中考数学总复习训练7 一元二次方程
- 格式:doc
- 大小:153.00 KB
- 文档页数:6
2022年人教版数学中考复习专题练习一元二次方程 1.(2021·临沂) 方程562=-x x 的根是( )A .71=x ,82=xB .71=x ,82-=xC .71-=x ,82=xD .71-=x ,82-=x2.(2021·聊城) 关于x 的方程 42422=++k kx x 的一个解是﹣2,则k 值为( )A .2或4B .0或4C .﹣2或0D .﹣2或23.(2020·泰安) 将一元二次方程0582=--x x 化成()b a x =+2(a ,b 为常数)的形式,则a ,b 的值分别是( )A .-4,21B .-4,11C .4,21D .-8,694.(2020·聊城) 用配方法解一元二次方程01322=--x x ,配方正确的是( ).A .1617432=⎪⎭⎫ ⎝⎛-xB .21432=⎪⎭⎫ ⎝⎛-xC .413232=⎪⎭⎫ ⎝⎛-xD . 411232=⎪⎭⎫ ⎝⎛-x 5.(2021·济南)关于x 的一元二次方程02=-+a x x 的一个根是2,则另一个根是______.6.(2021·烟台) 已知关于x 的一元二次方程 02=++-n m mnx x ,其中m , n在数轴上的对应点如图所示,则这个方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定7.(2021·滨州) 下列一元二次方程中,无实数根的是( )A .0322=--x xB .0232=++x xC .0122=+-x xD . 0322=++x x8.(2020·潍坊)关于x 的一元二次方程2(3)10x k x k +-+-=根的情况,下列说法正确的是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定9.(2021·张家界) 对于实数a 、b 定义运算“☆”如下:a ☆b=ab 2-ab ,例如3☆2=3×22-3×2=6,则方程1☆x =2 的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根10.(2020·南京) 关于x 的方程()()221ρ=+-x x (ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根 11.(2021·邵阳) 在平面直角坐标系中,若直线 m x y +-= 不经过第一象限,则关于 x 的方程 012=++x mx 的实数根的个数为( )A .0个B .1个C .2个D .1或2个12.(2021·枣庄、泰安)已知关于x 的一元二次方程kx 2﹣(2k ﹣1)x +k ﹣2=0有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣B .k <C .k >﹣且k ≠0D .k <且k ≠013.(2021·菏泽)关于x 的方程(k ﹣1)2x 2+(2k +1)x +1=0有实数根,则k 的取值范围是( )A .k 且k ≠1B .k ≥且k ≠1C .kD .k ≥14.(2021·济宁)已知m ,n 是一元二次方程020212=-+x x 的两个实数根,则代数式n m m ++22的值等于( )A .2019B .2020C .2021D .202215.(2020·潍坊)若221m m +=,则2483m m +-的值是( )A. 4B. 3C. 2D. 116.(2021·成都) 若m ,n 是一元二次方程0122=-+x x 的两个实数根,则n m m 242++ 的值是 .17.(2021·宜宾) 若m 、n 是一元二次方程0932=-+x x 的两个根,则n m m ++42的值是( )A .4B .5C .6D .1218.(2021·泸县) 关于x 的一元二次方程0222=-++m m mx x 的两实数根1x ,2x ,满足 221=x x ,则()()222221++x x 的值是( ) A .8 B .16 C .8或32 D .16或4019.(2021·南充) 已知方程x 2-2021x + 1=0的两根分别为1x ,2x ,则2212021x x -的值为( ) A .1 B .-1 C .2021 D .-202120.(2021·日照)关于x 的方程x 2+bx +2a =0(a 、b 为实数且a ≠0),a 恰好是该方程的根,则a +b 的值为 .21.(2021·南通) 若m ,n 是一元二次方程0132=-+x x 的两个实数根,则1323-+m n m m 的值为 . 22.(2020·仙桃) 关于x 的方程()01222=-+--m m x m x 有两个实数根α,β,且α2 + β2 = 12,那么m 的值为( )A .-1B .-4C .-4或1D .-1或423.(2021· 绵阳) 关于x 的方程02=++c bx ax 有两个不相等的实根1x ,2x ,若122x x = ,则4b -9ac 的最大值是( )A .1B .2C .3D .224.(2021·潍坊)若菱形两条对角线的长度是方程x 2﹣6x +8=0的两根,则该菱形的边长为( )A .B .4C .25D .525.(2020·德州)菱形的一条对角线长为8,其边长是方程02092=+-x x 的一个根,则该菱形的周长为________.26.(2021·枣庄)若等腰三角形的一边长是 4 ,另两边的长是关于 x 的方程x 2﹣6x +n =0的两个根,则n 的值为 .27.(2021·西藏) 已知一元二次方程x 2﹣10x +24=0的两个根是菱形的两条对角线长,则这个菱形的面积为( )A .6B .10C .12D .2428.(2020·黔东南州) 若菱形ABCD 的一条对角线长为8 ,边 CD 的长是方程024102=+-x x 的一个根,则该菱形ABCD 的周长为( )A .16B .24C .16或24D .4829.(2020·菏泽)等腰三角形的一边长是 3 ,另两边的长是关于 x 的方程240x x k -+=的两个根,则 k 的值为( )A. 3B. 4C. 3或4D. 730.(2020·张家界) 已知等腰三角形的两边长分别是一元二次方程0862=+-x x 的两根,则该等腰三角形的底边长为( )A .2B .4C .8D .2或431.(2021·雅安) 若直角三角形的两边长分别是方程01272=+-x x 的两根,则该直角三角形的面积是( )A .6B .12C .12或273 D .6或 273参考答案1. C2.B3.A4.A5.-36.A7.D8.A9.D 10.C11. D 12.C 13.D 14.B 15.D 16. 17.C 18.C 19.20. -2 21.3 22.A 23.D 24.A 25.20 26.8或9 27.C28.B 29.C 30.A 31.D。
