f(x)=f′(0)e x+x2,令x=0,得f′(0)=f(0)=1,∴f(x)=e x+x2.(2)∵g(x)=f(x)﹣mx=e x+x2﹣mx在[1,2]上单调递增,∴g'(x)=e x+2x﹣m≥0在[1,2]上恒成立,∴m≤e x+2x在[1,2]上恒成立.又∵函数y=e x+2x在[1,2]上单调递增,∴y min=e+2,∴m≤e+2,故m的取值范围为(﹣∞,e+2].21.已知函数f(x)=x4﹣x3﹣x2+cx+1有三个极值点.(1)求c的取值范围;(2)若存在c=27,使函数f(x)在区间[a,a+2]上单调递减,求a的取值范围.【分析】(1)利用极值点的定义,将问题转化为f'(x)=x3﹣3x2﹣9x+c=0有三个不等的实根,构造函数g(x)=x3﹣3x2﹣9x+c,利用导数研究其性质,列出不等式,求解即可;(2)当c=27时,利用导数求出函数f(x)的单调递减区间,结合题意,列出关于a的不等关系,求解即可.解:(1)因为函数有三个极值点,则f'(x)=x3﹣3x2﹣9x+c=0有三个不等的实根,设g(x)=x3﹣3x2﹣9x+c,则g'(x)=3x2﹣6x﹣9=3(x﹣3)(x+1),当x∈(﹣∞,﹣1)或(3,+∞)时,g'(x)>0,g(x)单调递增,当x∈(﹣1,3)时,g'(x)<0,g(x)单调递减,故,即,解得﹣5<c<27,所以c的取值范围为(﹣5,27);(2)当c=27时,f'(x)=x3﹣3x2﹣9x+27=(x﹣3)2(x+3),由f'(x)<0,可得x<﹣3,所以f(x)在(﹣∞,﹣3)上单调递减,又函数f(x)在区间[a,a+2]上单调递减,所以a+2≤﹣3,故a的取值范围为(﹣∞,﹣5].22.已知函数f(x)=ln(1+x)﹣x+x2(k≥0).(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求f(x)的单调区间.【分析】(I)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,然后求出切点坐标,再用点斜式写出直线方程,最后化简成一般式即可;(II)先求出导函数f'(x),讨论k=0,0<k<1,k=1,k>1四种情形,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0即可.解:(I)当k=2时,由于所以曲线y=f(x)在点(1,f(1))处的切线方程为.即3x﹣2y+2ln2﹣3=0(II)f'(x)=﹣1+kx(x>﹣1)当k=0时,因此在区间(﹣1,0)上,f'(x)>0;在区间(0,+∞)上,f'(x)<0;所以f(x)的单调递增区间为(﹣1,0),单调递减区间为(0,+∞);当0<k<1时,,得;因此,在区间(﹣1,0)和上,f'(x)>0;在区间上,f'(x)<0;即函数f(x)的单调递增区间为(﹣1,0)和,单调递减区间为(0,);当k=1时,.f(x)的递增区间为(﹣1,+∞)当k>1时,由,得;因此,在区间和(0,+∞)上,f'(x)>0,在区间上,f'(x)<0;即函数f(x)的单调递增区间为和(0,+∞),单调递减区间为.。
湖南2025届高三月考试卷(三)数学(答案在最后)时量:120分钟满分:150分得分:________________一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}0,1,2,3的真子集个数是()A.7B.8C.15D.162.“11x -<”是“240x x -<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知角α的终边上有一点P 的坐标是()3,4a a ,其中0a ≠,则sin2α=()A.43B.725C.2425D.2425-4.设向量a ,b 满足a b += a b -=a b ⋅ 等于()A. B.2C.5D.85.若无论θ为何值,直线sin cos 10y x θθ⋅+⋅+=与双曲线2215x y m -=总有公共点,则m 的取值范围是()A.1m ≥ B.01m <≤C.05m <<,且1m ≠ D.1m ≥,且5m ≠6.已知函数()2f x 的图象关于原点对称,且满足()()130f x f x ++-=,且当()2,4x ∈时,()()12log 2f x x m =--+,若()()2025112f f -=-,则m 等于()A.13B.23C.23- D.13-7.已知正三棱台111ABC A B C -所有顶点均在半径为5的半球球面上,且AB =,11A B =棱台的高为()A.1B.4C.7D.1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有ab 个,下底有cd 个,共n 层的堆积物(如图所示),可以用公式()()()2266n nS b d a b d c c a ⎡⎤=++++-⎣⎦求出物体的总数,这就是所谓的“隙积术”,相当于求数列ab ,()()()()()()11,22,,11a b a b a n b n cd +++⋅++-+-= 的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A.2B.6C.12D.20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若2024220240122024(12)x a a x a x a x +=++++ ,则下列正确的是()A.02024a = B.20240120243a a a +++= C.012320241a a a a a -+-++= D.12320242320242024a a a a -+--=- 10.对于函数()sin cos f x x x =+和()sin cos 22g x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,下列说法中正确的有()A.()f x 与()g x 有相同的零点B.()f x 与()g x 有相同的最大值点C.()f x 与()g x 有相同的最小正周期D.()f x 与()g x 的图象有相同的对称轴11.过点()0,2P 的直线与抛物线2:4C x y =交于()11,A x y ,()22,B x y 两点,抛物线C 在点A 处的切线与直线2y =-交于点N ,作NM AP ⊥交AB 于点M ,则()A.5OA OB ⋅=-B.直线MN 恒过定点C.点M 的轨迹方程是()22(1)10y x y -+=≠D.AB MN选择题答题卡题号1234567891011得分答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数1z ,2z 的模长为1,且21111z z +=,则12z z +=________.13.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c 已知5a =,4b =,()31cos 32A B -=,则sin B =________.14.若正实数1x 是函数()2e e xf x x x =--的一个零点,2x 是函数()()()3e ln 1e g x x x =---的一个大于e的零点,则()122e ex x -的值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加25%的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按10%的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A 、B 两方案的优劣.