八年级数学一元二次方程同步练习
- 格式:doc
- 大小:20.50 KB
- 文档页数:5
【必刷题】2024八年级数学上册一元二次方程解法专项专题训练(含答案)试题部分一、选择题:1. 已知方程x^2 5x + 6 = 0,下列哪个选项是它的一个解?A. x = 2B. x = 3C. x = 4D. x = 52. 方程2x^2 4x + 1 = 0的解为:A. x = 1B. x = 1/2C. x = 1/2D. x = 13. 下列哪个方程是一元二次方程?A. x^2 + 3x 2 = 0B. 2x + 5 = 0C. 3x^3 2x^2 + x 1 = 0D. x^2 + y^2 = 14. 一元二次方程x^2 3x + 1 = 0的解为:A. x = 1,x = 2B. x = 1,x = 1C. x = 2,x = 2D. x = 3,x = 35. 方程x^2 4x + 4 = 0的解是:A. x = 2B. x = 2C. x = 0D. x = 2(重根)6. 已知方程x^2 (2a+1)x + a^2 = 0,若a为正数,则方程的解为:A. x = a,x = 1B. x = a,x = aC. x = a+1,x = a1D. x = 2a,x = 2a7. 方程x^2 5x + 6 = 0的解中,较大的是:A. 2B. 3C. 4D. 58. 若方程x^2 (2k+1)x + k^2 = 0有两个不相等的实数根,则k 的取值范围是:A. k > 0B. k < 0C. k ≠ 0D. k = 09. 方程x^2 2x 3 = 0的解为:A. x = 3,x = 1B. x = 3,x = 1C. x = 3,x = 1D. x = 3,x = 110. 方程x^2 6x + 9 = 0的解是:A. x = 3B. x = 3C. x = 0D. x = 3(重根)二、判断题:1. 一元二次方程的解一定是两个实数根。
2. 方程x^2 2x + 1 = 0的解为x = 1。
浙教版数学八年级下册2.1《一元二次方程》精选练习一、选择题1.下列方程中,不是一元二次方程的是( )A.2x 2+7=0 B.2x 2+2x+1=0 C.5x 2+x1+4=0 D.3x 2+(1+x)2+1=02.若关于x 的方程a(x -1)2=2x 2-2是一元二次方程,则a 的值是( )A.2B.-2C.0D.不等于23.若方程(a-3)x 2+a +1x-2=0是关于x 的一元二次方程,则a 取值范围是( )A.a ≥-1B.a ≠3C.a >3D.a ≥-1且a ≠34.已知方程(m-2)x |m|+mx-8=0是关于x 的一元二次方程,则( )A.m=±2B.m=2C.m=-2D.m ≠±25.一元二次方程7x 2-2x=0的二次项、一次项、常数项依次是( )A.7x 2,2x ,0B.7x 2,-2x ,无常数项C.7x 2,0,2xD.7x 2,-2x ,06.方程x 2-2(3x -2)+(x+1)=0的一般形式是( )A.x 2-5x+5=0B.x 2+5x+5=0C.x 2+5x -5=0D.x 2+5=07.若关于x 的方程(ax+b )(d -cx)=m(ac ≠0)的二次项系数是ac ,则常数项为( )A.mB.-bdC.bd -mD.-(bd -m)8.关于x 的方程mx(x-1)=nx(x +1)+2化成一般形式后为x 2-x-2=0,则m ,n 的值依次是( )A.1,0B.0,1C.-1,0D.0,-19.已知一元二次方程x 2-4=0,则下列关于该一元二次方程的说法正确的是( )A.不是一般形式B.没有一次项系数C.常数项是4D.二次项系数是110.关于x 2=-2的说法,正确的是( )A.由于x 2≥0,故x 2不可能等于-2,因此这不是一个方程 B.x 2=-2是一个方程,但它没有一次项,因此不是一元二次方程 C.x 2=-2是一个一元二次方程 D.x 2=-2是一个一元二次方程,但不能解11.若x=1是方程ax 2+bx+c=0的解,则( )A.a+b+c=1B.a -b+c=0C.a+b+c=0D.a -b -c=012.已知a ,b ,c 满足a-b +c=0,4a-2b +c=0,则关于x 的一元二次方程ax 2+bx +c=0的解的情况为( ) A.x 1=1,x 2=2 B.x 1=-1,x 2=-2C.方程的解与a ,b 的取值有关D.方程的解与a ,b ,c 的取值有关二、填空题13.如果方程ax 2+5=(x+2)(x -1)是关于x 的一元二次方程,则a_________.14.关于x 的方程mx 2-3x +2=x 2-mx 是一元二次方程,则m 的取值范围是_________.15.方程2x 2=-8化成一般形式后,一次项系数为________,常数项为_______.16.方程5(x2-2x+1)=-32x+2的一般形式是________,其二次项是________,一次项是__________,常数项是__________.17.若x=1是关于x的一元二次方程x2+3mx+n=0的解,则6m+2n=______.18.若a+b+c=0且a≠0,则一元二次方程ax2+bx+c=0必有一个定根,它是_______.三、解答题19.已知一个一元二次方程的二次项的系数为1,它的两个根是33和-23,求这个一元二次方程.20.已知关于x的方程(m2-9)x2+(m+3)x-5=0.(1)当m为何值时,此方程是一元一次方程?并求出此时方程的解;(2)当m为何值时,此方程是一元二次方程?并写出这个方程的二次项系数,一次项系数及常数项.21.把下列方程先化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数和常数项.(1)2x(2x+1)=x+3; (2)(7x-1)2=6;22.有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,一个学童教他沿着门的两个对角斜着拿竹竿,这个醉汉一试,不多不少刚好进去了,你知道竹竿有多长吗?