北京市朝阳区普通中学2019届初三中考数学复习一元二次方程的根与系数的关系专题复习练习题1.设α,β是一元二次方程x2+2x-1=0的两个实数根,则αβ的值是( ) A.2 B.1 C.-2 D.-12.若方程3x2-4x-4=0的两个实数根分别为x1,x2,则x1+x2=( )A.-4 B.3 C.-43D.433.下列一元二次方程两实数根和为-4的是( )A.x2+2x-4=0 B.x2-4x+4=0C.x2+4x+10=0 D.x2+4x-5=04. 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( )A.-3,2 B.3,-2 C.2,-3 D.2,35.已知一元二次方程x2-3x-1=0的两个根分别是x1,x2,则x12x2+x1x22的值为( ) A.-3 B.3 C.-6 D.66. 已知α,β是一元二次方程x2-5x-2=0的两个实数根,则α2+αβ+β2的值为( )A.-1 B.9 C.23 D.277. 已知一元二次方程的两根之和是3,两根之积是-2,则这个方程是( )A.x2+3x-2=0 B.x2+3x+2=0C.x2-3x-2=0 D.x2-3x+2=08. 已知m,n是关于x的一元二次方程x2-3x+a=0的两个解,若(m-1)(n-1)=-6,则a的值为( )A.-10 B.4 C.-4 D.109. 菱形ABCD的边长是5,两条对角线交于O点,且AO,BO的长分别是关于x的方程x2+(2m-1)x+m2+3=0的根,则m的值为( )A.-3 B.5 C.5或-3 D.-5或310. 如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么x1+x2=________,x1x2=________.11. 一元二次方程2x2+7x=8的两根之积为________.12. 设m,n分别为一元二次方程x2+2x-2 018=0的两个实数根,则m2+3m+n=________.13. 已知x1,x2是方程x2+6x+3=0的两实数根,则x2x1+x1x2的值为________.14. 已知方程x2+4x-2m=0的一个根α比另一个根β小4,则α=______,β=______,m=______.15. 关于x的一元二次方程x2+2x-2m+1=0的两实数根之积为负,则实数m的取值范围是________.16. 在解某个方程时,甲看错了一次项的系数,得出的两个根为-9,-1;乙看错了常数项,得出的两根(1) 求m的取值范围;(2) 当x12+x22=6x1x2时,求m的值.18. 关于x的方程kx2+(k+2)x+k4=0有两个不相等的实数根.(1) 求k的取值范围;(2) 是否存在实数k,使方程的两个实数根的倒数和等于0.若存在,求出k的值;若不存在,说明理由.19. 不解方程,求下列各方程的两根之和与两根之积.(1) x2+2x+1=0;(2) 3x2-2x-1=0;(3) 2x2+3=7x2+x;(4) 5x-5=6x2-4.20. 已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.(1) 求k的取值范围;(2) 若|x1+x2|=x1x2-1,求k的值.21. 已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1) 是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2) 求使(x1+1)(x2+1)为负整数的实数a的整数值.答案:1---9 DDDAA DCCA10. -a/b c/a11. -412. 201913. 1014. 10 -4 0 015. m>1/216. x 2-10x +9=017. 解:(1)∵原方程有两个实数根,∴Δ=(-2)2-4(m -1)≥0,整理得:4-4m +4≥0,解得:m≤2(2)∵x 1+x 2=2,x 1·x 2=m -1,x 12+x 22=6x 1x 2,∴(x 1+x 2)2-2x 1·x 2=6x 1·x 2,即4=8(m -1),解得:m=32.∵m =32<2,∴m 的值为3218. 解:(1)由题意可得Δ=(k +2)2-4k×k 4>0,∴4k +4>0,∴k >-1且k≠0 (2)∵1x 1+1x 2=0,∴x 1+x 2x 1x 2=0,∴x 1+x 2=0,∴-k +2k=0,∴k =-2,又∵k>-1且k≠0,∴不存在实数k 使两个实数根的倒数和等于019. 解:(1)x 1+x 2=-2,x 1·x 2=1(2)x 1+x 2=23,x 1·x 2=-13(3)x 1+x 2=-15,x 1·x 2=-35(4)x 1+x 2=56,x 1·x 2=1620. 解:(1)由Δ≥0得k≤12(2)当x 1+x 2≥0时,2(k -1)=k 2-1,∴k 1=k 2=1(舍去);当x 1+x 2<0时,2(k -1)=-(k 2-1),∴k 1=1(舍去),k 2=-3,∴k =-321. 解:(1)存在.理由如下:根据题意,得Δ=(2a)2-4a(a -6)=24a≥0,解得a≥0,∵a -6≠0,∴a ≠6.由根与系数的关系得x 1+x 2=-2a a -6,x 1x 2=a a -6.∵-x 1+x 1x 2=4+x 2.∴x 1+x 2+4=x 1x 2.即-2a a -6+4=a a -6,解得a =24.经检验,a =24是方程-2a a -6+4=a a -6的解.∴a=24 (2)∵原式=x 1+x 2+x 1x 2+1=-2a a -6+a a -6+1=66-a为负整数.∴6-a =-1,-2,-3,-6,解得a =7,8,9,122019-2020学年数学中考模拟试卷一、选择题1.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°2.如图,半径为3的扇形AOB ,∠AOB=120°,以AB 为边作矩形ABCD 交弧AB 于点E ,F ,且点E ,F 为弧AB 的四等分点,矩形ABCD 与弧AB 形成如图所示的三个阴影区域,其面积分别为1S ,2S ,3S ,则132S S S +-为( )(π取3)A .92-B .92C .152-D .272- 3.如图,已知矩形 AOBC 的三个顶点的坐标分别为 O(0,0),A(0,3), B(4,0),按以下步骤作图:①以点 O 为圆心,适当长度为半径作弧, 分别交 OC ,OB 于点 D ,E ;②分别以点 D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠BOC 内交于点 F ;③作射线 OF ,交边 BC 于点 G ,则点 G 的坐标为( )A .(4, 43 )B .( 43 ,4)C .( 53 ,4)D .(4, 53) 4.