(结果精确到万元,参考数据:101.12.594≈,101.259.313≈)16.(本小题满分15分)如图,四棱锥P ABCD -中,底面ABCD 为等腰梯形,222AD AB BC ===.点P 在底面的射影点Q 在线段AC 上.(1)在图中过A 作平面PCD 的垂线段,H 为垂足,并给出严谨的作图过程;(2)若2PA PD ==.求平面PAB 与平面PCD 所成锐二面角的余弦值.17.(本小题满分15分)已知函数()e sin cos x f x x x =+-,()f x '为()f x 的导数.(1)证明:当0x ≥时,()2f x '≥;(2)设()()21g x f x x =--,证明:()g x 有且仅有2个零点.18.(本小题满分17分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点为1F 、2F ,P 为椭圆C 上一动点,设12F PF θ∠=,当23πθ=时,12F PF ∆.(1)求椭圆C 的标准方程.(2)过点()0,2B 的直线l 与椭圆交于不同的两点M 、N (M 在B ,N 之间),若Q 为椭圆C 上一点,且OQ OM ON =+ ,①求OBMOBNS S 的取值范围;②求四边形OMQN 的面积.19.(本小题满分17分)飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投郑出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投郑次数X 的均值11()()lim ()n n k k E X kP k kP k ∞→∞==⎛⎫== ⎪⎝⎭∑∑)(2)对于两个离散型随机变量ξ,η,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记()()()11,m i i ijj p x p x p x y ξ====∑,()()()21,njjiji p y p y p x y η====∑)ξη1x 2x ⋯nx 1y ()11,p x y ()21,p x y ⋯()1,n p x y ()21p y 2y ()12,p x y ()22,p x y()2,n p x y ()22p y⋯⋯⋯⋯⋯⋯my ()1,m p x y ()2,m p x y ⋯(),n m p x y ()2m p y ()11p x ()12p x()1n p x 1若已知i x ξ=,则事件{}j y η=的条件概率为{}{}{}()()1,,j i i j j i i i P y x p x y P y x P x p x ηξηξξ=======∣.可以发现i x ηξ=∣依然是一个随机变量,可以对其求期望{}{}1mi j j i j E x y P y x ηξηξ===⋅==∑∣∣()()111,mj i j i i y p x y p x ==⋅∑.(ⅰ)上述期望依旧是一个随机变量(ξ取值不同时,期望也不同),不妨记为{}E ηξ∣,求{}E E ηξ⎡⎤⎣⎦∣;(ⅱ)若修改游戏规则,需连续掷出两次6点飞机才能起飞,记0ξ=表示“甲第一次未能掷出6点”1ξ=表示“甲第一次掷出6点且第二次未能掷出6点”,2ξ=表示“甲第一次第二次均掷出6点”,η为甲首次使得飞机起飞时抛掷骰子的次数,求E η.湖南2025届高三月考试卷(三)数学参考答案题号1234567891011答案CACBBDABBCACDBC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合{}0,1,2,3共有42115-=(个)真子集.故选C.2.A 【解析】解不等式240x x -<,得04x <<,解不等式11x -<,得02x <<,所以“11x -<”是“240x x -<”的充分不必要条件.3.C 【解析】根据三角函数的概念,44tan 33y a x a α===,22sin cos 2tan 24sin211tan 25ααααα===+,故选C.4.B 【解析】()2211()()1911244a b a b a b ⎡⎤⋅=+--=⨯-=⎣⎦ .5.B 【解析】易得原点到直线的距离1d ==,故直线为单位圆的切线,由于直线与双曲线2215x y m -=总有公共点,所以点()1,0±必在双曲线内或双曲线上,则01m <≤.6.D 【解析】依题意函数()f x 的图象关于原点对称,所以()f x 为奇函数,因为()()()133f x f x f x +=--=-,故函数()f x 的周期为4,则()()20251f f =,而()()11f f -=-,所以由()()2025112f f -=-可得()113f =,而()()13f f =-,所以()121log 323m --=,解得13m =-.7.A 【解析】上下底面所在外接圆的半径分别为13r =,24r =,过点A ,1A ,1O ,2O 的截面如图:24OO ==,13OO ==,211h OO OO ∴=-=,故选A.8.B 【解析】由题意,得6c a =+,6d b =+,则由()()()772223866b d a b d c c a ⎡⎤++++-=⎣⎦得()()()()77262126623866b b a b b a a a ⎡⎤++++++++-=⎣⎦,整理得()321ab a b ++=,所以773aba b +=-<.因为a ,b 为正整数,所以3ab =或6.因此有6,3a b ab +=⎧⎨=⎩或5,6.a b ab +=⎧⎨=⎩而63a b ab +=⎧⎨=⎩无整数解,因此6ab =.故选B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令0x =,则01a =,故A 错误;对于B :令1x =,则20240120243a a a +++= ,故B 正确;对于C :令1x =-,则012320241a a a a a -+-++= ,故C 正确;对于D ,由2024220240122024(12)x a a x a x a x +=++++ ,两边同时求导得202322023123202420242(12)232024x a a x a x a x ⨯⨯+=++++ ,令1x =-,则12320242320244048a a a a -++-=- ,故D 错误.故选BC.10.ACD 【解析】()4f x x π⎛⎫=+ ⎪⎝⎭,()3244g x x x πππ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭.令()0f x =,则4x k ππ=-+,k ∈Z ;令()0g x =,则34x k ππ=+,k ∈Z ,两个函数的零点是相同的,故选项A 正确.()f x 的最大值点是24k ππ+,k ∈Z ,()g x 的最大值点是324k ππ-+,k ∈Z ,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为2πω可知()f x 与()g x 有相同的最小正周期2π,故选项C 正确.