设竹竿长为x尺,请根据这一问题列出方程并化简方程,不必求解.23.现有长40米,宽30米场地,欲在中央建一游泳池,周围是等宽的便道及休息区,且游泳池与周围部分面积之比为3∶2,请给出这块场地建设的设计方案,并用图形及相关尺寸表示出来.参考答案1.答案为:C2.答案为:A3.答案为:D4.答案为:C5.答案为:D6.答案为:A7.答案为:D8.答案为:A9.答案为:D 10.答案为:C 11.答案为:C 12.答案为:B 13.答案为:≠1 14.答案为:m ≠1 15.答案为:0 816.答案为:5x 2-22x+3=0 5x 2-22x 317.答案为:-2 18.答案为:1;19.解:设这个一元一次方程为x 2+bx +c=0,将x 1=33和x 2=-23分别代入,解方程组得b=-3,c=-18,所以这个一元二次方程是x 2-3x-18=0.20.解:(1)当m=3时,此方程是一元一次方程,其解为x=56;(2)当m ≠±3时,此方程为一元二次方程,其二次项系数,一次项系数及常数项分别为m 2-9,m +3,-521.解:(1)一般形式:2x 2+(2-1)x-3=0,二次项系数,一次项系数和常数项分别是2,2-1,-3(2)一般形式:49x 2-14x-5=0,二次项系数,一次项系数和常数项分别是49,-14,-522.解:设竹竿长为x 尺,根据题意,得(x-4)2+(x-2)2=x 2,化简得x 2-12x +20=0 23.解:设计方案:即求出满足条件的便道及休息区的宽度.若设便道及休息区宽度为x 米,则游泳池面积为(40-2x)(30-2x)米2,便道及休息区面积为2[40x+(30-2x)x ]米2,依题意,可得方程: (40-2x)(30-2x)∶2[40x+(30-2x)x ]=3∶2 由此可求得x 的值,即可得游泳池长与宽.。
第2章一元二次方程2.1一元二次方程基础过关全练知识点1一元二次方程的相关概念1.(2022浙江诸暨浣纱中学月考)下列方程是一元二次方程的是()A.x2-y=1B.x2+2x-3=0C.x2+1=3 D.x-5y=6x2.已知关于x的方程x2+kx-10=0的一个根是2,则k=.3.若方程(a-2)x2-3ax=5是关于x的一元二次方程,则a的取值范围是.知识点2一元二次方程的一般形式4.下列方程是一元二次方程的一般形式的是()A.2x2-3x=0B.x2=1C.2x2-3x=-1D.2x2=-3x5.【新独家原创】四位同学一起做游戏,分别出一个一元二次方程,甲:x2-2x+3=0,乙:x2-2x=3,丙:3(x2-2x+1)=3,丁:3x2-x=3,当这四个方程化为一般形式时,常数项为0的赢,则这次游戏谁赢了()A.甲B.乙C.丙D.丁6.关于x的一元二次方程(m-2)x2+5x+m2-4=0的常数项为0,则m等于() A.2 B.-2 C.2或-2 D.07.将方程5x2+1=4x化成ax2+bx+c=0的形式,则a,b,c的值分别为.知识点3列一元二次方程8.某班学生毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1 260张,如果全班有x名同学,根据题意,列出方程为() A.x(x+1)=1 260 B.2x(x+1)=1 260C.x(x-1)=1 260D.x(x-1)=1 260×29.【教材变式·P26合作学习(1)变式】把面积为16 m2的大长方形铁皮割成如图所示的正方形和长方形两个部分,已知长方形的一边长为 6 m,求其邻边长(只需列出方程).10.根据下列问题列一元二次方程,并将方程化为一般形式.(1)三个连续奇数的平方和是251,求这三个数;(2)一个长方形花坛,长20 m,宽8 m,在它的四周有等宽的鹅卵石路,形成一个大长方形,其面积是花坛面积的1.8倍,求路的宽度;(3)用一根长30 cm的铁丝折成一个斜边长13 cm的直角三角形,求这个三角形的直角边长.能力提升全练11.(2022浙江温州外国语学校期中,6,)关于x的一元二次方程(m-3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为()A.0B.±3C.3D.-312.若关于x的一元二次方程ax2+bx+c=0(a≠0)的一个根为x=-1,则下列等式成立的是() A.a+b+c=0 B.a-b+c=0C.-a-b+c=0D.-a+b+c=013.若(1-m)x m2+1+3mx-2=0是关于x的一元二次方程,则该方程的一次项系数是() A.-1 B.±1 C.-3 D.±314.方程5x2-1=4x化成一般形式后,二次项系数为正,其中一次项系数,常数项分别是()A.4,-1B.4,1C.-4,-1D.-4,115.已知x1=1,x2=-3是一元二次方程ax2+bx-3=0(a≠0)的两个根,求a,b 的值.16.已知关于x的方程(k-2)x2-kx=x2-1.(1)当k为何值时,方程为一元二次方程?(2)当k为何值时,方程为一元一次方程?17.有一个三角形,面积为30 cm2,其中一边比这边上的高的4倍少1 cm,若设这边上的高为x cm,请你列出关于x的方程,并判断它是什么方程,若是一元二次方程,把它化为一般形式,并指出二次项系数、一次项系数和常数项.素养探究全练18.【代数推理】【运算能力】已知实数a是一元二次方程x2-2 022x+1=0的值.的解,求代数式a2-2 021a-a2+12 022答案全解全析基础过关全练1.B x2-y=1中含有2个未知数,不是一元二次方程,所以A不符合题意;x2+2x-3=0符合一元二次方程的定义,是一元二次方程,所以B符合题意;x2+1x =3中1x不是整式,不是一元二次方程,所以C不符合题意;x-5y=6中含有2个未知数,不是一元二次方程,所以D不符合题意.故选B.2.3解析因为关于x的方程x2+kx-10=0的一个根是2,所以22+2k-10=0,解得k=3.3.a≠2解析因为方程(a-2)x2-3ax=5是关于x的一元二次方程,所以a-2≠0,解得a≠2.4.A形如ax2+bx+c=0(a,b,c是常数,且a≠0)是一元二次方程的一般形式.