《平面直角坐标系》专题复习
- 格式:docx
- 大小:412.46 KB
- 文档页数:10
平面直角坐标系章节复习知识点解析考点一、特殊位置点的特殊坐标:典型例题【例1】点P(m+3,m+1)在x轴上,则P点坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)【例2】如果a-b<0,且ab<0,那么点(a,b)在( )A、第一象限B、第二象限C、第三象限,D、第四象限.【例3】点P(m,1)在第二象限内,则点Q(-m,0)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上【例4】(1)在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,则a=,点的坐标为。
(2)当b= 时,点B(-3,|b-1|)在第二、四象限角平分线上.【例5】(1)已知点A(1,2),AC∥X轴, AC=5,则点C的坐标是 .(2)已知点A(1,2),AC∥y轴, AC=5,则点C的坐标是 .考点二、点P(x,y)到坐标轴及原点的距离(1)点P(x,y)到x轴的距离等于|y|(2)点P(x,y)到y轴的距离等于|x|(3)点P(x,y)到原点的距离等于√x2+y2典型例题【例6】已知点P(m,n)到x轴的距离为3,到y轴的距离等于5,则点P的坐标是。
【例7】已知点P的坐标(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是.【例8】在坐标系内,点P(2,-2)和点Q(2,4)之间的距离等于个单位长度。
线段PQ的中点的坐标是。
考点三、坐标平面内对称点的坐标特征点P(a,b)关于x轴的对称点是P′(a,−b),即横坐标不变,纵坐标互为相反数.点P(a,b)关于y轴的对称点是P′(−a,b),即纵坐标不变,横坐标互为相反数.点P(a,b)关于坐标原点的对称点是P′(−a,−b),即横坐标互为相反数,纵坐标也互为相反数.典型例题【例9】已知A(-3,5),则该点关于x轴对称的点的坐标为;关于y轴对的点的坐标为;关于原点对称的点的坐标为;关于直线x=2对称的点的坐标为。
平面直角坐标系一.选择题(共10小题)1.下列各点中在第二象限的是()A.(3,2) B.(﹣3,﹣2) C.(﹣3,2)D.(3,﹣2)2.在平面直角坐标系中,点(3,﹣4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.44.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣3,﹣2) B.(3,﹣2)C.(﹣2,﹣3) D.(2,﹣3)5.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是()A.(2016,0)B.(2017,1)C.(2017,﹣1)D.(2018,0)6.点P(﹣3,2)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是()A.(2011,0)B.(2011,1)C.(2011,2)D.(2010,0)8.若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(0,3) B.(0,3)或(0,﹣3) C.(3,0) D.(3,0)或(﹣3,0)9.若点P(x,5)在第二象限内,则x应是()A.正数 B.负数 C.非负数D.有理数10.若点P(x,y)的坐标满足xy=0,则点P的位置是()A.在x轴上 B.在y轴上C.是坐标原点D.在x轴上或在y轴上二.填空题(共8小题)11.若点B(a,b)在第三象限,则点C(﹣a+1,3b﹣5)在第象限.12.点A的坐标(4,﹣3),它到x轴的距离为.13.已知点P的坐标为(2﹣a,3a+6),且点P到两坐标轴的距离相等,则a= .14.已知点M(a,b),且a•b>0,a+b<0,则点M在第象限.15.在直角坐标系中,若点P(a﹣2,a+5)在y轴上,则点P的坐标为.16.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为.17.确定平面内某一点的位置一般需要个数据.18.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.三.解答题(共4小题)19.已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)点M到x轴的距离为1时,M的坐标?(2)点N(5,﹣1)且MN∥x轴时,M的坐标?20.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.21.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.22.如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.参考答案与试题解析一.选择题(共10小题)1.下列各点中在第二象限的是()A.(3,2) B.(﹣3,﹣2) C.(﹣3,2)D.(3,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【解答】解:A、(3,2)在第一象限,故本选项错误;B、(﹣3,﹣2)在第三象限,故本选项错误;C、(﹣3,2)在第二象限,故本选项正确;D、(3,﹣2)在第四象限,故本选项错误.故选C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.在平面直角坐标系中,点(3,﹣4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:∵点的横坐标3>0,纵坐标﹣4<0,∴点P(3,﹣4)在第四象限.故选D.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.