曲线()y f x =的对称轴为4x k ππ=+,k ∈Z ,曲线()y g x =的对称轴为54x k ππ=+,k ∈Z ,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.11.BC 【解析】作图如下:设直线AB 的方程为2y tx =+(斜率显然存在),211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,联立22,4,y tx x y =+⎧⎨=⎩消去x 整理可得2480x tx --=,由韦达定理得124x x t +=,128x x =-,A.221212444x x y y =⋅=,1212844OA OB x x y y ⋅=+=-+=- ,故A 错误;B.抛物线C 在点A 处的切线为21124x x x y ⎛⎫=+ ⎪⎝⎭,当2y =-时,11121244282222x x x x x t x x =-=-=+=-,即()2,2N t -,直线MN 的方程为()122y x t t +=--,整理得xy t=-,直线MN 恒过定点()0,0,故B 正确;C.由选项B 可得点M 在以线段OP 为直径的圆上,点O 除外,故点M 的轨迹方程是()22(1)10y x y -+=≠,故C 正确;D.22222222211t t MN t t +---==++,()22222212121411632412AB t x x x x t t t t =++-=++=++则()2222222221122222221t AB t t t MNt t t t +⎫++==+++++,22t m +=,2m ≥12ABm MN m ⎛⎫=- ⎪⎝⎭,设()1f m m m =-,2m ≥()2110f m m=+>',当2m ≥()f m 单调递增,所以min ()22f m f==,故D 错误.故选BC.三、填空题:本题共3小题,每小题5分,共15分.12.1【解析】设()1i ,z a b a b =+∈R ,()2i ,z c d c d =+∈R ,因为21111z z +=,所以1222111z z z z z z +=.因为111z z =,221z z =,所以121z z +=,所以()()i i i 1a b c d a c b d -+-=+-+=,所以1a c +=,0b d +=,所以()()12i 1z z a c b d +=+++=.13.4【解析】在ABC ∆中,因为a b >,所以A B >.又()31cos 32A B -=,可知A B -为锐角且()37sin 32A B -=.由正弦定理,sin 5sin 4A aB b ==,于是()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦.将()cos A B -及()sin A B -的值代入可得3sin B B =,平方得2229sin 7cos 77sin B B B ==-,故sin 4B =.14.e 【解析】依题意得,1211e e 0xx x --=,即1211e e xx x -=,10x >,()()322e ln 1e 0x x ---=,即()()322e ln 1e x x --=,2e x >,()()()131122e e e e ln 1x x x x x ∴-==--,()()()11122e e ln 1e x x x x +∴-=--,()()()21ln 11112e e ln 1e e x x x x -++⎡⎤∴-=--⎣⎦,又2ln 1x > ,2ln 10x ->,∴同构函数:()()1e e ,0x F x x x +=->,则()()312ln 1e F x F x =-=,又()()111e e e e e 1e x x x x F x x x +++=-+'=-+,0x > ,0e e 1x ∴>=,e 10x ∴->,又1e 0x x +>,()0F x ∴'>,()F x 单调递增,12ln 1x x ∴=-,()()()31222222e ln 1e e e e e ex x x x ---∴===.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为()1010110%26⨯+≈(万元).……(3分)(2)A 方案10年共获利:()1091.2511125%(125%)33.31.251-+++++=≈- (万元),……(5分)到期时银行贷款本息为1010(110%)25.9⨯+≈(万元),所以A 方案净收益为:33.325.97-≈(万元),……(7分)B 方案10年共获利:()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= (万元),……(9分)到期时银行贷款本息为()()10109 1.11.11(110%)(110%)110%17.51.11-++++++=≈- (万元),……(11分)所以B 方案净收益为:23.517.56-≈(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接PQ ,有PQ ⊥平面ABCD ,所以PQ CD ⊥.在ACD ∆中,2222cos 54cos AC AD CD AD CD ADC ADC =+-⋅⋅∠=-∠.同理,在ABC ∆中,有222cos AC ABC =-∠.又因为180ABC ADC ∠+∠= ,所以1cos 2ADC ∠=,()0,180ADC ∠∈ ,所以60ADC ∠=,AC =,故222AC CD AD +=,即AC CD ⊥.又因为PQ AC Q = ,PQ ,AC ⊂平面PAC ,所以CD ⊥平面PAC .CD ⊂平面PCD ,所以平面PCD ⊥平面PAC .……(5分)过A 作AH 垂直PC 于点H ,因为平面PCD ⊥平面PAC ,平面PCD 平面PAC PC =,且AH ⊂平面PAC ,有AH ⊥平面PCD .……(7分)(2)依题意,AQ DQ ==.故Q 为AC ,BD 的交点,且2AQ ADCQ BC==.所以233AQ AC ==,3PQ ==.过C 作直线PQ 的平行线l ,则l ,AC ,CD ,两两垂直,以C 为原点建立如图所示空间直角坐标系,则:()1,0,0D ,3260,,33P ⎛⎫⎪ ⎪⎝⎭,()A ,13,,022B ⎛⎫- ⎪ ⎪⎝⎭,所以()1,0,0CD =,0,,33CP ⎛⎫= ⎪ ⎪⎝⎭,0,,33AP ⎛⎫=- ⎪ ⎪⎝⎭,1,,263BP ⎛=- ⎝⎭ .设平面PCD 的法向量为(),,m x y z =,则()0,0,3m CD x m CP y ⎧⋅==⎪⎨⋅=+=⎪⎩取()0,m =- .同理,平面PAB的法向量)1n =-,1cos ,3m n m n m n ⋅==,……(14分)故所求锐二面角余弦值为13.……(15分)17.【解析】(1)由()e cos sin xf x x x =+'+,设()e cos sin xh x x x =++,则()e sin cos xh x x x =+'-,当0x ≥时,设()e 1x p x x =--,()sin q x x x =-,()e 10x p x ='-≥ ,()1cos 0q x x ='-≥,()p x ∴和()q x 在[)0,+∞上单调递增,()()00p x p ∴≥=,()()00q x q ≥=,∴当0x ≥时,e 1x x ≥+,sin x x ≥,则()()()e sin cos 1sin cos sin 1cos 0xh x x x x x x x x x =-+≥+-+=-++≥',∴函数()e cos sin x h x x x =++在[)0,+∞上单调递增,()()02h x h ∴≥=,即当0x ≥时,()2f x '≥.