只有A符合题意,故选A.5.C x2-2x+3=0的常数项为3,所以甲输了;x2-2x=3化为一般形式为x2-2x-3=0,常数项为-3,所以乙输了;3(x2-2x+1)=3化为一般形式为x2-2x=0,常数项为0,所以丙赢了;3x2-x=3化为一般形式为3x2-x-3=0,常数项为-3,所以丁输了.故选C.6.B因为常数项为0,所以m2-4=0,解得m=2或-2,当m=2时,方程(m-2)x2+5x+m2-4=0变为5x=0,不是一元二次方程,所以m=2要舍去,故m=-2.7.5,-4,1解析5x2+1=4x移项,得5x2-4x+1=0,所以将方程5x2+1=4x化成ax2+bx+c=0的形式,则a,b,c的值分别为5,-4,1.8.C全班有x名同学,根据“都将自己的照片向本班其他同学送一张留念”可知全班一共送了x(x-1)张照片,又全班一共送了1 260张照片,所以x(x-1)=1 260.9.解析设其邻边长为x m,则可列方程为x(x+6)=16.10.解析(1)设中间的奇数为x,则(x-2)2+x2+(x+2)2=251,化为一般形式:3x2-243=0.(2)设路的宽度为x m,则(20+2x)(8+2x)=1.8×20×8,化为一般形式:4x2+56x-128=0.(3)设一条直角边长为x cm,则另一条直角边长为(17-x)cm,则x2+(17-x)2=132,化为一般形式:2x2-34x+120=0.能力提升全练11.D将(m-3)x2+m2x=9x+5整理得(m-3)x2+(m2-9)x-5=0,由题意得m-3≠0,m2-9=0,解得m=-3,故选D.12.B把x=-1代入方程ax2+bx+c=0得a-b+c=0.13.C由题意得1-m≠0且m2+1=2,解得m=-1.∴该方程的一次项系数为3m=-3.14.C5x2-1=4x化成一般形式是5x2-4x-1=0,它的一次项系数是-4,常数项是-1.故选C.15.解析 把x 1=1,x 2=-3分别代入一元二次方程ax 2+bx -3=0(a ≠0),得{a +b −3=0,9a −3b −3=0,解得{a =1,b =2.16.解析 原方程可化为(k -3)x 2-kx +1=0.(1)当k -3≠0,即k ≠3时,方程(k -2)x 2-kx =x 2-1是一元二次方程.(2)当k -3=0,-k ≠0,即k =3时,方程(k -2)x 2-kx =x 2-1是一元一次方程.17.解析 根据题意可得关于x 的方程为12x (4x -1)=30,它是一元二次方程,整理为一般形式为2x 2-12x -30=0,二次项系数为2,一次项系数为-12,常数项为-30.素养探究全练18.解析 因为实数a 是一元二次方程x 2-2 022x +1=0的解,所以a 2- 2 022a +1=0,所以a 2-2 022a =-1,a 2+1=2 022a , 所以原式=a 2-2 021a -2 022a 2 022=a 2-2 022a =-1.。
浙教版八年级下 2.4一元二次方程根与系数的关系同步练习一.选择题1.(2021•三水区一模)方程x2﹣6x+5=0的两个根之和为()A.﹣6 B.6 C.﹣5 D.52.(2021秋•硚口区校级月考)设x1、x2是一元二次方程x2+2x﹣1=0的两个实数根,则x1•x2=()A.2 B.1 C.﹣2 D.﹣13.(2021秋•江油市月考)一元二次方程x2+px﹣2=0的一个根为2,则p的值以及另一个根为()A.1,﹣1 B.1,1 C.﹣1,﹣1 D.﹣1,14.(2020•遵义)已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为()A.5 B.10 C.11 D.135.(2021春•乐清市期末)已知关于x的方程x2﹣7x+6a=0的一个解是x1=2a,则原方程的另一个解是()A.x2=0或7 B.x2=3或4 C.x2=3或7 D.x2=4或76.(2021秋•黔西南州期末)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.且x1,x2满足x12+x22﹣x1x2=16,则a的值为()A.﹣6 B.﹣1 C.1或﹣6 D.6或﹣17.(2021•济宁)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n的值等于()A.2019 B.2020 C.2021 D.20228.(2021秋•霞浦县期中)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根9.(2021秋•安州区期末)若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是()A.3 B.15 C.﹣3 D.﹣1510.(2020秋•六盘水期末)已知关于x的一元二次方程x2﹣mx+1=0的两根之差为2,则m等于()A.1或﹣1 B.2或﹣2 C.或﹣D.2或﹣2二.填空题11.(2021秋•滨湖区期中)已知x1、x2是一元二次方程2x2﹣4x﹣5=0的两个根,则x1+x2=,x1•x2=.12.(2021秋•十堰期末)若x1,x2是一元二次方程x2﹣3x+1=0的两个根,则x1+x2﹣x1•x2=.13.(2021秋•新都区期末)若关于x的方程x2﹣3x+n=0的一个根是﹣1,则另一个根是.14.(2021•孝南区二模)已知a,b是方程x2+3x﹣1=0的两根,则a2b+ab2的值是.15.(2020春•文登区期中)已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根x1和x2,且x12﹣2x1+2x2=x1x2,则k的值是.16.(2021春•拱墅区期末)在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=1,x2=2;小刚看错了常数项c,得到的解为x1=3,x2=4.