已知点P(x+3,x﹣4)在x轴上,则x的值为()A.3 B.﹣3 C.﹣4 D.4【分析】直接利用x轴上点的纵坐标为0,进而得出答案.【解答】解:∵点P(x+3,x﹣4)在x轴上,∴x﹣4=0,解得:x=4,故选:D.【点评】此题主要考查了点的坐标,正确把握x轴上点的坐标性质是解题关键.4.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(﹣3,﹣2) B.(3,﹣2)C.(﹣2,﹣3) D.(2,﹣3)【分析】根据A(1,1),B(2,0),再结合图形即可确定出点C的坐标.【解答】解:∵点A的坐标是:(1,1),点B的坐标是:(2,0),∴点C的坐标是:(3,﹣2).故选B.【点评】本题主要考查了点的坐标.点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.5.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2017秒时,点P的坐标是()A.(2016,0)B.(2017,1)C.(2017,﹣1)D.(2018,0)【分析】以时间为点P的下标,根据半圆的半径以及部分点P的坐标可找出规律“P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,依此规律即可得出第2017秒时,点P的坐标.【解答】解:以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵2017=504×4+1,∴第2017秒时,点P的坐标为(2017,1).故选B【点评】本题考查了规律型中点的坐标,解题的关键是找出点P的变化规律“P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”.本题属于基础题,难度不大,解决该题型题目时,根据圆的半径及时间罗列出部分点P的坐标,根据坐标发现规律是关键.6.点P(﹣3,2)在平面直角坐标系中所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据平面直角坐标系中点的坐标符号可得答案.【解答】解:点P(﹣3,2)在平面直角坐标系中所在的象限是第二象限,故选:B.【点评】此题主要考查了点的坐标,关键是掌握平面直角坐标系中个象限内的点的坐标符号,第一象限(+,+),第二象限(﹣,+),第三象限(﹣,﹣)第四象限(+,﹣).7.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是()A.(2011,0)B.(2011,1)C.(2011,2)D.(2010,0)【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2011除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【解答】解:∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2011次运动后点P的横坐标为2011,纵坐标以1、0、2、0每4次为一个循环组循环,∵2011÷4=502…3,∴第2011次运动后动点P的纵坐标是第503个循环组的第3次运动,与第3次运动的点的纵坐标相同,为2,∴点P(2011,2).故选C.【点评】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.8.若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(0,3) B.(0,3)或(0,﹣3) C.(3,0) D.(3,0)或(﹣3,0)【分析】由于点P到y轴的距离是3,并且在x轴上,由此即可P横坐标和纵坐标,也就确定了P的坐标.【解答】解:∵P在x轴上,∴P的纵坐标为0,∵P到y轴的距离是3,∴P的横坐标为3或﹣3,∴点P坐标是(3,0)或(﹣3,0).故选D.【点评】此题主要考查了根据点在坐标系中的位置及到坐标轴的距离确定点的坐标,解决这些问题要熟练掌握坐标系各个不同位置的坐标特点.9.若点P(x,5)在第二象限内,则x应是()A.正数 B.负数 C.非负数D.有理数【分析】在第二象限时,横坐标<0,纵坐标>0,因而就可得到x<0,即可得解.【解答】解:∵点P(x,5)在第二象限,∴x<0,即x为负数.故选B.【点评】解决本题解决的关键是熟记在各象限内点的坐标的符号,第一象限点的坐标符号为(+,+),第二象限点的坐标符号为(﹣,+),第三象限点的坐标符号为(﹣,﹣),第四象限点的坐标符号为(+,﹣).10.若点P(x,y)的坐标满足xy=0,则点P的位置是()A.在x轴上 B.在y轴上C.是坐标原点D.在x轴上或在y轴上【分析】根据坐标轴上的点的坐标特点解答即可.【解答】解:因为xy=0,所以x、y中至少有一个是0;当x=0时,点在y轴上;当y=0时,点在x轴上.当x=0,y=0时是坐标原点.所以点P的位置是在x轴上或在y轴上.故选:D.【点评】本题主要考查了坐标轴上点的坐标特点,即点在x轴上点的坐标为纵坐标等于0;点在y轴上点的坐标为横坐标等于0.二.填空题(共8小题)11.若点B(a,b)在第三象限,则点C(﹣a+1,3b﹣5)在第四象限.【分析】先根据B(a,b)在第三象限判断出a,b的符号,进而判断出﹣a+1,3b﹣5的符号,即可判断出点C所在的象限.【解答】解:∵点B(a,b)在第三象限,∴a<0,b<0,∴﹣a+1>0,3b﹣5<0,则点C(﹣a+1,3b﹣5)满足点在第四象限的条件,故点C(﹣a+1,3b﹣5)在第四象限.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.点A的坐标(4,﹣3),它到x轴的距离为 3 .【分析】求得﹣3的绝对值即为点A到x轴的距离.【解答】解:∵|﹣3|=3,∴点A(4,﹣3)到x轴的距离为3.