(2)由已知得()e sin cos 21xg x x x x =+---.①当0x ≥时,()()e cos sin 220x g x x x f x =+='+--'≥ ,()g x ∴在[)0,+∞上单调递增,又()010g =-< ,()e 20g πππ=->,∴由零点存在定理可知,()g x 在[)0,+∞上仅有一个零点.……(10分)②当0x <时,设()2sin cos (0)e x x xm x x --=<,则()()2sin 10e xx m x -=≤',()m x ∴在(),0-∞上单调递减,()()01m x m ∴>=,e cos sin 20x x x ∴++-<,()e cos sin 20x g x x x ∴=++-<',()g x ∴在(),0-∞上单调递减,又()010g =-< ,()e 20g πππ--=+>,∴由零点存在定理可知()g x 在(),0-∞上仅有一个零点,综上所述,()g x 有且仅有2个零点.……(15分)18.【解析】(1)设()00,P x y ,c 为椭圆C 的焦半距,12122F PF p S c y ∆=⋅⋅,00y b <≤ ,当0y b =时,12F PF S ∆最大,此时()0,P b 或()0,P b -,不妨设()0,P b ,当23πθ=时,得213OPF OPF π∠=∠=,所以c =,又因为12F PF S bc ∆==,所以1b =,c =.从2a =,∴而椭圆C 的标准方程为2214x y +=.……(3分)(2)由题意,直线l 的斜率显然存在.设()11: 2.,l y kx M x y =+,()22,N x y .……(4分)1112OBM S OB x x ∆∴=⋅=,同理,2OBN S x ∆=.12OBM OBN S xS x ∆∆∴=.……(6分)联立()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,……(8分)()()222Δ(16)4121416430k k k ∴=-⨯⨯+=->,234k ∴>.……(9分)又1221614k x x k -+=+ ,12212014x x k =>+,1x ∴,2x 同号.()()2222122121212216641421231414k x x x x k k x x x x kk-⎛⎫⎪++⎝⎭∴===++++.234k > ,()2226464164,1331434k k k ⎛⎫∴=∈ ⎪⎛⎫+⎝⎭+ ⎪⎝⎭,211216423x x x x ∴<++<.令()120x x λλ=≠,则116423λλ<++<,解得()1,11,33λ⎛⎫∈ ⎪⎝⎭,()1,11,33OBM OBN S S ∆∆⎛⎫∴∈ ⎪⎝⎭ .……(12分)(3)OQ OM ON =+,()1212,Q x x y y ∴++.且四边形OMQN 为平行四边形.由(2)知1221614k x x k -+=+,()121224414y y k x x k∴+=++=+,22164,1414k Q k k -⎛⎫∴ ⎪++⎝⎭.而Q 在椭圆C 上,2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭.化简得2154k =.……(14分)∴线段161219357115224MN ==⋅+,……(15分)O到直线MN的距离d ==……(16分)574OMQN S MN d ∴=⋅=四边形.……(17分)19.【解析】(1)()11566k P X k -⎛⎫==⨯ ⎪⎝⎭,1k =,2,3,…,所以()56k k k P X k ⋅==,1k =,2,3,…,()21111512666nn k kP k n =⎛⎫=⨯+⨯++⨯ ⎪⎝⎭∑ 记211112666n n S n =⨯+⨯++⨯ ,则2311111126666n n S n +=⨯+⨯++⨯ .作差得:1211111511111111661666666556616n n n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- ,所以611155566n n n S ⎡⎤⎛⎫⎛⎫=⋅-+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦,()16615556n nn k kP k S n =⎛⎫⎛⎫==-+ ⎪⎪⎝⎭⎝⎭∑.故116616()()lim ()lim 5565nn n n k k E X kP k kP k n ∞→∞→∞==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑.……(6分)(2)(ⅰ){}E ηξ∣所有可能的取值为:{}i E x ηξ=∣,1,2,,i n = .且对应的概率{}{}()()()1ii i p E E x p x p x ηξηξξ=====∣∣,1,2,,i n = .所以{}()()()()()111111111[{}],,nnmn m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫==⋅=⋅= ⎪ ⎪⎝⎭∑∑∑∑∑∣∣,又()()()()21111111,,,nmmnmn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑,所以{}E E E ηξη⎡⎤=⎣⎦∣.……(12分)(ⅱ){}01E E ηξη==+∣,156p =;{}12E E ηξη==+∣,2536p =;{}22E η==,3136p =,{}()()5513542122636363636E E E E E E ηηηηηξ⎡⎤==++++⨯=+⎣⎦∣,故42E η=.……(17分)。
2022-2021学年湖南省雅礼中学高三(下)其次次月考数学试卷(理科)一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.45.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.86.设x,y 满足约束条件,则目标函数z=的最小值为()A.2 B.1 C.D.﹣27.设f(x)定义如下面数表,{x n}满足x0=5,且对任意自然数n均有x n+1=f(x n),则x2022的值为()x 1 234 5f(x)4 135 2A.4 B.1 C.3 D.28.如图,长沙河西先导区某广场要划定一矩形区域ABCD,并在该区域内开拓出三块外形大小相同的矩形绿化区,这三块绿化区四周和绿化区之间设有1米宽的走道.已知三块绿化区的总面积为800平方米,则该矩形区域ABCD占地面积的最小值为()平方米.A.900 B.920 C.948 D.9689.已知函数,若存在x1<x2,使得f(x1)=f(x2),则x1•f(x2)的取值范围为()A.B.C.D.10.设定义在R上的偶函数f(x)满足f(x+2)=f(x),f′(x)是f(x)的导函数,当x∈[0,1]时,0≤f(x)≤1;当x∈(0,2)且x≠1时,x(x﹣1)f′(x)<0.则方程f(x)=lg|x|根的个数为()A.12 B.1 6 C.18 D.20二.填空题:本大题共1小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第11、12、13题中任选两题作答,假如全做,则按前两题给分)【几何证明选讲】11.