请你写出正确的一元二次方程.三.解答题17.(2021秋•越秀区校级期中)已知m和n是方程2x2﹣5x﹣3=0的两根,求:(1)+的值;(2)m2﹣mn+n2的值.18.(2021秋•章贡区期中)已知关于x的一元二次方程x2﹣(m+2)x+m=0(m为常数).(1)求证:不论m为何值,方程总有两个不相等的实数根;(2)若x1,x2满足,求实数m的值.19.(2021秋•梁子湖区期中)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣2=0有两个实数根x1,x2.(1)求实数m的取值范围;(2)当m=1时,求代数式(x12+2x1)(x22﹣2)的值.20.(2021秋•荔城区校级期中)已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=0.(1)求证:对于任意实数t,方程都有实数根;(2)若方程的两个根中,其中一个根是另一个根的3倍,求整数t的值.21.(2021秋•南安市期中)阅读下列材料:问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设原方程的根为x1,x2则新方程的根为2x1,2x2.因为x1+x2=﹣1,x1•x2=﹣1,所以2x1+2x2=2(x1+x2)=2×(﹣1)=﹣2.2x1•2x2=4x1x2=4×(﹣1)=﹣4.所以:所求新方程为x2+2x﹣4=0.请用阅读材料提供的方法求新方程.(1)已知方程x2+x﹣2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为.(2)已知一元二次方程2x2﹣3x﹣1=0,求一个一元二次方程,使它的根分别是已知方程的根的倒数.答案与解析一.选择题1.(2021•三水区一模)方程x2﹣6x+5=0的两个根之和为()A.﹣6 B.6 C.﹣5 D.5【解析】解:方程x2﹣6x+5=0的两个根之和为﹣=﹣=6,故选:B.2.(2021秋•硚口区校级月考)设x1、x2是一元二次方程x2+2x﹣1=0的两个实数根,则x1•x2=()A.2 B.1 C.﹣2 D.﹣1【解析】解:∵x1、x2是一元二次方程x2+2x﹣1=0的两个实数根,∴x1x2=﹣1.故选:D.3.(2021秋•江油市月考)一元二次方程x2+px﹣2=0的一个根为2,则p的值以及另一个根为()A.1,﹣1 B.1,1 C.﹣1,﹣1 D.﹣1,1【解析】解:设方程的另一个根为t,根据题意得2+t=﹣p,2t=﹣2,解得t=﹣1,p=﹣1.故选:C.4.(2020•遵义)已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为()A.5 B.10 C.11 D.13【解析】解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故选:D.5.(2021春•乐清市期末)已知关于x的方程x2﹣7x+6a=0的一个解是x1=2a,则原方程的另一个解是()A.x2=0或7 B.x2=3或4 C.x2=3或7 D.x2=4或7【解析】解:∵关于x的方程x2﹣7x+6a=0的一个解是x1=2a,∴4a2﹣14a+6a=0,解得a=0或a=2,∴当a=0时,方程为x2﹣7x=0,∵x1=0,∴x2=7;当a=2时,x2﹣7x+12=0,∵x1=4,∴x2=7﹣4=3,故选:C.6.(2021秋•黔西南州期末)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.且x1,x2满足x12+x22﹣x1x2=16,则a的值为()A.﹣6 B.﹣1 C.1或﹣6 D.6或﹣1【解析】解:根据题意得△=4(a﹣1)2﹣4(a2﹣a﹣2)>0,解得a<3,根据根与系数的关系得x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣3x1x2=16,即4(a﹣1)2﹣3(a2﹣a﹣2)=16,整理得a2﹣5a﹣6=0,解得a1=﹣1,a2=6,而a<3,∴a的值为﹣1.故选:B.7.(2021•济宁)已知m,n是一元二次方程x2+x﹣2021=0的两个实数根,则代数式m2+2m+n的值等于()A.2019 B.2020 C.2021 D.2022【解析】解:∵m是一元二次方程x2+x﹣2021=0的实数根,∴m2+m﹣2021=0,∴m2+m=2021,∴m2+2m+n=m2+m+m+n=2021+m+n,∵m,n是一元二次方程x2+x﹣2021=0的两个实数根,∴m+n=﹣1,∴m2+2m+n=2021﹣1=2020.故选:B.8.(2021秋•霞浦县期中)已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根【解析】解:∵关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,∴,∴b=a+1或b=﹣(a+1).当b=a+1时,有a﹣b+1=0,此时﹣1是方程x2+bx+a=0的根;当b=﹣(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠﹣(a+1),∴1和﹣1不都是关于x的方程x2+bx+a=0的根.故选:D.9.(2021秋•安州区期末)若α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,则α2﹣3β的值是()A.3 B.15 C.﹣3 D.﹣15【解析】解:∵α、β是一元二次方程x2+3x﹣6=0的两个不相等的根,∴α2+3α=6,由根系数的关系可知:α+β=﹣3,∴α2﹣3β=α2+3α﹣3α﹣3β=α2+3α﹣3(α+β)=6﹣3×(﹣3)=15故选:B.10.