故答案填:3.【点评】本题考查的是点的坐标的几何意义,用到的知识点为:点到x轴的距离为点的纵坐标的绝对值.13.已知点P的坐标为(2﹣a,3a+6),且点P到两坐标轴的距离相等,则a= ﹣1或﹣4 .【分析】由于点P的坐标为(2﹣a,3a+6)到两坐标轴的距离相等,则|2﹣a|=|3a+6|,然后去绝对值得到关于a的两个一次方程,再解方程即可.【解答】解:根据题意得|2﹣a|=|3a+6|,所以2﹣a=3a+6或2﹣a=﹣(3a+6),解得a=﹣1或a=﹣4.故答案为﹣1或﹣4.【点评】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.14.已知点M(a,b),且a•b>0,a+b<0,则点M在第三象限.【分析】由于a•b>0则a、b同号,而a+b<0,于是a<0,b<0,然后根据各象限点的坐标特点进行判断.【解答】解:∵a•b>0,∴a、b同号∵a+b<0,∴a<0,b<0,∴点M(a,b)在第三象限.故答案为三.【点评】本题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.15.在直角坐标系中,若点P(a﹣2,a+5)在y轴上,则点P的坐标为(0,7).【分析】让点P的横坐标为0列式求得a的值,即可求得点P的坐标.【解答】解:∵点P(a﹣2,a+5)在直角坐标系的y轴上,∴a﹣2=0,解得a=2,a+5=7,∴P坐标为(0,7).故答案为:(0,7).【点评】此题主要考查了点的坐标特点,解决本题的关键是掌握好坐标轴上的点的坐标的特征:y轴上的点的横坐标为0.16.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n﹣1B n顶点B n的横坐标为2n+1﹣2 .【分析】先求出B1、B2、B3…的坐标,探究规律后,即可根据规律解决问题.【解答】解:由题意得OA=OA1=2,∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,∴B1(2,0),B2(6,0),B3(14,0)…,2=22﹣2,6=23﹣2,14=24﹣2,…∴B n的横坐标为2n+1﹣2.故答案为 2n+1﹣2.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.17.确定平面内某一点的位置一般需要 2 个数据.【分析】坐标平面内的点与有序实数对是一一对应的.【解答】解:∵确定一个点的坐标需要横、纵坐标,∴是2个数据.故填:2.【点评】本题考查的是有序数对应由2个数据构成.18.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于(﹣3,4).【分析】根据三种变换规律的特点解答即可.【解答】解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4).故答案为:(﹣3,4).【点评】本题考查了点的坐标,读懂题目信息,理解三种变换的变换规律是解题的关键.三.解答题(共4小题)19.已知平面直角坐标系中有一点M(m﹣1,2m+3)(1)点M到x轴的距离为1时,M的坐标?(2)点N(5,﹣1)且MN∥x轴时,M的坐标?【分析】(1)根据题意可知2m+3的绝对值等于1,从而可以得到m的值,进而得到件M的坐标;(2)根据题意可知点M的纵坐标等于点N的纵坐标,从而可以得到m的值,进而得到件M 的坐标.【解答】解:(1)∵点M(m﹣1,2m+3),点M到x轴的距离为1,∴|2m+3|=1,解得,m=﹣1或m=﹣2,当m=﹣1时,点M的坐标为(﹣2,1),当m=﹣2时,点M的坐标为(﹣3,﹣1);(2)∵点M(m﹣1,2m+3),点N(5,﹣1)且MN∥x轴,∴2m+3=﹣1,解得,m=﹣2,故点M的坐标为(﹣3,﹣1).【点评】本题考查点的坐标,解题的关键是明确题意,求出m的值.20.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用y轴上点的坐标性质横坐标为0,进而得出a的值,即可得出答案;(3)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案;(4)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或相反数进而得出答案.【解答】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).【点评】此题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.21.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)分点B在点A的左边和右边两种情况解答;(2)利用三角形的面积公式列式计算即可得解;(3)利用三角形的面积公式列式求出点P到x轴的距离,然后分两种情况写出点P的坐标即可.【解答】解:(1)点B在点A的右边时,﹣1+3=2,点B在点A的左边时,﹣1﹣3=﹣4,所以,B的坐标为(2,0)或(﹣4,0);(2)△ABC的面积=×3×4=6;(3)设点P到x轴的距离为h,则×3h=10,解得h=,点P在y轴正半轴时,P(0,),点P在y轴负半轴时,P(0,﹣),综上所述,点P的坐标为(0,)或(0,﹣).【点评】本题考查了坐标与图形性质,主要利用了三角形的面积,难点在于要分情况讨论.22.如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.【分析】(1)先由非负数性质求出a=2,b=4,再根据平移规律,得出点C,D的坐标,然后根据四边形ABDC的面积=AB×OA即可求解;(2)存在.设M坐标为(0,m),根据S△PAB=S四边形ABDC,列出方程求出m的值,即可确定M 点坐标;(3)过P点作PE∥AB交OC与E点,根据平行线的性质得∠BAP+∠DOP=∠APE+∠OPE=∠APO,故比值为1.