关于x 的一元二次方程240x x k -+=有两个根,则k 的取值范围是( )A.4k <-B.4k ≤-C.4k <D.4k ≤5.若点A (x 1,﹣3)、B (x 2,﹣2)、C (x 3,1)在反比例函数y =﹣的图象上,则x 1、x 2、x 3的大小关系是( )A. B. C. D.7.如图,在Rt △ABC 中,∠B=90°,AB=6,BC=8,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是( )A.10B.8C.6D.48.若一个多边形的外角和是其内角和的12,则这个多边形的边数为( ) A.2 B.4 C.6 D.89.计算|+|2|=( )A . 1B .1﹣C .﹣1D .310.一个不透明的布袋里装有2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A.15 B.25 C.35 D.1211.下列尺规作图中,能确定圆心的是( )①如图1,在圆上任取三个点A ,B ,C ,分别作弦AB ,BC 的垂直平分线,交点O 即为圆心②如图2,在圆上任取一点B ,以B 为圆心,小于直径长为半径画弧交圆于A ,C 两点连结AB ,BC ,作∠ABC 的平分线交圆于点D ,作弦BD 的垂直平分线交BD 于点O ,点O 即为圆心③如图3,在圆上截取弦AB =CD ,连结AB ,BC ,CD ,分别作∠ABC 与∠DCB 的平分线,交点O 即为圆心A .①②B .①③C .②④D .①②③12.在平面直角坐标系中,有A ()21,,B ()33,两点,现另取一点C ()1a , ,当a = ( )时,AC+BCA.2 B.53C.114D.3二、填空题13.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…按这样的规律进行下去,第2014个正方形的面积为_________。
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值. 【答案】0.【解析】【分析】 由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解.【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1,则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-. Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k≠1,则k =2,但使2216k k k -+-无意义. 综上,代数式2216k k k -+-的值为0 【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,2.已知关于x 的方程221(1)104x k x k -+++=有两个实数根. (1)求k 的取值范围;(2)若方程的两实数根分别为1x ,2x ,且221212615x x x x +=-,求k 的值.【答案】(1)32k ≥(2)4 【解析】试题分析: 根据方程的系数结合根的判别式即可得出230k ∆=-≥ ,解之即可得出结论. 根据韦达定理可得:212121114x x k x x k ,+=+⋅=+ ,结合221212615x x x x +=- 即可得出关于k 的一元二次方程,解之即可得出k 值,再由⑴的结论即可确定k 值.试题解析:因为方程有两个实数根,所以()22114112304k k k ⎛⎫⎡⎤∆=-+-⨯⨯+=-≥ ⎪⎣⎦⎝⎭, 解得32k ≥. 根据韦达定理,()221212111141 1.114k k x x k x x k +-++=-=+⋅==+, 因为221212615x x x x +=-,所以()212128150x x x x +-+=,将上式代入可得 ()2211811504k k ⎛⎫+-++= ⎪⎝⎭,整理得2280k k --= ,解得 1242k k ,==- ,又因为32k ≥,所以4k =.3.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A ,B 两个社区,B 社区居民人口数量不超过A 社区居民人口数量的2倍. (1)求A 社区居民人口至少有多少万人?(2)街道工作人员调查A ,B 两个社区居民对“社会主义核心价值观”知晓情况发现:A 社区有1.2万人知晓,B 社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A 社区的知晓人数平均月增长率为m %,B 社区的知晓人数第一个月增长了45m %,第二月在第一个月的基础上又增长了2m %,两个月后,街道居民的知晓率达到92%,求m 的值.【答案】(1)A 社区居民人口至少有2.5万人;(2)m 的值为50.【解析】【分析】(1)设A 社区居民人口有x 万人,根据“B 社区居民人口数量不超过A 社区居民人口数量的2倍”列出不等式求解即可;(2)A社区的知晓人数+B社区的知晓人数=7.5×92%,据此列出关于m的方程并解答.【详解】解:(1)设A社区居民人口有x万人,则B社区有(7.5-x)万人,依题意得:7.5-x≤2x,解得x≥2.5.即A社区居民人口至少有2.5万人;(2)依题意得:1.2(1+m%)2+1.5×(1+45m%)+1.5×(1+45m%)(1+2m%)=7.5×92%,解得m=50答:m的值为50.【点睛】本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程.4.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y (只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元?【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元【解析】【分析】表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题.【详解】设每天获得的利润为w元,根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x ﹣50)2+4000.∵a=﹣10<0,∴当x=50时,w取最大值,最大值为4000.答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元.【点睛】本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键.5.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x为何值时,活动区的面积达到21344m?