(2020秋•六盘水期末)已知关于x的一元二次方程x2﹣mx+1=0的两根之差为2,则m等于()A.1或﹣1 B.2或﹣2 C.或﹣D.2或﹣2【解析】解:设方程x2﹣mx+1=0的两根分别为a、b,根据根与系数的关系得a+b=m,ab=1,而|a﹣b|=2,∴(a﹣b)2=4,∴(a+b)2﹣4ab=4,∴m2﹣4×1=4,解得m=±2,∵Δ=m2﹣4>0,∴m的值为2或﹣2.故选:D.二.填空题11.(2021秋•滨湖区期中)已知x1、x2是一元二次方程2x2﹣4x﹣5=0的两个根,则x1+x2=2,x1•x2=﹣.【解析】解:∵x1、x2是一元二次方程2x2﹣4x﹣5=0的两个根,∴a=2,b=﹣4,c=﹣5,∴x1+x2=﹣=﹣=2,x1•x2==﹣,故答案为:2,﹣.12.(2021秋•十堰期末)若x1,x2是一元二次方程x2﹣3x+1=0的两个根,则x1+x2﹣x1•x2=2.【解析】解:根据题意得x1+x2=3,x1x2=1,所以x1+x2﹣x1•x2=3﹣1=2.故答案为:2.13.(2021秋•新都区期末)若关于x的方程x2﹣3x+n=0的一个根是﹣1,则另一个根是4.【解析】解:∵关于x的方程x2﹣3x+n=0的一个根是﹣1,设另一根为a,∴﹣1+a=3,解得:a=4,则另一根为4.故答案为:4.14.(2021•孝南区二模)已知a,b是方程x2+3x﹣1=0的两根,则a2b+ab2的值是3.【解析】解:∵a,b是方程x2+3x﹣1=0的两根,∴根据根与系数的关系得:a+b=﹣3,ab=﹣1,∴a2b+ab2=ab(a+b)=(﹣1)×(﹣3)=3,故答案为:3.15.(2020春•文登区期中)已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根x1和x2,且x12﹣2x1+2x2=x1x2,则k的值是﹣2或﹣.【解析】解:∵x12﹣2x1+2x2=x1x2,x12﹣2x1+2x2﹣x1x2=0,x1(x1﹣2)﹣x2(x1﹣2)=0,(x1﹣2)(x1﹣x2)=0,∴x1﹣2=0或x1﹣x2=0.①如果x1﹣2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,整理,得k2+4k+4=0,解得k=﹣2;②如果x1﹣x2=0,则Δ=(2k+1)2﹣4(k2﹣2)=0.解得:k=﹣.所以k的值为﹣2或﹣.故答案为:﹣2或﹣.16.(2021春•拱墅区期末)在解一元二次方程x2+bx+c=0时,小明看错了一次项系数b,得到的解为x1=1,x2=2;小刚看错了常数项c,得到的解为x1=3,x2=4.请你写出正确的一元二次方程x2﹣7x+2=0.【解析】解:∵小明看错了一次项系数b,∴c=x1•x2=1×2=2;∵小刚看错了常数项c,∴﹣b=x1+x2=3+4=7,∴b=﹣7.∴正确的一元二次方程为x2﹣7x+2=0.故答案为:x2﹣7x+2=0.三.解答题17.(2021秋•越秀区校级期中)已知m和n是方程2x2﹣5x﹣3=0的两根,求:(1)+的值;(2)m2﹣mn+n2的值.【解析】解:(1)∵m和n是方程2x2﹣5x﹣3=0的两根,∴m+n=,mn=﹣,∴+===﹣;(2)m2﹣mn+n2=(m+n)2﹣3mn=()2﹣3×(﹣)=+=10.18.(2021秋•章贡区期中)已知关于x的一元二次方程x2﹣(m+2)x+m=0(m为常数).(1)求证:不论m为何值,方程总有两个不相等的实数根;(2)若x1,x2满足,求实数m的值.【解析】解(1)证明:△=(m+2)2﹣4×1⋅m=m2+4,∵无论m为何值时m2≥0,∴m2+4≥4>0,即Δ>0,所以无论m为何值,方程总有两个不相等的实数根;(2)∵关于x的方程x2﹣(m+2)x+m=0有两个实数根x1,x2∴x1+x2=m+2,x1x2=m.∵,∴(m+2)2﹣2m=16+m,即m2+m﹣12=0,解得:m=﹣4或m=3∴实数m的值为﹣4或3.19.(2021秋•梁子湖区期中)已知关于x的一元二次方程x2+(2m﹣1)x+m2﹣2=0有两个实数根x1,x2.(1)求实数m的取值范围;(2)当m=1时,求代数式(x12+2x1)(x22﹣2)的值.【解析】解:(1)由题意△≥0,∴(2m﹣1)2﹣4(m2﹣2)≥0,∴m≤2;(2)当m=1时,方程为x2+x﹣1=0,则x1+x2=﹣1,x1x2=﹣1,x12+x1=1,x22﹣1=﹣x2,∴(x12+2x1)(x22﹣2)=(1+x1)(﹣x2﹣1)=﹣x1x2﹣1﹣x1﹣x2=1﹣1﹣(﹣1)=1.20.(2021秋•荔城区校级期中)已知关于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=0.(1)求证:对于任意实数t,方程都有实数根;(2)若方程的两个根中,其中一个根是另一个根的3倍,求整数t的值.【解析】(1)证明:∵Δ=[﹣(t﹣1)]2﹣4×(t﹣2)=(t﹣3)2≥0,∴对于任意实数t,方程都有实数根;(2)解:x2﹣(t﹣1)x+t﹣2=0,(x﹣t+2)(x﹣1)=0,解得x1=t﹣2,x2=1,∵方程的两个根中,其中一个根是另一个根的3倍,∴t﹣2=3×1,解得t=5;或3(t﹣2)=1,解得t=(舍去).故整数t的值为5.21.(2021秋•南安市期中)阅读下列材料:问题:已知方程x2+x﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设原方程的根为x1,x2则新方程的根为2x1,2x2.因为x1+x2=﹣1,x1•x2=﹣1,所以2x1+2x2=2(x1+x2)=2×(﹣1)=﹣2.2x1•2x2=4x1x2=4×(﹣1)=﹣4.所以:所求新方程为x2+2x﹣4=0.请用阅读材料提供的方法求新方程.(1)已知方程x2+x﹣2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为x2﹣x﹣2=0.(2)已知一元二次方程2x2﹣3x﹣1=0,求一个一元二次方程,使它的根分别是已知方程的根的倒数.【解析】解:(1)设原方程的根为x 1,x2,则新方程的根为﹣x1,﹣x2.因为x1+x2=﹣1,x1•x2=﹣2,所以﹣x1+(﹣x2)=﹣(x1+x2)=﹣1×(﹣1)=1.(﹣x1)•(﹣x2)=x1x2=﹣2,所以所求新方程为x2﹣x﹣2=0;故答案为x2﹣x﹣2=0;(2)设原方程的根为x1,x2,则新方程的根为,,因为x1+x2=,x1•x2=﹣,所以+===﹣3,•===﹣2,所以所求新方程为x2+3x﹣2=0.。