【解答】解:(1)∵(a﹣2)2+|b﹣4|=0,∴a=2,b=4,∴A(0,2),B(4,2).∵将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,∴C(﹣1,0),D(3,0).∴S四边形ABDC=AB×OA=4×2=8;(2)在y轴上存在一点M,使S△MCD=S四边形ABCD.设M坐标为(0,m).∵S△MCD=S四边形ABDC,∴×4|m|=8,∴2|m|=8,解得m=±4.∴M(0,4)或(0,﹣4);(3)当点P在BD上移动时, =1不变,理由如下:过点P作PE∥AB交OA于E.∵CD由AB平移得到,则CD∥AB,∴PE∥CD,∴∠BAP=∠APE,∠DOP=∠OPE,∴∠BAP+∠DOP=∠APE+∠OPE=∠APO,∴=1.【点评】本题考查了坐标与图形平移的关系,坐标与平行四边形性质的关系,平行线的性质及三角形、平行四边形的面积公式.关键是理解平移规律,作平行线将相关角进行转化.。
平面直角坐标系专题复习◆知识讲解①坐标平面内的点与有序实数对一一对应;②点P(a,b)到某轴的距离为│b│,到y轴距离为│a│,到原点距离为a2b2;③各象限内点的坐标的符号特征:P(a,b),P在第一象限a>0且b>0,P在第二象限a<0,b>0,P在第三象限a<0,b<0,P在第四象限a>0,b<0;④点P(a,b):若点P在某轴上a为任意实数,b=0;P在y轴上a=0,b为任意实数;P在一,三象限坐标轴夹角平分线上a=0;P在二,四象限坐标轴夹角平分线上a=-b;⑤A(某1,y1),B(某1,y2):A,B关于某轴对称某1=某2,y1=-y2;A、B关于的y轴对称某1=-某2,y1=y2;A,B关于原点对称某1=-某2,y1=-y2;AB∥某轴y1=y2且某1≠某2;AB∥y轴某1=某2且y1≠y2(A,B表示两个不同的点).◆例题解析例1(2022贵州贵阳,24,10分)【阅读】在平面直角坐标系中,以任意两点P(某1,y1)、Q(某2,y2)为端点的线段中点坐标为(【运用】某1+某2y1+y22,2).(1)如图,矩形ONEF的对角线交于点M,ON、OF分别在某轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为______;(4分)(2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.(6分)(第24题图)【答案】解:(1)∵四边形ONEF是矩形,∴点M是OE的中点.∵O(0,0),E(4,3),3∴点M的坐标为(2,).2(2)设点D的坐标为(某,y).若以AB为对角线,AC,BC为邻边构成平行四边形,则AB,CD的中点重合1+某-1+3=某=122∴,解得,.4+y2+1y=-1=22若以BC为对角线,AB,AC为邻边构成平行四边形,则AD,BC的中点重合-1+某1+3=某=522∴,解得,.2+y4+1y=3=22若以AC为对角线,AB,BC为邻边构成平行四边形,则BD,AC的中点重合3+某-1+1=某=-322∴,解得,.1+y2+4y=5=22综上可知,点D的坐标为(1,-1)或(5,3)或(-3,5).例2如图所示,在直角坐标系中,点A,B的坐标分别是(0,6),(-8,0),求Rt△ABO的内心的坐标.【分析】本题考查勾股定理,直角三角形内心的概念,运用内心到两坐标轴的距离,结合实际图形,确定内心的坐标.【解答】∵A(0,6),B(-8,0),∴OA=6,OB=8,在Rt△ABO中,AB2=OA2+OB2=62+82=100,∴AB=10(负值舍去).设Rt△ABO内切圆的半径为r,则由S△ABO=某6某8=24,S△ABO=r(AB+OA+OB)=12r,知r=2,而内心在第二象限,∴内心的坐标为(-2,2).【点评】运用数形结合并借助面积是解答本题的关键.12122022年真题一、选择题1.(2022山东日照,7,3分)以平行四边形ABCD的顶点A为原点,直线AD为某轴建立直角坐标系,已知B、D点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C点平移后相应的点的坐标是()(A)(3,3)(B)(5,3)(C)(3,5)(D)(5,5)【答案】D2.(2022山东泰安,12,3分)若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转900得到OA',则点A'的坐标为()A.(3,-6)B.(-3,6)C.(-3,-6)D.(3,6)【答案】A3.(2022宁波市,5,3分)平面直角坐标系中,与点(2,-3)关于原点中心对称的点是A.(-3,2)B.(3,-2)C.(-2,3)D.(2,3)【答案】C4.(2022浙江绍兴,10,4分)李老师从“淋浴龙头”受到启发,编了一个题目:在数轴上截取从0到3的队员线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A、B重合于点P,如图2;建立平面直角坐标系,平移此三角新,使它关于y轴对称,且点P的坐标为(0,2),PM与某轴交于点N(n,0),如图3.当m3时,求n的值.你解答这个题目得到的n值为()A.423B.234C.2323D.33yPA0PMN某M3BA0M3B【答案】A5.(2022台湾台北,17)如图(七),坐标平面上有两直线L、M,其方程式分别为y=9、y=-6。
期末专题复习(直角坐标系)一、概念复习1、直角坐标系:横轴(x 轴)、纵轴(y 轴)、原点。
直角坐标系的平面叫直角坐标平面。
2、点的坐标:点P 对应的有序数对叫点的坐标,P (a,b )a 叫横坐标,b 叫纵坐标。
3、平面直角坐标系把平面分成四个象限:x 轴、y 轴不属于任何象限。