【答案】当13x m =时,活动区的面积达到21344m【解析】【分析】根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.【详解】解:设绿化区宽为y ,则由题意得502302x y -=-.即10y x =-列方程: 50304(10)1344x x ⨯--=解得13x =- (舍),213x =.∴当13x m =时,活动区的面积达到21344m【点睛】本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.6.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?【答案】羊圈的边长AB ,BC 分别是20米、20米.【解析】试题分析:设AB 的长度为x 米,则BC 的长度为(100﹣4x )米;然后根据矩形的面积公式列出方程.试题解析:设AB 的长度为x 米,则BC 的长度为(100﹣4x )米. 根据题意得 (100﹣4x )x=400,解得 x 1=20,x 2=5. 则100﹣4x=20或100﹣4x=80. ∵80>25, ∴x 2=5舍去. 即AB=20,BC=20考点:一元二次方程的应用.7.为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?【答案】共有35名同学参加了研学游活动.【解析】试题分析:由该班实际共支付给旅行社3150元,可以判断出参加的人数在30人以上,等量关系为:(100﹣在30人基础上降低的人数×2)×参加人数=3150,得到相关解后根据人均活动费用不得低于80元作答即可.试题解析:∵100×30=3000<3150,∴该班参加研学游活动的学生数超过30人. 设九(1)班共有x 人去旅游,则人均费用为[100﹣2(x ﹣30)]元,由题意得: x[100﹣2(x ﹣30)]=3150,整理得x 2﹣80x+1575=0,解得x 1=35,x 2=45,当x=35时,人均旅游费用为100﹣2(35﹣30)=90>80,符合题意.当x=45时,人均旅游费用为100﹣2(45﹣30)=70<80,不符合题意,应舍去. 答:该班共有35名同学参加了研学旅游活动.考点:一元二次方程的应用.8.解方程:(x 2+x )2+(x 2+x )=6.【答案】x 1=﹣2,x 2=1【解析】【分析】设x 2+x =y ,将原方程变形整理为y 2+y ﹣6=0,求得y 的值,然后再解一元二次方程即可.【详解】解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,解得y 1=﹣3,y 2=2.①当y =2时,x 2+x =2,即x 2+x ﹣2=0,解得x 1=﹣2,x 2=1;②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x 1=﹣2,x 2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.9.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解: 22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+=22()(4)0m n n ∴-+-=,0,40m n n ∴-=-=,4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值.【答案】(1)2(2)6(3)7【解析】【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a 与b 的值,根据边长为正整数且三角形三边关系即可求出c 的长;(3)由a ﹣b =4,得到a =b +4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a ﹣b +c 的值.【详解】(1)∵x 2+2xy +2y 2+2y +1=0∴(x 2+2xy +y 2)+(y 2+2y +1)=0∴(x +y )2+(y +1)2=0∴x +y =0 y +1=0解得:x =1,y =﹣1∴x ﹣y =2;(2)∵a 2+b 2﹣6a ﹣8b +25=0∴(a 2﹣6a +9)+(b 2﹣8b +16)=0∴(a ﹣3)2+(b ﹣4)2=0∴a ﹣3=0,b ﹣4=0解得:a =3,b =4∵三角形两边之和>第三边∴c <a +b ,c <3+4,∴c <7.又∵c 是正整数,∴△ABC 的最大边c 的值为4,5,6,∴c 的最大值为6;(3)∵a ﹣b =4,即a =b +4,代入得:(b +4)b +c 2﹣6c +13=0,整理得:(b 2+4b +4)+(c 2﹣6c +9)=(b +2)2+(c ﹣3)2=0,∴b +2=0,且c ﹣3=0,即b =﹣2,c =3,a =2,则a ﹣b +c =2﹣(﹣2)+3=7.故答案为7.【点睛】本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.10.解方程:x 2-2x =2x +1.【答案】x 1=2,x 2=2【解析】试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据求根公式2b x a -=求解即可.试题解析:方程化为x 2-4x -1=0.∵b 2-4ac =(-4)2-4×1×(-1)=20,∴x=,∴x1=2,x 2=2。
2022届初三数学中考复习《二次函数与一元二次方程》专项复习练习题一、单选题1.已知二次函数22=-++的部分图象如图所示,则关于x的一元二次方程y x x m220-++=的解为()x x mA.-1 ,0B.-1,1C.1,3D.-1,32.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论:①abc<0;①3a+c=0;①当y>0时,x的取值范围是﹣1≤x<3;①方程ax2+bx+c﹣3=0有两个不相等的实数根;①点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.其中结论正确的个数是().A.1个B.2个C.3个D.4个3.二次函数y=3(x–2)2–5与y轴交点坐标为()A.(0,2)B.(0,–5)C.(0,7)D.(0,3)4.根据下列表格对应值:判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是()A.2.1<x <2.2B.2.2<x<2.3C.2.3<x<2.4D.2.4<x<2.55.如图是抛物线y =ax 2+bx+c (a≠0)图象的一部分,已知抛物线的对称轴是直线x =2,与x 轴的一个交点是(﹣1,0),那么抛物线与x 轴的另一个交点是( )A .(3,0)B .