沪科版八年级下册数学17.1一元二次方程同步练习一、选择题(本大题共8小题)1.下列方程是一元二次方程的是( )A .x-2=0B .x 2-4x-1=0C .x 2-2x-3 D .xy+1=02.把一元二次方程4)3()1(2+-=-x x x 化成一般式之后,其二次项系数与一次项分别是( )A .2,-3B .-2,-3C .2,-3xD .-2,-3x3.若关于x 的一元二次方程x 2+5x+m 2-1=0的常数项为0,则m 等于( )A .1B .2C .1或-1D .04.一元二次方程22(1)(1)1x a x x x -+=--化成一般式后,二次项系数为1,一次项系数为1-,则a 的值为( ).A.-1B. 1C.2D.-25.下列一元二次方程中常数项是0的是( )A. 042=-x xB. 8122=xC. 12=-x xD. 642+=x x6.把方程2(x 2+1)=5x 化成一般形式ax 2+bx+c=0后,a+b+c 的值是( )A .8B .9C .-2D .-17.若关于x 的一元二次方程中02=++c bx ax 有一个根是-1,则下列结论正确的是( )A. 1=++c b aB. 0=+-c b aC. 0=++c b aD. 1-=+-c b a8.若关于x 的一元二次方程为ax 2+bx+5=0(a ≠0)的解是x=1,则2013-a-b 的值是( )A .2018B .2008C .2014D .2012二、填空题(本大题共6小题)9.当m= 时,关于x 的方程5)3(72=---x x m m是一元二次方程; 10.方程3x 2=5x+2的二次项系数为 ,一次项系数为 .11.若关于x 的一元二次方程(m-2)x 2+x+m 2-4=0的一个根为0,则m 值是 .12.根据题意列一元二次方程:有10个边长均为x 的正方形,它们的面积之和是200,则有13.已知x=1是一元二次方程x 2+mx+n=0的一个根,则m 2+2mn+n 2的值为 .14.已知关于x 的一元二次方程ax 2+bx+c=0(a ≠0)有一个根为1,一个根为-1,则a+b+c= ,a-b+c= .三、计算题(本大题共4小题)15.若(m+1)x|m|+1+6-2=0是关于x 的一元二次方程,求m 的值.16.关于x 的方程(m 2-8m+19)x 2-2mx-13=0是否一定是一元二次方程?请证明你的结论.17.一元二次方程0)1()1(2=++++c x b x a 化为一般式后为01232=-+x x ,试求222a b c +-的值的算术平方根.18.根据下列问题,列出关于x 的方程,并将其化为一元二次方程的一般形式:(1)两连续偶数的积是120,求这两个数中较小的数.(2)绿苑小区住宅设计中,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多11米,那么绿地的长为多少?(3)某种产品原来成本价是25元,后经过技术改进,连续二次降低成本,现在这种产品的成本价仅16元,试问平均每次降低成本的百分率为多少?参考答案:一、选择题(本大题共8小题)1.B分析:根据一元二次方程的定义可得解答。
八年级数学一元二次方程同步测试编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学一元二次方程同步测试)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学一元二次方程同步测试的全部内容。
第二章 一元二次方程测试班级 学号 姓名 得分一、选择题(每小题3分,共30分)题号12345678910答案1、下列方程中,关于x 的一元二次方程是( )(A ) (B )()()12132+=+x x 02112=-+x x (C) (D ) 02=++c bx ax 1222-=+x x x 2、已知3是关于x 的方程的一个解,则2a 的值是( )012342=+-a x (A)11 (B )12 (C )13 (D )143、关于的一元二次方程有实数根,则( )x 02=+k x (A )<0 (B )>0 (C )≥0 (D)≤0k k k k 4、已知、是实数,若,则下列说法正确的是( )x y 0=xy (A)一定是0 (B )一定是0 (C )或 (D)且x y 0=x 0=y 0=x 0=y 5、若与互为倒数,则实数为( )12+x 12-x x (A )± (B )±1 (C )± (D)±212226、若方程中,满足和,则方程的根是()02=++c bx ax )0(≠a c b a ,,0=++c b a 0=+-c b a (A )1,0 (B )-1,0 (C ) (D )无法确定7、用配方法解关于x 的方程x 2 + px + q = 0时,此方程可变形为 ( )(A) (B )22()24p p x +=224(24p p qx -+= (C ) (D ) 224()24p p q x +-=224()24p q px --=8、使分式 的值等于零的x 是 ( )2561x x x --+(A)6 (B )—1或6 (C )-1 (D )—69、方程的解是( )0)2)(1(=-+x x x (A)—1,2 (B)1,—2 (C )、0,—1,2 (D )0,1,-210、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为 ( )(A)x (x +1)=1035 (B )x(x -1)=1035×2(C)x (x -1)=1035 (D )2x(x +1)=1035二、填空题(每格2分,共36分)11、把一元二次方程化为一般形式为: ,二次项为: ,一4)3(2=-x 次项系数为: ,常数项为: 。