第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-) 4、经过点P (a ,b )且垂直于x 轴(或平行于y 轴)的直线表示为:直线x = a 经过点P (a ,b )且垂直于y 轴(或平行于x 轴)的直线表示为:直线y = b 5、平行于坐标轴的直线上的两点间的距离:平行于x 轴的直线上的两点A (x 1,y )、B (x 2,y )的距离是 21x x AB -= 平行于x 轴的直线上的两点C (x ,y 1)、D (x ,y 2)的距离是 21y y CD -= 6、点P (a ,b )沿着坐标轴(沿与x 轴或y 轴)平行的某一方向平移m (m>0)个单位 则;向右平移所对应的点的坐标为(a+ m ,b ); 向左平移所对应的点的坐标为(a- m ,b ) 向上平移所对应的点的坐标为(a ,b+ m );向下平移所对应的点的坐标为(a ,b- m ) 7、对称点的坐标特征 直角坐标平面内有点M (a ,b ) 与点M (a ,b )关于x 轴对称的点的坐标是(a ,- b ) 与点M (a ,b )关于 y 轴对称的点的坐标是(- a ,b ) 与点M (a ,b )关于原点对称的点的坐标是(- a ,- b )二、典型例题1、点A (-3,2)向左平移4个单位到B ,则B 点的坐标是___________2、点N (3,-4)沿x 轴翻折与M 重合,那么点M 的坐标是___________3、将点Q (10,2)绕原点O 旋转180°后落到P 处,则P 点的坐标是___________4、直角坐标平面内,点A (-2,3)向____平移______个单位后就和点B (2,3)重合5、点P 在第三象限,且点P 到x 轴和到y 轴的距离都是3,则点P 坐标是_______________6、如果点M (3a-1,5+b )与点(b -2,a )关于原点对称,则a=_______,b=__________7、在x 轴上有A 、B 两点,AB =10,若点A 的坐标是(2,0),那么点B 的坐标是___________ 8、在直角坐标平面内,设点P (x,y ),若xy>0,则点P 在_________象限。
平面直角坐标系一、知识点复习1.有序数对:有顺序的两个数a 与b 组成的数对,记作),(b a 。
注意a 与b 的先后顺序对位置的影响。
2.平面直角坐标系(1)定义:在同一平面内画两条相互垂直并且原点重合的数轴,组成平面直角坐标系。
这个平面叫做坐标平面。
(2)平面直角坐标系中点的坐标:通常若平面直角坐标系中有一点A ,过点A 作横轴的垂线,垂足在横轴上的坐标为a ,过点A 作纵轴的垂线,垂足在纵轴上的坐标为b ,有序实数对),(b a 叫做点A 的坐标,其中a 叫横坐标,b 叫做纵坐标。
3.各象限内的点与坐标轴上的点的坐标特征:4. 特殊位置点的特殊坐标5.对称点的坐标特征:6.点到坐标轴的距离:点),(yxP到X轴距离为y,到y轴的距离为x。
7.点的平移坐标变化规律:简单记为“左减右加,上加下减”二、典型例题讲解考点1:点的坐标与象限的关系1.在平面直角坐标系中,点P (-2,3)在第( )象限. A .一 B .二 C .三 D .四2.若点)2,(-a a P 在第四象限,则a 的取值范围是( )A. 02<<-aB.20<<aC.2>aD.0<a 3.在平面直角坐标系中,点P (-2,12+x )所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 考点2:点在坐标轴上的特点1.点)1,3(++m m P 在x 轴上,则P 点坐标为( ) A .)2,0(- B.)0,2( C.)0,4( D.)4,0(-2.已知点)12,(-m m P 在y 轴上,则P 点的坐标是 。
3.若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上 B.x轴上 C.y轴上 D.x轴上或y轴上(除原点)考点3:对称点的坐标1.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是()A.)2,3(- D.(2,3),3(- C.)3,2(- B.)22.已知点A的坐标为(-2,3),点B与点A关于x轴对称,点C与点B关于y轴对称,则点C关于x轴对称的点的坐标为()A.(2,-3) B.(-2,3) C.(2,3) D.(-2,-3)3.若坐标平面上点P(a,1)与点Q(-4,b)关于x轴对称,则()A.a=4,b=-1 B.a=-4,b=1 C.a=-4,b=-1 D.a=4,b=1考点4:点的平移1.已知点A(-2,4),将点A往上平移2个单位长度,再往左平移3个单位长度得到点A′,则点A′的坐标是()A.(-5,6) B.(1,2) C.(1,6) D.(-5,2)2.已知A(2,3),其关于x轴的对称点是B,B关于y轴对称点是C,那么相当于将A经过()的平移到了C.A.向左平移4个单位,再向上平移6个单位B.向左平移4个单位,再向下平移6个单位C.向右平移4个单位,再向上平移6个单位D.向下平移6个单位,再向右平移4个单位3.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5考点5:点到坐标轴的距离1.点M(-3,-2)到y轴的距离是()A.3 B.2 C.-3 D.-22.点P到x轴的距离是5,到y轴的距离是6,且点P在x轴的上方,则P点的坐标为.考点6:平行于x轴或y轴的直线的特点1.如图,AD∥BC∥x轴,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同2.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.2 B.-4 C.-1 D.33.已知点M(-2,3),线段MN=3,且MN∥y轴,则点N的坐标是()A.(-2,0) B.(1,3)C.(1,3)或(-5,3) D.(-2,0)或(-2,6)考点7:角平分线的理解1.已知点A(3a+5,a-3)在二、四象限的角平分线上,则a= .考点8:特定条件下点的坐标1.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)考点9:面积的求法(割补法)1.(1)在平面直角坐标系中,描出下列3个点:A(-1,0),B(3,-1),C(4,3);( 2)顺次连接A,B,C,组成△ABC,求△ABC的面积.参考答案:(1)略(2)8.52.如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为(0,2)(1,0)(6,2)(2,4),求四边形ABCD的面积.3.在图中A(2,-4)、B(4,-3)、C(5,0),求四边形ABCO的面积.考点10:根据坐标或面积的特点求未知点的坐标1.已知A(a,0)和B点(0,10)两点,且AB与坐标轴围成的三角形的面积等于20,则a的值为()A.2 B.4 C.0或4 D.4或-42.如图,已知:)4,5B、)2,0(-C。