(4,0)C .(5,0)D .(6,0)6.已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( ) A .2a < B .1a >-C .12a -<≤D .12a -≤<二、填空题7.已知抛物线2y x bx c =++的部分图象如图所示,当3y <-时,x 的取值范围是______.8.已知二次函数2y ax bx c =++的部分图像如图所示,对称轴为直线1x =,则关于x 的方程23ax bx c ++=的解为__________.9.二次函数22(1)1y a x a =-+-的图象经过原点,则a 的值为______. 10.在平面直角坐标系中,抛物线212y x bx c =++与x 轴交于A 、B 两点,若2b +c =﹣2,b =﹣2﹣t ,且AB 的长为kt ,其中t >0,k 的值为___. 三、解答题11.随着地球上的水资源日益枯竭,各级政府越来越重视节约用水.某市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中 x 表示人均月生活用水的吨数,y 表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水的收费标准是:不超过 5 吨,每吨按 元收取; 超过 5 吨的部分,每吨按 元收取; (2)当 x >5 时,求 y 与 x 的函数关系式;(3)若某个家庭有 5 人,五月份的生活用水费共 76 元,则该家庭这个月用了多少吨生活用水?12.已知关于x 的方程:2244(3)x m x m --=(1)求证:无论m 取什么实数值,这个方程总有两个相异实根.(2)若这个方程的两个实数根1x 、2x 满足211x x -=,求m 的值及相应的1x 、2x .13.如图,抛物线y=ax 2+c 经过A (1,0),B (0,﹣2)两点.连结AB ,过点A 作AC①AB ,交抛物线于点C .(1)求该抛物线的解析式; (2)求点C 的坐标;(3)将抛物线沿着过A 点且垂直于x 轴的直线对折,再向上平移到某个位置后此抛物线与直线AB 只有一个交点,请直接写出此交点的坐标.14.已知二次函数2y x bx c =-++的图象如图所示,它与x 轴的一个交点坐标为()10-,,与y 轴的交点坐标为()03,.(1)求此二次函数的表达式及对称轴;(2)直接写出当函数值0y >时,自变量x 的取值范围. (3)直接写出当函数值3y >时,自变量x 的取值范围. 15.定义[],p q 为一次函数y =px +q 的特征数.(1)若特征数是[]2,1m +的一次函数为正比例函数,求m 的值;(2)已知抛物线y =(x +n )(x -2)与x 轴交于点A 、B ,其中n >0,点A 在点B 的左侧,与y 轴交于点C ,且①OAC 的面积为4,O 为原点,求图象过A 、C 两点的一次函数的特征数.参考答案:1.D 【解析】 【分析】先求出二次函数的对称轴,然后利用二次函数的对称性即可求出抛物线与x 轴的另一个交点坐标,最后根据二次函数与x 轴交点坐标与一元二次方程解的关系即可得出结论. 【详解】解:二次函数22y x x m =-++的对称轴为直线()2121x =-=⨯-由图象可知:二次函数22y x x m =-++的图象与x 轴的一个交点坐标为(3,0) ①二次函数22y x x m =-++的图象与x 轴的另一个交点坐标为(-1,0) ①关于x 的一元二次方程220x x m -++=的解为x 1=-1,x 2=3 故选D . 【点睛】此题考查的是求抛物线的对称轴、抛物线与x 轴的交点和求一元二次方程的解,掌握抛物线的对称轴公式和二次函数与x 轴交点坐标与一元二次方程解的关系是解决此题的关键. 2.D 【解析】 【分析】根据抛物线的开口,对称轴,特殊值x=-1可判断①①正确,根据图像可得,当y>0时,是x 轴上方的图像,可判断①错误,对方程230ax bx c ++-=进行变形,看成抛物线2y ax bx c =++与3y =的交点即可判断①正确,把点(﹣2,y 1),(2,y 2)描到图像上可判断出①正确. 【详解】抛物线的开口向下,a<0,对称轴为x=1,①12ba-=,①20b a =->,抛物线与y 轴交于(0,3),①c>0,①0abc <,故①正确;当x=-1时,0a b c -+=,①2b a =-代入得:3a +c=0,故①正确;根据图像可得,当y>0时,是x 轴上方的图像,抛物线过点(﹣1,0),对称轴为x=1,根据抛物线的对称性可得,抛物线过点(3,0),①13x ,故①错误;对方程230ax bx c ++-=进行变形得:23ax bx c ++=,可看成抛物线2y ax bx c =++与3y =的交点,由图像可得:抛物线2y ax bx c =++与3y =有两个交点,①方程ax 2+bx +c ﹣3=0有两个不相等的实数根,故①正确;把点(﹣2,y 1),(2,y 2)描到图像上可知,10y <,20y >,①y 1<0<y 2,故①正确, 故选:D . 【点睛】本题考查了二次函数的图像和性质,解决这类题需要掌握:a 看抛物线开口方向,b 往往看对称轴,c 看抛物线与y 轴的交点,24b ac -看抛物线与x 轴的交点,抛物线的对称性以及代入特殊点等. 3.C 【解析】 【分析】由题意使x=0,求出相应的y 的值即可求解. 【详解】①y=3(x ﹣2)2﹣5, ①当x=0时,y=7, ①二次函数y=3(x ﹣2)2﹣5与y 轴交点坐标为(0,7). 故选C. 【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式. 4.C 【解析】 【分析】由于x =2.3时,ax 2+bx +c =﹣0.01;x =2.4时,ax 2+bx +c =0.06,则在2.3和2.4之间有一个值能使ax 2+bx +c 的值为0,据此即可判断. 【详解】①x =2.3时,ax 2+bx +c =﹣0.01;x =2.4时,ax 2+bx +c =0.06, ①方程ax 2+bx +c =0的一个解的范围为2.3<x <2.4. 故选:C .【点睛】本题考查了估算一元二次方程的近似解,关键是观察表格,确定函数值由负到正时,对应的自变量取值范围. 5.C 【解析】 【分析】直接利用抛物线的对称性进而得出另一个交点坐标. 【详解】①抛物线的对称轴是直线x =2,与x 轴的一个交点是(﹣1,0), ①抛物线与x 轴的另一个交点是:(5,0). 故选C . 【点睛】此题主要考查了抛物线与x 轴的交点,正确利用抛物线的对称性分析是解题关键. 6.D 【解析】 【分析】由抛物线与x 轴没有公共点,可得∆<0,求得2a <,求出抛物线的对称轴为直线x a =,抛物线开口向上,再结合已知当1x <-时,y 随x 的增大而减小,可得1a ≥-,据此即可求得答案. 