如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E,已知⊙O的半径为3,PA=2,则OE=.【极坐标系与参数方程选讲】12.已知曲线C的参数方程为(θ为参数),直线l的极坐标方程为,它们的交点在平面直角坐标系中的坐标为.【不等式选讲】1011•天津)已知集合A={x∈R||x+3|+|x﹣4|≤9},B=,则集合A∩B=.(二)必做题(14~16题)14.设(其中e为自然对数的底数),则的值为.15.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是,则当0≤t≤12时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是.16.已知数列{a n}的前n项和S n=(﹣1)n •n,若对任意正整数n,(a n+1﹣p)(a n﹣p )<0恒成立,则实数P 的取值范围是.三.解答题:本大题共6小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.17.设函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)当时,求函数f(x)的最大值和最小值.18.设数列{a n}的前n项和为S n,已知对任意正整数n,都有S n+2=2a n成立.(1)求数列{a n}的通项公式;(2)设,数列{b n}的前n项和为T n,求证:T n<3.19.如图所示,在平面四边形ABCD中,,与的夹角为,与的夹角为.(1)求△CDE的面积S;(2)求.20.已知函数f(x )=lnx﹣ax+﹣1(a∈R)(1)当a=﹣1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)当a≤时,争辩f(x)的单调性.21.若数列{a n}(n∈N*)满足:①a n≥0;②a n﹣2a n+1+a n+2≥0;③a1+a2+…+a n≤1,则称数列{a n}为“和谐”数列.(1)已知数列{a n},(n∈N*),推断{a n}是否为“和谐”数列,说明理由;(2)若数列{a n}为“和谐”数列,证明:.(n∈N*)22.已知函数f(x)=(1)当x>0时,证明:f(x)>;(2)当x>﹣1且x≠0时,不等式f(x)<恒成立,求实数k的值.2022-2021学年湖南省雅礼中学高三(下)其次次月考数学试卷(理科)参考答案与试题解析一.选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的.把答案填在答题卡中对应题号的框框内.)1.已知集合A={﹣2,﹣1,0,1,2,3},集合,则A∩B等于()A.{﹣2,﹣1,0,1} B.{﹣1,0,1} C.{﹣1,0,1,2} D.{﹣1,0,1,2,3}考点:交集及其运算.专题:集合.分析:依据集合的基本运算进行求解即可.解答:解:∵A={﹣2,﹣1,0,1,2,3},集合,∴A∩B={﹣1,0,1},故选:B点评:本题主要考查集合的基本运算,比较基础.2.若A、B均是非空集合,则A∩B≠∅是A⊆B的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件考点:必要条件、充分条件与充要条件的推断.专题:规律型.分析:推断出“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则能推出A∩B≠∅”确定成立,利用充要条件的有关定义得到结论.解答:解:若“A∩B≠∅”成立推不出“A⊆B”反之,若“A⊆B”成立,则有A∩B=A≠∅,所以A∩B≠∅”确定成立,所以A∩B≠∅是A⊆B的必要不充分条件,故选B.点评:本题考查推断一个条件是另一个的什么条件,应当先化简各个条件,若条件是数集的形式,常转化为推断集合间的包含关系.3.(中诱导公式、基本公式)已知,且,则tan(2π﹣α)的值为()A.B.C.D.考点:同角三角函数基本关系的运用.专题:计算题.分析:先依据诱导公式化简已知条件,得到sinα的值,然后由α的范围,利用同角三角函数间的基本关系求出cosα的值,把所求的式子利用诱导公式化简后,再依据同角三角函数间的基本关系把切化弦后,将sinα和cosα的值代入即可求出值.解答:解:由,又,得,则.故选B点评:此题考查同学机敏运用诱导公式及同角三角函数间的基本关系化简求值,是一道中档题.同学在求cosα的值时应留意α的范围.4.如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是边长为2的正方形,俯视图为一个等边三角形,该三棱柱的左视图面积为()A.2B.C.2D.4考点:简洁空间图形的三视图.专题:计算题;空间位置关系与距离.分析:三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中做出底边上的高的长度,得到结果.解答:解:由题意知三棱柱的左视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是,∴侧视图的面积是2故选:A.点评:本题考查简洁的空间图形三视图,考查三视图的面积的计算,考查通过原图观看三视图的大小,比较基础.5.已知向量满足:,与的夹角为,则=()A.2 B.4 C.2D.8考点:平面对量数量积的运算.。
内蒙古自治区呼和浩特市准格尔旗世纪中学高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,集合,则()A. B.C. D.参考答案:B试题分析:因,则,故应选B.考点:不等式的解法与集合的运算.2. 如图为一个几何体的三视图,尺寸如图所示,则该几何体的表面积为()A.20+2B.20+2C.18+2D.18+2参考答案:D【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是一个四棱锥,其中后面的侧面与底面垂直.利用三角形与矩形面积计算公式即可得出.【解答】解:由三视图可知:该几何体是一个四棱锥,其中后面的侧面与底面垂直.∴该几何体的表面积=4×2+2×+×4+=2+18,故选:D.3. 已知m和n是两条不同的直线,α和β是两个不重合的平面,则下列给出的条件中,一定能推出m⊥β的是( )A.α⊥β且m?αB.α⊥β且m∥αC.m∥n且n⊥βD.m⊥n且n∥β;参考答案:C考点:直线与平面垂直的判定.专题:阅读型;空间位置关系与距离.分析:根据A,B,C,D所给的条件,分别进行判断,能够得到正确结果.解答:解:α⊥β,且m?α?m?β,或m∥β,或m与β相交,故A不成立;α⊥β,且m∥α?m?β,或m∥β,或m与β相交,故B不成立;m∥n,且n⊥β?m⊥β,故C成立;由m⊥n,且n∥β,知m⊥β不成立,故D不正确.故选:C.点评:本题考查直线与平面的位置关系的判断,解题时要认真审题,仔细解答,属于基础题.4. 函数的大致图象是()A.B.C.D.参考答案:C【考点】函数的图象.【分析】求得函数的定义域为{x|x≠0},从而排除即可得到答案.【解答】解:∵e2x﹣1≠0,∴x≠0,故函数的定义域为{x|x≠0},故选C.5. 已知是实数,是纯虚数,则等于()A B C D参考答案:A略6. 在三角形中,角,,所对的边分别是,,,且,,成等差数列,若,则的最大值为A. B. C. D.参考答案:C7. 直线l ,m与平面,满足,l //,,,则必有()A.且B.且C .且D.且参考答案:B8. ,复数= ( )A. B. C.D.参考答案:A因为,可知选A9. 已知参考答案:D略10. 若变量满足约束条件,,则取最小值时,二项展开式中的常数项为()A.B. C.D.参考答案:A做出不等式对应的平面区域,由得,平移直线,由图象可知当直线经过点B时,最小,当时,,即,代入得,所以二项式为.二项式的通项公式为,所以当时,展开式的常数项为,选A.二、填空题:本大题共7小题,每小题4分,共28分11. 对任意,的概率为______.参考答案:【分析】由几何概率列式求解即可.【详解】设事件,则构成区域的长度为,所有的基本事件构成的区域的长度为,故.故答案为:.【点睛】本题主要考查了长度型的几何概型的计算,属于基础题.12. 已知,若恒成立,则实数的取值范围是。