1、下列各点中,在第二象限的点是()A.(2,3)B.(2,-3) C.(-2,3) D.(-2, -3)2、已知坐标平面内点M(a,b)在第三象限,则点N(b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限3、点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,则点P的坐标是()A.(4,2)B.(-2,-4)C.(-4,-2)D.(2,4)4、点E(a,b)到x轴的距离是4,到y轴距离是3,则有()A.a=3, b=4 B.a=±3,b=±4 C.a=4, b=3 D.a=±4,b=±35、若点P(x,y)的坐标满足xy=0(x≠y),则点P在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上6、已知点P(a,b),a b>0,a+b<0,则点P在()A.第一象限B.第二象限C.第三象限D.第四象限7、点P(m+3, m+1)在直角坐标系的x轴上,则点P坐标为()A.(0,-2)B.( 2,0)C.( 4,0)D.(0,-4)8、平面直角坐标中,和有序实数对一一对应的是()A.x轴上的所有点B.y轴上的所有点C.平面直角坐标系内的所有点D.x轴和y轴上的所有点9、如果点M到x轴和y轴的距离相等,则点M横、纵坐标的关系是()A.相等B.互为相反数C.互为倒数D.相等或互为相反数10、已知点P(x,x),则点P一定()A.在第一象限B.在第一或第四象限C.在x轴上方D.不在x轴下方11、已知点A(2,-3),线段AB与坐标轴没有交点,则点B的坐标可能是()A.(-1,-2)B.( 3,-2)C.(1,2)D.(-2,3)12、点E与点F的纵坐标相同,横坐标不同,则直线EF与y轴的关系是()A.相交B.垂直C.平行D.以上都不正确13、将某图形的横坐标都减去2,纵坐标不变,则该图形()A .向右平移2个单位B .向左平移2 个单位C .向上平移2 个单位D .向下平移2 个单位14、点A (0,-3),以A 为圆心,5为半径画圆交y 轴负半轴的坐标是 ( )A .(8,0)B .( 0,-8)C .(0,8)D .(-8,0)15、一个点的横、纵坐标都是整数,并且他们的乘积为6,满足条件的点共有 ( )A .2 个B .4 个C .8 个D .10 个16若点P (x,y )的坐标满足xy =0,则点P 的位置是()A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上17.某同学的座位号为(4,2),则该同学的所座位置是()A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定18.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为()A 、 A 1(0,5-),B 1(3,8--) B 、 A 1(7,3), B 1(0,5)C 、 A 1(4,5-) B 1(-8,1)D 、 A 1(4,3) B 1(1,0)19. 在平面直角坐标系中,点()一定在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限20. 若点P ()在第二象限,则点Q ()在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限21. 点P ()关于轴的对称点的坐标是( )A.(2,3)B.() C.() D.() 22. 点P ()关于原点对称的点的坐标是( ) A.() B.() C.() D.() 23. 点P ()关于原点对称的点的坐标是( ) A. B. C.(3,4) D .24. 若点A()在第二象限,则点B()在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限25. 若点P(m,2)与点Q(3,n)关于原点对称,则的值分别是()A. B. C. D.26 已知点P坐标为(),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,)C. (6,)D.(3,3)或(6,)27. 点P()不可能在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限28. 点M()在第二象限,且,,则点M的坐标是()A. B. C. D.29.点E(a,b)到x轴的距离是4,到y轴距离是3,则有()A.a=3, b=4 B.a=±3,b=±4 C.a=4, b=3 D.a=±4,b=±330.已知点P(a,b),a b>0,a+b<0,则点P在()A.第一象限B.第二象限C.第三象限D.第四象限31、点P(m+3, m+1)在直角坐标系得x轴上,则点P坐标为()A.(0,-2)B.( 2,0)C.( 4,0)D.(0,-4)32.已知点P(x,x),则点P一定()A.在第一象限B.在第一或第四象限C.在x轴上方D.不在x轴下方33.点A(0,-3),以A为圆心,5为半径画圆交y轴负半轴的坐标是()A.(8,0)B.( 0,-8)C.(0,8)D.(-8,0)34.若4a,且点M(a,b)在第三象限,则点M的坐标是(),5==bA、(5,4)B、(-5,C、(-5,-4)D、(5,-4)35.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位36.已知点A()2,2-,如果点A关于x轴的对称点是B,点B关于原点的对称点是C,则C点的坐标是()A、()2,2B、()2,2-C、()1,1--D、()2,2--二、填空题(每空2分)1、在电影票上,如果将“8排4号”记作(8,4),则(10,15)表示_______________。