【详解】(1)(1)37y x a x a a =---+-+22236x ax a a =-+-+,抛物线与x 轴没有公共点,22(2)4(36)0a a a ∴∆=---+<,解得2a <,抛物线的对称轴为直线 22ax a -=-=,抛物线开口向上, 而当1x <-时,y 随x 的增大而减小,1a ∴≥-,∴实数a 的取值范围是12a -≤<,故选D . 【点睛】本题考查了二次函数图象与x 轴交点问题,抛物线的对称轴,二次函数图象的增减性,熟练掌握和灵活运用相关知识是解题的关键. 7.0<x <2 【解析】 【分析】根据函数图象和二次函数的性质,可以得到(0,-3)关于对称轴对称的点,再结合图像可得x 的范围. 【详解】 解:由图象可得,该抛物线的对称轴为直线x =1,与y 轴的交点为(0,-3), 故(0,-3)关于对称轴对称的点为(2,-3), 故当y <-3时,x 的取值范围是0<x <2, 故答案为:0<x <2. 【点睛】本题考查了二次函数的图像和性质,解题的关键是理解3y <-,结合函数的对称性得到结果. 8.10x =,22x =【解析】 【详解】根据二次函数图象可得:当x =0时,y =3,又因为二次函数关于直线x =1对称,所以当x =2时,y =3,所以关于x 的方程23ax bx c ++=的解为10x =,22x =,故答案为10x =,22x =. 9.-1 【解析】 【分析】根据题意将(0,0)代入二次函数22(1)1y a x a =-+-,即可得出a 的值,最后根据二次函数的定义进行求解即可. 【详解】解:①二次函数22(1)1y a x a =-+-的图象经过原点,①210a -=, ①1a =±, ①10a -≠ ①1a ≠ ①a 的值为-1. 故答案为:-1. 【点睛】本题考查二次函数图象上点的特征以及二次函数的定义,图象过原点,可得出当x =0时,y =0,从而分析求值. 10.2 【解析】 【分析】由题意得抛物线为y =12x 2+(﹣2﹣t )x +(2t +2),设抛物线212y x bx c =++与x 轴交于点A (x 1,0)、B (x 2,0),则x 1+x 2=4+2t ,x 1x 2=4t +4,由AB 的长为kt ,得出(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=k 2t 2,即(4+2t )2﹣4(4t +4)=k 2t 2,进而即可求得k 的值. 【详解】解:①2b +c =﹣2,b =﹣2﹣t , ①c =2t +2,①抛物线为y =12x 2+(﹣2﹣t )x +(2t +2), 设抛物线212y x bx c =++与x 轴交于点A (x 1,0)、B (x 2,0),则x 1+x 2=212t---=4+2t ,x 1x 2=2212t +=4t +4,①AB 的长为kt , ①|x 1﹣x 2|=kt ,①(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=k 2t 2,即(4+2t )2﹣4(4t +4)=k 2t 2, 整理得:4t 2=k 2t 2, ①k 2=4, ①kt >0,t >0,①k =2, 故答案为:2. 【点睛】本题考查了二次函数的性质,抛物线与x 轴的交点,交点坐标和系数的关系是解题的关键.11.(1)1.6; 2.4;(2) y = 125x ﹣4;(3) 该家庭这个月用了 40 吨生活用水. 【解析】 【分析】(1)分析图像可得答案;(2) 当x >5时设y =kx +b ,代入(5,8)、(10,20)可得一次函数解析式; (3)把 y =代入 y =x ﹣4 可得答案.【详解】(1)该市人均月生活用水的收费标准是:不超过 5 吨,每吨按 1.6 元收取; 超过 5 吨的部分,每吨按 2.4 元收取; 故答案为1.6;2.4; (2)当 x >5 时,设 y =kx +b ,代入(5,8)、(10,20)得,解得 k =,b =﹣4, ①y =x ﹣4;(3)把 y =代入 y =x ﹣4 得x ﹣4=, 解得 x =8,5×8=40(吨).答:该家庭这个月用了 40 吨生活用水. 【点睛】本题主要考查一次函数的应用,根据题意列出并解除一次方程是解题的关键.12.(1)证明见解析(2)①1x =2x =②1x =212x =【解析】【详解】试题分析:(1)求出b 2-4ac>0,即可判断方程总有两个实数根;(2)根据根与系数的关系求得123x x m +=-,21204m x x ⋅=-≤,即可得1x 、2x 异号或有1个为0.再根据211x x -=,分①10x ≥,20x <和②10x ≤,2>0x 两种情况求m 的值及相应的1x 、2x . 试题解析:(1)()2216316m m ∆=-+23296144m m =-+ 2332722m ⎛⎫=-+ ⎪⎝⎭ 72≥.①无论m 取何值,方程有两个异根.(2)()224430x m x m ---=.∵4a =,124b m =-,2c m =-.∵123x x m +=-,21204m x x ⋅=-≤, ∵1x 、2x 异号或有1个为0.211x x -=,①10x ≥,20x <,211x x --=即121x x +=-,31m -=-,∵2m =.24440x x +-=.1x =,2x =. ②10x ≤,2>0x .211x x +=,4m =.244160x x --=.240x x --=.1x =2x =. 13.(1)y=2x 2﹣2;(2)(﹣,);(3)(,3).【解析】【详解】试题分析:(1)因为抛物线y=ax 2+c 经过A (1,0),B (0,﹣2)两点,则有:解得:,所求的抛物线的解析式是:y=2x 2﹣2;(2)①AC①AB ,又根据题意可知:OA①BD ,①Rt①AOD①Rt①BOA ,①,①OD=,又根据A (1,0),B (0,﹣2),则有:AO=1,BO=2,①OD=,①D (0,),设直线AC 的解析式是y=kx+b ,则有,解得:,①所求的解析式是:y=﹣x+,由直线AC 与抛物线y=2x 2﹣2相交,则有:﹣x+=2x 2﹣2,解得:x 1=﹣,x 2=1,当x=﹣时,y=﹣×(﹣)+=,①点C 的坐标是(﹣,);(3)抛物线沿着过A 点且垂直于x 轴的直线对折后与x 轴的交点坐标为(1,0)和(3,0),此时抛物线解析式为y=2(x ﹣2)2﹣2,向上平移此时解析式为y=2(x ﹣2)2+k ,直线AB 的解析式为y=2x ﹣2,则2(x ﹣2)2+k=2x ﹣2,①=100﹣80﹣8k=0,解得k=,即2(x ﹣2)2+=2x ﹣2,解得x=,所求交点的坐标是(,3).考点:二次函数综合题.14.(1)2y x 2x 3=-++,x=1;(2)−1<x <3;(3)0<x <2.【解析】【分析】(1)将(−1,0)和(0,3)两点代入二次函数2y x bx c =-++,求得b 和c ;从而得出抛物线的解析式,进而得出对称轴;(2)令y =0,解得1x ,2x ,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y >0时,自变量x 的取值范围.