卜人入州八九几市潮王学校2021届一中高三第一次月考数学试卷〔理科〕本套试卷总分值是150分,考试时间是是120分钟.一.选择题:本大题一一共8小题,每一小题5分,一共40分.在每一小题给出的四个选项里面, 只有一项为哪一项哪一项符合题目要求的.请把答案填在答卷页的表格内.}6,5,4,3,2,1,0{=U ,集合}4,3,1,0{=A ,集合}6,5,3,1{=B ,那么)(B C A U =〔〕A.}3,1{ B.}4,0{ C.}4,1,0{ D.}4,3,2,1,0{1:+x p ≤4,条件65:2+-x x q ≤0,那么p ⌝是q ⌝的〔〕 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.假设011<<b a ,那么以下结论中,不正确的选项是〔〕A .2b ab<B .22b a<C .2>+b a a bD .||||||b a b a -=-“,R x ∈∀x 2cos ≤x 2cos 〞的否认为()A.,R x ∈∀x 2cos x 2cos >B.,R x ∈∃x 2cos x 2cos >C.,R x ∈∀x 2cos <x 2cos D.,R x ∈∃x 2cos ≤x 2cos0>a ,假设关于x 的不等式2+ax ≥bx +2的解集为R ,那么b 的取值范围是〔〕A.<b2B.b ≤2 C.0<b ≤2D.0<<b 26.在极坐标系中,直线1cos =θρ与圆θρcos =的位置关系为〔〕A .相切B .相离C .直线过圆心D .直线与圆相交但不过圆心7.现从甲、乙、丙等6名学生中安排4人参加4×100m 接力赛跑。
第一棒只能从甲、乙两人中安排1人,第四棒只能从甲、丙两人中安排1人,那么不同的安排方案一共有〔〕A .24种B .36种C .48种D .72种α+=+n 2009)310(,其中n 是正整数,α是小数,且10<<α,那么n 的值是〔〕A.αα-1B.21αα- C.αα21- D.αα-1二.填空题:〔只要求写出最后结果,并把结果写在答卷页的相应位置上,每一小题5分,一共35分〕x x x f 2666)(-+-=的最大值为nxx )1(+的展开式中,只有第6项的系数最大,那么,nx x )2(+展开式中2x 项的 系数为22cos lg(9)cos lg(9)x x x x +-<+-的解集为12.有10名同学先站成了前排3人后排7人来照毕业纪念像,但如今摄影师要从后排7人中抽2人 调整到前排,并使另外8个人的相对顺序不变,那么不同调整方法的总数是〔用数字答题〕13.假设参数方程⎩⎨⎧-=+=--θθsin )(cos )(t t t t e e y e e x (其中t 为参数,θ为常数,且θ为锐角)所表示的是离心率为2的双曲线,那么锐角θ的值是11)(--+=x x x f ,那么使)2()12(+=+x f x f 成立的x 取值范围是Rt △ABC 中,CA ⊥CB ,斜边AB 上的高为h1,那么有:2221111CB CA h +=;类比此性质,在四面体P —ABC 中,假设PA ,PB ,PC 两两垂直,底面ABC 上的高为h , 那么得到的正确结论为:一.选择题答案卡:〔每一小题5分,一共40分.〕二、填空题答案卡:〔每一小题5分,一共35分.〕10.18011.)22,2()2,22(ππ --;12013π4.),0[]3,(+∞--∞ ;15.22221111PC PB PA h++= 三、解答题:〔本大题一一共6小题,总分值是75分.解容许写出文字说明、证明过程或者演算步骤.〕 16.〔此题总分值是12分〕p :[]21,2,0x x a ∀∈-≥.q :x ∃∈R ,使得2(1)10x a x +-+<.假设p 或者q 为真,p 且q 为假,求a 的取值范围.解:假设p 真,那么2x 的最小值≥a ,即1≥a ;(2分)假设q 真,那么04)1(2>--=∆a ,即,3>a 或者1-<a ;(2分) 假设p 或者q 为真,p 且q 为假,那么p 与q 为一真一假。
2022-2023学年度第一学期高三年级第一次月考数学(理科)宏志班试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一个选项是符合题目要求的)1.已知集合{2,1,0,1,2}A =--,(){|ln 1}B x y x ==+,则A B =( ) A .{1,0}-B .{0,1}C .{1,0,1}-D .{0,1,2}2.定义在R 上的函数()f x 满足对任意的12x x ,(12x x ≠)恒有11122122()()()()0x f x x f x x f x x f x --+>,若(0)a f =,(1)b f =,(2)c f =,则( ) A .c b a << B .a b c << C .c a b <<D .a c b <<3.下列判断错误..的是( ) A .“22am bm <”是“a b <”的充分不必要条件B .命题“x R ∀∈,3210x x --≤”的否定是“x R ∃∈,3210x x -->”C .若,p q 均为假命题,则p q ∧为假命题D .命题“若21x =,则1x =或1x =-”的逆否命题为“若1x ≠或1x ≠-,则21x ≠” 4.已知22111()x x f x x x++=+,则f (x )等于()A .x 2-x +1,x ≠0 B .2211x x x++,x ≠0C .x 2-x +1,x ≠1D .1+211x x+,x ≠1 5.sin1a =,lgsin1b =,sin110c =,则( ) A .a b c << B .b a c <<C .b c a <<D .c b a <<6.函数6()e 1||1x mxf x x =+++的最大值为M ,最小值为N ,则M N +=( ) A .3B .4C .6D .与m 值有关总 分 值: 150分 试题范围:一轮复习第一章一第二章考试时间:120分钟7.函数e e ()x xf x x-+=的图象大致为( )A .B .C .D .8.已知(1)f x -是定义为R 上的奇函数,f (1)=0,且f (x )在[1,0)-上单调递增,在[0,)+∞上单调递减,则不等式()230xf -<的解集为( )A .(1,2)B .(,1)-∞C .(2,)+∞D .(,1)(2,)-∞⋃+∞9.解析数论的创始人狄利克雷在数学领域成就显著,对函数论、位势论和三角级数论都有重要贡献.以他名字命名的狄利克雷函数()1,,0,,x D x x ⎧=⎨⎩为有理数为无理数 以下结论错误的是( ) A .)()21D D <B .函数()y D x =不是周期函数C .()()1D D x =D .函数()y D x =在(),-∞+∞上不是单调函数10.设函数()f x 定义域为R ,(1)f x -为奇函数,(1)f x +为偶函数,当(1,1)x ∈-时,2()1f x x =-+,则下列结论错误的是( )A .7324f ⎛⎫=- ⎪⎝⎭B .(7)f x +为奇函数C .()f x 在(6,8)上是减函数D .方程()lg 0f x x +=仅有6个实数解11.定义在R 上的函数()f x 满足()()22f x f x x x =+-,则函数()()21g x xf x x=-的零点个数为( ) A .3B .4C .5D .612.定义在R 上的函数()f x 满足1(1)()3f x f x +=,且当[0,1)x ∈时,()1|21|f x x =--.若对[,)x m ∀∈+∞,都有2()81f x ≤,则m 的取值范围是( ) A .10,3⎡⎫+∞⎪⎢⎣⎭B .11,3⎡⎫+∞⎪⎢⎣⎭C .13,3⎡⎫+∞⎪⎢⎣⎭D .143⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。