.个性化教学教案授课时间:年级:七年级下课时:2备课时间:学生姓名:课题:教《平面直角坐标系》章节复习教师姓名:董老师学目标重点难点《平面直角坐标系》章节复习《平面直角坐标系》章节复习考点1:考点的坐标与象限的关系知识解析:各个象限的点的坐标符号特征如下:教学容(特别值得注意的是,坐标轴上的点不属于任何象限.)1、在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限2、在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3、若点P(a,a-2)在第四象限,则a的取值围是().A.-2<a<0B.0<a<2C.a>2D.a<04、点P(m,1)在第二象限,则点Q(-m,0)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上5、若点P(a,b)在第四象限,则点M(b-a,a-b)在().A.第一象限B.第二象限C. 第三象限D.第四象限6、在平面直角坐标系中,点A(x 1,2x)在第四象限,则实数x的取值围是.7、对任意实数x,点P(x,x22x)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限8、如果a-b<0,且ab<0,那么点(a,b)在( )A、第一象限B、第二象限C、第三象限,D、第四象限.考点2:点在坐标轴上的特点x轴上的点纵坐标为0,y轴上的点横坐标为0.坐标原点(0,0)1、点P(m+3,m+1)在x轴上,则P点坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)2、已知点P(m,2m-1)在y轴上,则P点的坐标是。
考点3:考对称点的坐标知识解析:1、关于x轴对称:A(a,b)关于x轴对称的点的坐标为(a,-b)。
2、关于y轴对称:A(a,b)关于y轴对称的点的坐标为(-a,b)。
3、关于原点对称:A(a,b)关于原点对称的点的坐标为(-a,-b)。
1、点M(2,1)关于x轴对称的点的坐标是().A.(2,1)B.(2,1)C.(2,1)D.(1,2)2、平面直角坐标系中,与点(2,-3)关于原点中心对称的点是().A.(-3,2)B.(3,-2)C.(-2,3)D.(2,3)3、如图,矩形OABC的顶点O为坐标原点,点A在x轴上,点B的坐(2,1).如果将矩形OABC绕点O旋转180°,旋转后的图形为矩形OA B C,那么点B 的坐标为().1 111A.(2,1)B.(-2,l)C.(-2,-l)D.(2,-1)标为..4、若点A(2,a)关于x轴的对称点是B(b,-3)则ab.的值是.5、在平面直角坐标系中,点A(1,2)关于y轴对称的点为点B(a,2),则a=. 6、点A(1-a,5),B(3,b)关于y轴对称,则a+b=______.7、如果点P(4,5)和点Q(a,b)关于y轴对称,则a的值为.考点4:考平移后点的坐标知识解析:1、将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));2、将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).1、在平面直角坐标系中,将点(-2,-3)向上平移3个单位,则平移后的点的坐标为_______.2、在平面直角坐标系中,点P(-1,2)向右平移3个单位长度后的坐标是()A.(2,2)B.(-4,2)C.(-1,5)D.(-1,-1)3、将点P(-2,1)先向左平移1个单位长度,再向上平移2个单位长度得到点P/为。
,则点P/的坐标4.将点A(-3,-2)先沿y轴向上平移5个单位,再沿x轴向左平移4个单位得到点A,则点A'的坐标是.5、已知形ABCD的三个顶点坐标为A(2,1),B(5,1),D(2,4),现将该形向下平移3个单位长度,再向左平移4个单位长度,得到形A'B'C'D',则C’点的坐标为()A.(5,4)B.(5,1)C.(1,1)D.(-1,-1)6、在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1).B(1,1) 将线段AB平移后得到线段A'B',若点A'的坐标为(-2,2),则点B'的坐标为()A.(-5,4)B.(4,3)C.(-1,-2)D.(-2,-1)7、如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至A B,11则a b的值为()A.2B.3 C.4D.5yB(01),OB(a,2)1A(3,b)1xA(2,0)8、在平面直角坐标系中,已知点A(-4,0)、B(0,2),现将线段AB向右平移,使A与坐标原点O重合,则B平移后的坐标是.9、以平行四边形ABCD的顶点A为原点,直线AD为x轴建立直角坐标系,已知B、D点的坐标分别为(1,3)(4,0,),把平行四边形向上平移2个单位,那么C点平移后相应的点的坐标是()A(3,3)B(5,3)C(3,5)D(5,5)10、在平面直角坐标系中□,ABCD的顶点A、B、C 的坐标分别是(0,0)、(3,0)、(4,2)则顶点D的坐标为()A.(7,2) B. (5,4) C.(1,2) D. (2,1)Y11、如图所示,在平面直角坐标系中,ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)考点5:点到直线的距离点P(x,y)到x轴,y轴的距离分别为|y|和|x|,到原点的距离x2y21、点M(-6,5)到x轴的距离是_____,到y轴的距离是______.2、已知点P(x,y)在第四象限,且│x│=3,│y│=5,则点P的坐标是()A.(-3,5)B.(5,-3)C.(3,-5)D.(-5,3)3、已知点P(m,n)到x轴的距离为3,到y轴的距离等于5,则点P 的坐标是。