(3)令y =3,解得1x ,2x ,结合图像即可分析出当函数值3y >时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过(−1,0)和(0,3)两点,得1+03b c c --=⎧⎨=⎩ , 解这个方程组,得23b c =⎧⎨=⎩, 抛物线的解析式为2y x 2x 3=-++, 对称轴()21221b x a =-=-=⨯- . (2)令y =0,得2x -+2x +3=0.解这个方程,得1x =3,2x =−1.①此二次函数的图象与x 轴的另一个交点的坐标为(3,0).当−1<x <3时,y >0.(3)令y =3,得2x -+2x +3=3,解这个方程得:1x =0,2x =2.①由图像可知,当0<x <2时,y >3.【点睛】本题考查了二次函数与x 轴的交点问题以及用待定系数法求二次函数的解析式,解题的关键是正确求出抛物线的解析式,此题难度不大.15.(1)m =-1;(2)[]24-,-【解析】【分析】(1)根据正比例函数的一般形式y=kx (k≠0),则m+1=0,进而求出即可;(2)根据题意得出n 的值,进而得出直线AC 的解析式,进而得出图象过A 、C 两点的一次函数的特征数.【详解】解:(1)①特征数是[2,m+1]的一次函数为正比例函数,①m+1=0,解得:m =-1;(2)由题意得点A 的坐标为(-n ,0),点C 的坐标为(0,-2n).①①OAC 的面积为4, ①1242n n ⨯⨯=, ①n =2,① 点A 的坐标为(-2,0),点C 的坐标为(0,-4).设直线AC 的解析式为 y =kx +b.①204k b b -+=⎧⎨=-⎩, ①24k b =-⎧⎨=-⎩, ① 直线AC 的解析式为:y =-2x -4;① 图象过A 、C 两点的一次函数的特征数为[]24-,-.【点睛】此题主要考查了待定系数法求一次函数解析式以及新定义,根据题意得出直线AC 的解析式是解题关键.。
2023年中考数学一轮复习专题讲义与练习一元二次方程根的判别式和根与系数的关系[课标要求]1. 理解一元二次方程的根的判别式2. 会根据根的判别式判断数字系数的一元二次方程根的情况.3. 会根据字母系数的一元二次方程根的情况,确定字母的取值范围.4. 一元二次方程根与系数的关系的简单运用.[要点梳理]1. 一元二次方程的ax 2+bx +c =0(a≠0)的根的判别式是△=______2. 一元二次方程的ax 2+bx +c =0(a≠0)的根与系数的关系______[规律总结]1、 判别含字母系数的一元二次方程的一般步骤①把方程化为一般形式,写出根的判别式;②确定判别式的符号;③根据判别式的符号,得出结论.2. 应用根的判别式时应注意二次项系数不为03. 注意结论的正逆两个方面的应用[强化训练]一、选择题1. 关于x 的一元二次方程2(2)10x m x m +-++=有两个相等的实数根,则m 的值是( )A .0B .8C .42±D .0或82. 一元二次方程x 2+6x +10=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根3. 已知2x 2–x –1=0的两根为x 1. x 2,则x 1+x 2为( )A .1B .–1C .12D .12- 4. 如果关于x 的一元二次方程01122=++-x k kx 有两个不相等的实数根,那么k 的取值范围是( )A .k <21B .k <21且k≠0C .-21≤k <21D .-21≤k <21且k≠0 5. 已知函数2y ax bx c =++的图象如图所示,那么关于x 的方程220ax bx c +++=的根的情况是( )A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根6. 使一元二次方程x 2+7x +c =0有实根的最大整数c 是( ) A .8 B .10 C .12 D .137. 已知三角形的两边长分别是3和6,第三边长是方程x 2-6x +8=0的根,则这个三角形周长是( )A .13B .11C .11或13D .12或158. 已知关于x 的方程(x +1)2+(x -b )2=2有唯一的实数解,且反比例函数x b y +=1的图象在每个象限内y 随x 的增大而增大,那么反比例函数的关系式为( )A .x y 3-= B .x y 1= C .x y 2= D .x y 2-= 二、填空题9. 若一元二次方程x 2+2x +m =0无实数解,则m 的取值范围是_____。
全程考点训练7 一元二次方程
一、选择题
1.一元二次方程x(x-1)=0的解是(C)
A.x=0 B.x=1
C.x=0或x=1 D.x=0或x=-1
【解析】 x(x-1)=0,x=0或x-1=0,即x=0或x=1.
2.用配方法解一元二次方程x2-4x=5的过程中,配方正确的是(D)
A.(x+2)2=1 B.(x-2)2=1
C.(x+2)2=9 D.(x-2)2=9
【解析】 由配方法得x2-4x+4=5+4,(x-2)2=9.
3.已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为(A)
A.1 B.-1
C.0 D.一2
【解析】 ∵关于x的一元二次方程x2+ax+b=0有一个非零根-b,∴b2-ab+b
=0.
∵-b≠0, ∴b≠0,方程两边同时除以b,得b-a+1=0,∴a-b=1.
4.关于x的方程(k-1)x2-1-kx+14=0有两个实数根,则k的取值范围是(D)
A.k≥1 B.k≤1
C.k>1 D.k<1
【解析】 ∵方程(k-1)x2-1-kx+14=0有两个实数根,∴k-1≠0且1-k≥0,
(-1-k)2-4(k-1)×14≥0,∴k≠1且k≤1,∴k<1.
5.已知三角形的两边长分别为2和4,第三边长是方程x2-4x+3=0的解,则这
个三角形的周长为(C)
A.7 B.8
C.9 D.7或9
【解析】 解方程x2-4x+3=0,得x1=1,x2=3.
∵三角形的第三边a的范围是2∴x=3,∴三角形的周长=2+4+3=9.
(第6题)
6.如图,小李要在一幅长90 cm、宽40 cm的风景画四周外围镶上一条宽度相同的
金色纸边,制成一幅挂图,使风景画的面积是整幅挂图面积的54%.若设金色纸边的宽
度是x(cm),根据题意所列的方程是(B)
A.(90+x)(40+x)×54%=90×40
B.(90+2x)(40+2x)×54%=90×40
C.(90+x)(40+2x)×54%=90×40
D.(90+2x)(40+x)×54%=90×40
【解析】 镶边后的长为(90+2x)cm,宽为(40+2x)cm,故方程为(90+2x)(40+
2x)×54%=90×40.