高三第五次月考数学(理科)一、选择题1.设U={实数},集合2{|0},{|230}2xM x N y y y x =<=+-=-,那么集合()U M N ⋂ð等于( ) A .{1}B .{-3}C .{|021}x x x <<≠且D .{|023}x x x <<≠-且2.一元二次方程022=++a x x 有一个正根和一个负根的必要非充分条件是( ) A. 1>a B. 1<a C. 0>a D. 0<a3、设函数f (x )=2(1)2x ⎧+⎪⎨-⎪⎩ 11x x <≥,(10),a f =则f (a )=( )A 、9B 、12C 、14D 、164、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a = ( ) A 、 2B 、 4C 、152D 、1725.设函数)0(1)6sin()(>-+=ωπωx x f 的导函数)(x f '的最大值为3,则)(x f 的图象的一条对称轴的方程是( )A .9π=xB .6π=xC .3π=xD .2π=x6.设()f x 为可导函数,且满足0(1)(1)lim12x f f x x→--=-,则过曲线()f x 上一点(1,(1)f )处的切线斜率为( )A .2B .-1C .1D .-2 7、若n 展开式的二项式系数和为122,则展开式中所有理项共有( )项A .2B .3C .4D .68、若cos 2sin tan ααα+=则=( ) A .12B .2C .-12D .-29、从8名志愿者中选6名分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的种数为( )A .15120B .7560C .5040D .252010、若关于x 的方程21(1)10(01)xxa a a a m +++=>≠且有解,则m 的取值范围是( ) A .1(,]3-∞-B .[13-,0)∪(0,1]C .[13-,0) D .[1,+∞)11、从编号分别为1,2,…,9的9张卡片中任意抽取3张,将它们的编号从小到大依次记为x, y, z ,则22y x -≥≥且z-y 的概率是( ) A .13B .14C .528D .51212.在ABC ∆中,A (1,4),B (4,1),C (0,4)-,P 为ABC ∆所在平面上一动点,则PA PB PB PC PC PA ⋅+⋅+⋅的最小值是 ( )A .623-B .743-C . 863-D .503-二、填空题13.曲线34x x y -=在点()3,1--处的切线方程是 .14. 设有两个命题::p 不等式224)31(x x m x ->>+对一切实数x 恒成立;:q x m x f )27()(--=是R 上的减函数,如果p 且q 为真命题,则实数m 的取值范围是15、数列{}n a 为1,2,2,3,3,3,4,4,4,4,…,则此数列的第2005项2005a = 。
高三数学月考试卷(理科)
第Ⅰ卷(选择题,共60分) 一择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有 一个符合题目求的。) 1.已知集合等于则实数且aBBAaxxBaxxA,},01|{},0|{( ) A.1 B.-1 C.1或-1 D.1或-1或0 2.已知复数||,2||,32121zzziz则的最大值是 ( ) A.210 B.5 C.102 D.1022 3.已知a,b是异面直线,下列命题中的真命题的个数为 ( ) ①过a可以作与b垂直的平面 ②过a可以作与b平行的平面 ③过空间任意一点可以作与a,b都平行的平面 ④存在平面且使,,,ba A.0 B.1 C.2 D.3 4.不等式xxx||的解集 ( ) A.(0,1) B.(-1,1) C.(-1,0)(0,1) D.)1,0()1,( 5.已知的图象是则且)1(,0)2(),1)0()(11xffaaaxfx ( )
6.已知0)1(4)1()1(,ayaxaRa直线过定点P,点Q在曲线x2-xy+I=0上,则PQ连线的斜率的取值范围是 ( ) A.),2[ B.),3[ C.),1( D.),3( 7.已知周期为2的偶函数f(x)在区间[0,1]上是增函数,则)0(),1(),5.6(fff的大小关系是 ( ) A.)1()0()5.6(fff B.)0()5.6()1(fff C.)1()5.6()0(fff D.)5.6()0()1(fff 8.已知等差数列}{na的通项公式为,12nan其前n项和为Sn,则数列}{nSn的前10项的和为 ( ) A.120 B.70 C.75 D.100 9.已知、0sincos),,5.0(且,则下列不等式成立的是 ( ) A. B.23
C. D.23 10.已知⊙)0,3(,25:22AyxO点、B(3,0),一列抛物线以⊙O的切线为准线且过点A和B,则这列抛物线的焦点的轨迹方程是 ( )
A.)0(1162522xyx B. )0(1162522yyx
C.)0(192522xyx D.)0(192522yyx 11.已知四面体ABCD中,AB、AC、AD两两垂直,且AB=1,AC=2,AD=4,则点A到平面BCD的距离是 ( )
A.212 B.213 C.214 D.215
12.某学生家长为缴纳该学生上大学时的教育费,于2003年8月20号从银行贷款a元,为还清这笔贷款,该家长从2004年起每年的8月20号便去银行偿还确定的金额,计划恰好在贷款的m年后还清,若银行按年利息为p的复利计息(复利:即将一年后的贷款利息也纳入本金计算新的利息),则该学生家长每年的偿还金额是 ( )
A.ma B.1)1()1(11mmppap
C.1)1(1mmppap D.1)1()1(mmppap
第Ⅱ卷(非选择题,共90分) 二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.袋中有一些大小相同的小球,其中号数为1的小球1个,号数为2的小球2个,号数为3的小球3个,……,号数为n的小球n个,从袋中取一球,其号数记为随机变量ξ,则ξ的数学期望Eξ= . 14.函数1)(],1,1[,223)(xfxabaxxf若恒成立,则b的最小值为 . 15.与双曲线116922yx有共同的渐近线,且经过点32,3()的双曲线的一个焦点到它的一条渐近线的距离是 . 16.已知函数)(log)(221aaxxxf的值域为R,且f(x)在()31,上是增函数,
则a的范围是 .