数学八年级上 第十七章 一元二次方程17.1 一元二次方程的概念(1)一、选择题1、下列方程中是一元二次方程的有 ( )① 9 x 2=7 x ②32y =8 ③ 3y(y-1)=y(3y+1) ④ x 2-2y+6=0⑤ 2( x 2+1)=10 ⑥24x-x-1=0 A ①②③ B ①③⑤ C ①②⑤ D ⑥①⑤2.下列方程中,无论a 取何值,总是关于x 的一元二次方程的是 ( )A. 02=++c bx ax B. 0)1()1(222=--+x a x aC. x x ax -=+221D. 0312=-+=a x x 3.若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( ) A. 1,0 B. -1,0 C. 1,-1 D. 无法确定4.一元二次方程的一般形式是 ( ) A x 2+bx+c=0 B a x 2+c=0 (a ≠0 )C a x 2+bx+c=0D a x 2+bx+c=0 (a ≠0)5.方程3 x 2+27=0的解是 ( ) A 无实数根 B x= -3 C x=±3 D 以上都不对6.方程6 x 2- 5=0的一次项系数是 ( )A 6B 5C -5D 07.将方程x 2- 4x- 1=0的左边变成平方的形式是 ( ) A (x- 2)2=1 B (x- 4)2=1 C (x- 2)2=5 D (x- 1)2=48. 关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是0,则a 值为 ( )A 、1B 、1-C 、1或1-D 、21 9.已知一个一元二次方程的两个根分别为2,-4,那么这个方程是 ( ) A 0822=--x x B 0822=-+x x C 0822=+-x x D 0822=++x x10.关于x 的一元二次方程a x a x x 5)1(3)4)(4(=+++-的一次项系数是 ( ) A a 3 B a 8- C a 8 D 168-a二、填空题11. 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项12. 若一元二次方程ax +bx+c=0(a ≠0)有一个根为-1,则a 、b 、c 的关系是______.13.一元二次方程223)5)(21(2-=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
八年级数学下册第17章一元二次方程同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,a b是关于x的方程2320090--的值是()a a b+-=的两根,则24x xA.2018 B.2019 C.2020 D.20212、下列关于x的一元二次方程中,有两个相等的实数根的方程是()A.240x x+=--=D.220x xx xx+=B.2210-+=C.2303、某超市一月份的营业额为50万元,到三月底营业额累计为500万元.如果设平均每月的增长率为x,依题意得,可列出方程为()A.()2x+=501500+=B.()3x501500C.()2x x++++=50501501500+=D.()()2x5014504、方程260x x-=的解是()A.6 B.0 C.0或6 D.-6或05、下列方程中,没有实数根的是()A.2310-+=D.2230x xx x-+=--=B.230x xx x-=C.22106、一元二次方程2234x x +=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7、快递作为现代服务业的重要组成部分,在国家经济社会发展和改善民生方面发挥了越来越重要的作用,其中顺丰、韵达、圆通、申通的业务量增速较快,成为我国快递的“四大龙头”企业,随着市场竞争逐渐激烈,低价竞争成为主流,快递的平均单价从2019年的12元/件连续降价至2021年的9.72元/件,设快递单价每年降价的百分率均为x ,则所列方程为( )A .()21219.72x -=B .()12129.72x -=C .()29.72112x +=D .()9.721212x +=8、已知一个直角三角形的两边长是方程29200x x -+=的两个根,则这个直角三角形的斜边长为( )A .3BC .3D .59、方程x 2=﹣x 的根是( )A .x =0B .x =﹣1C .x 1=1,x 2=﹣1D .x 1=0,x 2=﹣110、若x =3是方程x 2﹣4x +m =0的一个根,则m 的值为( )A .3B .4C .﹣4D .﹣3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、设x 1,x 2是方程2x 2+3x ﹣4=0的两个实数根,则4x 12+4x 1﹣2x 2的值为 ______.2、方程x 2﹣3x +2=0两个根的和为 _____,积为 _____.3、已知关于x 的一元二次方程20x x k -+=的一个根是2,则k 的值是______.4、2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育活动.据了解,某展览中心3月份的参观人数为10万人,5月份的参观人数增加到12.1万人.设参观人数的月平均增长率为x ,则可列方程为________.5、已知x =m 是一元二次方程x 2−x −1=0的一个根,则代数式m 2−m +2021的值为____________.三、解答题(5小题,每小题10分,共计50分)1、已知关于x 的一元二次方程22320x kx k -+=.