7.若用“i”表示虚数单位,且规定i2=-1,并用a+bi(a,b都是实数,且b≠0)表
示一个任意的虚数.我们把实数和虚数统称为复数,那么,在实数范围内无解的一元二
次方程,在复数范围内就有解了.例如,方程x2-2x+2=0在复数范围内用公式法(用
i2替换-1)解得其解为x1=1+i,x2=1-i,那么方程2x2+x+1=0在复数范围内的解为
(B)
A.x1=-1+7i2,x2=-1-7i2
B.x1=-1+7i4,x2=-1-7i4
C.x1=-1+7i2,x2=-1-7i2
D.x2=-1+7i4,x2=-1-7i4
【解析】 x=-1±1-84=-1±-74=-1±7i4,∴x1=-1+7i4,x2=-1-7i4.
二、填空题
8.方程(x-1)2=4的解是x1=3,x2=-1.
【解析】 利用直接开平方法,可得x-1=±2,
∴x1=3,x2=-1.
9.方程x2-4x=0的解是x1=0,x2=4.
【解析】 ∵x(x-4)=0,
∴x1=0,x2=4.
10.方程x2-2x-1=0的两个实数根中较大的是x=1+2.
【解析】 ∵a=1,b=-2,c=-1,b2-4ac=8,
∴x=-(-2)±82×1,即x=1±2.
∴其中较大的根是x=1+2.
11.为解决群众看病贵的问题,有关部门决定降低药价,某种原价为289元的药品
连续两次降价后,售价变为256元.设平均每次降价的百分率为x,则可列方程:289(1
-x)2=256.
12.设x1,x2是方程x2-x-2013=0的两个实数根,则x13+2014x2-2013=_2014.
【解析】 由题意,得x1+x2=1,x12-x1-2013=0,
∴x12=x1+2013,
∴x13+2014x2-2013=x1(x1+2013)+2014x2-2013=x12+2013x1+2014x2-2013=
x1+2013+2013x1+2014x2-2013=2014(x1+x2)=2014.
13.小李发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实
数:a2+b-1.例如,把实数对(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对
(m,-2m)放入其中,得到实数2,则m=3或-1.
【解析】 m2-2m-1=2,m2-2m-3=0,(m+1)(m-3)=0,∴m1=-1,m2=
3.
14.定义新运算“*”:a*b=a(a≥b),b(a
=0的两根为x1,x2,则x1*x2=-1+52.
【解析】 x2+x-1=0的根x1=-1+52,x2=-1-52,∴x1*x2=-1+52.
三、解答题
15.解方程:
(1)(2x-1)2=(x-2)2.
【解析】 2x-1=±(x-2),
∴x1=1,x2=-1.
(2)3(2x+1)2=2(2x+1).
【解析】 3(2x+1)2-2(2x+1)=0,
(2x+1)[]3(2x+1)-2=0,
(2x+1)(6x+1)=0,
∴x1=-12,x2=-16.
(3)(x-2)(x-3)=1.
【解析】 x2-5x+6=1,x2-5x+5=0,
b2-4ac=(-5)2-4×1×5=5,
∴x=5±52,∴x1=5+52,x2=5-52.
16.当x满足条件x+1<3x-3,12(x-4)<13(x-4)时,求方程x2-2x-4=0的根.
【解析】 由x+1<3x-3,12(x-4)<13(x-4),得x>2,x<4,则2<x<4.
解方程x2-2x-4=0,得x1=1+5,x2=1-5.
∵2<5<3,
∴3<1+5<4,-2<1-5<-1(不合题意,舍去),
∴x=1+5.
17.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商
场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售
出2件.设每件商品降价x元.据此规律,请回答:
(1)商场日销售量增加________件,每件商品盈利________元(用含x的代数式表示).
(2)在上述条件不变、销售正常的情况下,每件商品降价多少元时,商场日盈利可达
到2100元?
【解析】 (1)2x,50-x.
(2)(50-x)(30+2x)=2100,化简,得x2-35x+300=0,解得x1=15,x2=20.
∵该商场为了尽快减少库存,∴x=15不合题意,舍去.∴x=20.
答:每件商品降价20元时,商场日盈利可达到2100元.
18.x4-6x2+5=0是一个一元四次方程,根据该方程的特点,它的通常解法是:
设x2=y,那么x4=y2,于是原方程变为y2-6y+5=0①,解这个方程,得y1=1,y2=
5.当y=1时,x2=1,x=±1;当y=5时,x2=5,x=±5,所以原方程有四个根,即
x1=1,x2=-1,x3=5,x4=-5.
(1)在由原方程得到方程①的过程中,利用________法达到降次的目的,体现了
________的数学思想.
(2)解方程:(x2-x)2-4(x2-x)-12=0.
【解析】 (1)换元,转化.
(2)设x2-x=y,则y2-4y-12=0,y1=-2,y2=6.
当y=-2时,无解;
当y=6时,x2-x=6,∴x1=-2,x2=3.
19.如图,要在一块长52 m、宽48 m的矩形绿地上修建同样宽的两条互相垂直的
甬道.下面分别是小亮和小颖的设计方案.求:
(第19题)
(1)小亮设计方案中甬道的宽度x.
(2)小颖设计方案中四块绿地的总面积(提示:小颖设计方案中的x与小亮设计方案
中x的取值相同).
【解析】 (1)根据小亮的设计方案列方程,得
(52-x)(48-x)=2300,
解得x=2或x=98(舍去).
∴小亮设计方案中甬道的宽度为2 m.
(2)过点A作AI⊥CD,过点H作HJ⊥EF,垂足分别为I,J.
∵AB∥CD,∠1=60°,∴∠ADI=60°.
∵BC∥AD,∴四边形ADCB为平行四边形,
∴BC=AD.
由(1)得x=2,∴BC=HE=2=AD.
在Rt△ADI中,AI=2sin 60°= 3(m).
∴小颖设计的方案中四块绿地的总面积为52×48-52×2-48×2+(3)2=
2299(m2).