三、解答题(本大题共6小题,共84分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)
ABCcBABACBAcbaABC又的对边已知分别为角中27,3tantan3tantan,,,,,
的面积.,233的值求baSABC 注意:考生在[18甲]、[18乙]两题中选一题作答,如果两题都答,只以[18甲]记分。 18.(甲)(本小题满分12分) 如图直角梯形OABC中,OABCSOABOAOCOABCOA平面,1,2,2,
SO=1,以OC、OA、OS分别为x轴、y轴、z轴建立直角坐标系O-xyz. (Ⅰ)求的夹解与OBSC的大小(用反三角函数表示); (Ⅱ)设:,),,,1(求平面满足SBCnqpn ①;的坐标n ②OA与平面SBC的夹角(用反三角函数表示); ③O到平面SBC的距离. (Ⅲ)设:.),,1(填写且满足OBkSCksrk ①的坐标为k . ②异面直线SC、OB的距离为 . (注:(Ⅲ)只要求写出答案). 18.(乙)(本小题满分12分) 已知ABC—A1B1C1为正三棱柱,D是AC 的中点(如图所示). (Ⅰ)证明;AB1//平面DBC1; (Ⅱ)若AB1⊥BC1,BC=2. ①求二面角D—BC1—C的大小; ②若E为AB1的中点,求三棱锥E—BDC1的体积.
19.(本小题满分12分) 有一批种子,每粒发芽的概率为32,播下5粒种子,计算: (Ⅰ)其中恰好有4粒发芽的概率; (Ⅱ)其中至少有4粒发芽的概率; (Ⅲ)其中恰好有3粒没发芽的概率. (以上各问结果均用最简分数作答) 20.(本小题满分12分) 已知曲线轴与ydcxbxaxyL23:相交于点A,以其上一动点P(x0,y0)为切点的直线l与y轴相交于Q点. (Ⅰ)求直线l的方程,并用x0表示Q点的坐标;
(Ⅱ)求.sinsinlim0AQPAPQx
21.(本小题满分12分) 已知.1,FQOFSOFQ且的面积为
(Ⅰ)若;,221的取值范围的夹角与求向量FQOFS
(Ⅱ)设为焦点为中心若以FOcSccOF,,43)2(||的椭圆经过点Q,当||OQ取得最小值时,求此椭圆方程.
22.(本小题满分14分) 数列}{na的前n项和为,2,,0,3)32(3,1:,11nNnttSttSaSnnn其中满足 (Ⅰ)求证:数列}{na是等比数列;
(Ⅱ)设数列}{na的公比为f(t),数列}{nb满足nnnbnbfbb求),2(),1(,111的通项公式. (Ⅲ)记,12221254433221nnnnnbbbbbbbbbbbbT求证:.920nT
高三月考试卷 数 学(理科)答案
一、选择题 1.D 2.C 3.C 4.D 5.A 6.B 7.C 8.C 9.D 10.B 11.C 12.D 二、填空题
13.312n 14.23 15.2 16.20a 三、解答题: 17.解:33tantan1tantan)tan(3tantan3tantanBABABABABA 21141212)(4734496449,cos26,3sin213233,322222222222baabbaba
ba
abbacabbacbaabSCBAABC又
18.(甲)(Ⅰ)如图所示:C(2,0,0)S(0,0,1)0(0,0,0)B(1,1,0) 510arccos,510252,cos)0,1,1(),1,0,2(OBSC
OBSC
(Ⅱ)①SBCnCBSB)0,1,1(),1,1,1( )2,1,1(,2,1:0101,,nqppCBnqpSBnCBnSBn解得 ②SOEBCEBCOEO面则于作过, SABSOE
66arcsin66236sin,363213,2,2,,,,
SEOESOOH
SEOEOFHFHOFFCBOASBCOHHSEOHOSE又为所求则连则交于与延长则于作过又两面交于
③36OH (乙)(Ⅰ)连结CB1交BC1于O,连结OD 1111//,,//DBCABDBCODABOD平面内在面
(Ⅱ)①2,,,1111CCDCDOBCOBCOD中点为又
45,22cos,23,23.,23,1DHBH
HODOHHBCBCOMO为所求则于交作过 ②662331212121111111DCABBDCABDCEVBDCVV 19. (Ⅰ)24380)31()32(445C
(Ⅱ)2431122433224380)32()31()32(5445C (Ⅲ)24340243410)32()31(2335C 20.(Ⅰ)解:cbxaxkcbxaxydA020223,23),,0( 0002000200))(23(0),)(23(yxcbxaxyxxxcbxaxyyQ得令 )))(23(,0(00020yxcbxaxQ (Ⅱ)由正弦定理得:
2|||2|)(|2|limsinsinlim)(|2|)(|23|sinsin20203020203020203020203020200020300aacxbxaxxbxaxAQPAPQcxbxaxxbxaxdyxdycxbxaxAPAQAQPAPQ
xx 21.(Ⅰ)FQOFFQOFSsin||||21 FQOFFQOFFQOFcos||||
]4arctan,4[],0[4tan|,221tan21又FQOFSFQOFS
(Ⅱ)FQOFCyQtan214323 10)23()225()23()225(2),23,25(25,2,min||,1,2123tan2222aQxCOQCCCCCxcFQOFQQ时递增时当 22.(Ⅰ)tSttSnn3)32(31① tSttSnn3)32(31②
②—①得:0)32(31nnatta