P的坐标4、已知点P的坐标(2-a,3a+6),且点P到两坐标轴的距离相等,则点是.考点6:平行于X轴、Y轴的直线的特点平行于x轴的直线上点的纵坐标相同;平行于y轴的直线上点的横坐标相同1、已知点A(1,2),AC∥X轴,AC=5,则点C的坐标是_____________.2、已知点A(1,2),AC∥y轴,AC=5,则点C的坐标是_____________.3、如果点A a,3,点B2,b且AB//x轴,则_______4、如果点A2,m,点B n,6且AB//y轴,则_______5、已知:A(1,2),B(x,y),AB∥x轴,且B到y轴距离为2,则点B的坐标是.6、已知长方形ABCD中,AB=5,BC=8,并且AB∥x轴,若点A的坐标为(-2,4),则点 C 的坐标为__________________________.考点7:角平分线的理解第一、三象限角平分线的点横纵坐标相同(y=x);第二、四象限角平分线的点横纵坐标互为相反数(x+y=0)1、若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是()A.(2,2)B.(-2,-2)C.(2,2)或(-2,-2)D.(2,-2)或(-2,2)2、在平面直角坐标系,已知点(1-2a,a-2)在第三象限的角平分线上,则a=,点的坐标为。
3、当b=______时,点B(-3,|b-1|)在第二、四象限角平分线上.考点8:考特定条件下点的坐标1、若点P(x,y)的坐标满足x+y=xy,则称点P 为“和谐点”。
请写出一个“和谐点”的坐标,答:..12、如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标不变,纵坐标分别变为原来的,则点A2的对应点的坐标是().A.(﹣4,3)B.(4,3)C.(﹣2,6)D.(﹣2,3)3、如图,如果士所在的位置坐标为(-1,-2),相所在的位置坐标为(2,-2),则炮所在位置坐标为.炮士帅相4、如图,若在象棋盘上建立直角坐标系,使“帥”位于点(-1,-2),“馬”位于点(2,-2),则“兵”位于点().A.(-1,1)B.(-2,-1)C.(-3,1)D.(1,-2),90°),则其余各5、如图是一台雷达探测相关目标得到的结果,若记图中目标A的位置为(目标的位置分别是多少?考点9:面积的求法(割补法)1、已知:A(3,1),B(5,0),E(3,4),则△ABE的面积为________.2、如图,在四边形ABCD中,A、B、C、D的四个点的坐标分别为( 0,2)(1,0)(6,2)(2,4),求四边形ABCD的面积。
.3、如图,在平面直角坐标系中,点A,B的坐标分别为(-1,0),y(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.C D(1)求点C,D的坐标及四边形ABDC的面积S四边形A BDCA O B-13xy(2)在y轴上是否存在一点P,连接PA,PB,使SPAB =S四边形A BDC,A若存在这样一点,求出点P的坐标,若不存在,试说明理由.B COFEx D4、如图为风筝的图案.(1)若原点用字母 O表示,写出图中点A,B,C的坐标.(2)试求(1)中风筝所覆盖的平面的面积..考点10:根据坐标或面积的特点求未知点的坐标1、在直角坐标系中,已知点A(-5,0),点B(3,0),△ABC的面积为 12,试确定点 C 的坐标特点.2、在平面直角坐标系中,点A的坐标为(11),,点B的坐标为(111),,点C到直线AB的距离为4,且△ABC是直角三角形,则满足条件的点C有个.3、在平面直角坐标系中,O是坐标原点,已知A点的坐标为(1,1),请你在坐标轴上找出点B,使△AOB为等腰三角形,则符合条件的点B共有()A.6个B.7个C.8个D.9个4、一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,–1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)5、在直角坐标系中,已知A(1,0)、B(-1,-2)、C(2,-2)三点坐标,若以A、B、C、D 为顶点的四边形是平行四边形,那么点D的坐标可以是.①(-2,0)②(0,-4)③(4,0)④(1,-4)考点11:考有规律的点的坐标1、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.y1A1A2A5A6A9A10O A3A4A7A8A11A12x(1)填写下列各点的坐标:A(,),A(,),A(,);4 8 12(2)写出点A的坐标(n是正整数);(3)指出蚂蚁从点A到点A的移动方向.100 1012、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是().A.(4,O) B.(5,0)C.(0,5) D.(5,5)3、如图,已知A(1,0)、A(1,1)、A(-1,1)、A(-1,-1)、A(2,-1)l23 4 5、….则点4nA的坐标为________.4、将辉三角中的每一个数都换成分数,得到一个如图4所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数是.112.那么(9,2)表示的分数5、如图,在平面直角坐标系中,按一定的规律将△OAB逐次变换成△OA B1 OA B等。