(1)求证:该方程总有两个实数根;(2)若0k >,且该方程的两个实数根的差为1,求k 的值.2、解方程:(1)(x +2)2﹣9=0;(2)x 2﹣2x ﹣3=0.3、随着人们对健康生活的追求,有机食品越来越受到人们的喜爱和追捧,某商家打算花费40000元购进一批有机绿色农产品存放于冷库.实际购买时供货商促销,可以在标价基础上打8折购进这批产品,结果实际比计划多购进400千克.(1)实际购买时,该农产品多少元每千克?(2)据预测,该农产品的市场价格在实际购买价的基础上每天每千克上涨0.5元,已知冷库存放这批农产品,每天需要支出各种费用合计为280元,同时,平均每天将有8千克损坏不能出售.则将这批农产品存放多少天后一次性全部出售,该公司可获得利润19600元?4、已知x y ,且19x 2+123xy +19y 2=1985,则正整数n 的值为 ___.5、已知关于x 的一元二次方程23310x kx k ++-=有两个实数根1x ,2x .(1)若122x x =,求k 的值.(2)若11<x ,21>x ,求k 的取值范围.-参考答案-一、单选题1、D【分析】由,a b 是关于x 的方程2320090x x +-=的两根,得到2320090,3a a a b +-=+=-,求出220093a a =-,代入计算即可.【详解】解:∵,a b 是关于x 的方程2320090x x +-=的两根,∴2320090,3a a a b +-=+=-,∴220093a a =-,∴24a a b --=200934a a b ---=20094()a b -+=2009+12=2021,故选:D .【点睛】此题考查了一元二次方程的解,一元二次方程根与系数的关系,已知式子的值求代数式的值,正确掌握一元二次方程根与系数的关系是解题的关键.2、B【分析】利用一元二次方程的根的判别式,即可求解.【详解】解:A 、2044160∆=-⨯=-< ,所以该方程无实数根,故本选项不符合题意;B 、22410∆=-⨯= ,所以该方程有两个相等实数根,故本选项符合题意;C 、()()21413130∆=--⨯⨯-=> ,所以该方程有两个不相等实数根,故本选项不符合题意;D 、2241040∆=-⨯⨯=> ,所以该方程有两个不相等实数根,故本选项不符合题意;故选:B【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握二次函数()20y ax bx c a =++≠ ,当240b ac ∆=-> 时,方程有两个不相等的实数根;当240b ac ∆=-= 时,方程有两个相等的实数根;当240b ac ∆=-< 时,方程没有实数根是解题的关键.3、D【分析】根据增长率问题,一般增长后的量=增长前的量×(1+增长率),关系式为:一月份月营业额+二月份月营业额+三月份月营业额=500,把相关数值代入即可求解.【详解】解:设平均每月的增长率为x ,根据题意:二月份的月营业额为50×(1+x ),三月份的月销售额在二月份月销售额的基础上增加x ,为50×(1+x )×(1+x ),则列出的方程是:50+50(1+x )+50(1+x )2=500.故选:D .【点睛】本题考查了增长率问题,关键是知道一月份的钱数和增长两个月后三月份的钱数,列出方程.4、C【分析】根据一元二次方程的解法可直接进行求解.【详解】解:260x x -=()60x x -=,解得:120,6x x ==;故选C .【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.5、D【分析】利用一元二次方程根的判别式,即可求解.【详解】解:A 、()()2341130∆=--⨯-=> ,所以方程有两个不相等的实数根,故本选项不符合题意; B 、()234090∆=--⨯=>,所以方程有两个不相等的实数根,故本选项不符合题意; C 、()22410∆=--⨯=,所以方程有两个相等的实数根,故本选项不符合题意; D 、()224380∆=--⨯=-<,所以方程没有的实数根,故本选项符合题意;故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握二次函数()20y ax bx c a =++≠ ,当240b ac ∆=-> 时,方程有两个不相等的实数根;当240b ac ∆=-= 时,方程有两个相等的实数根;当240b ac ∆=-< 时,方程没有实数根是解题的关键.6、A【分析】根据根的判别式即可求出答案.【详解】解:原方程化为:22340x x +-=,∴()23424410∆=-⨯⨯-=>,故选:A .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式,本题属于基础题型.7、A【分析】设快递单价每年降价的百分率均为x ,则第一次降价后价格是原价的1-x ,第二次降价后价格是原价的(1-x )2,根据题意列方程解答即可.【详解】解:设快递单价每年降价的百分率均为x ,由题意得()21219.72x -=, 故选A .【点睛】此题考查了由实际问题抽象出一元二次方程,注意第二次降价后的价格是在第一次降价后的价格的基础上进行降价的.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.【分析】利用因式分解法求出一元二次方程的两根,按斜边是否是两根中的一个,进行分类讨论,通过勾股定理求斜边长,最后即可求出答案.【详解】解:29200x x -+=,因式分解得:(4)(5)0x x --=,解得:14x =,25x =,情况1:当5x =为斜边的长时,此时斜边长为5,情况2:当14x =,25x ==∴这个直角三角形的斜边长为5故选:D .【点睛】本题主要是考查了因式分解法求解方程,以及勾股定理求边长,在不确定直角边和斜边的情况下,一定要分类讨论,分情况进行求解.9、D【分析】先移项,把方程化为20x x +=,再利用因式分解的方法把原方程化为两个一次方程即可.【详解】解:x 2=﹣x移项得:20x x +=()10,x x ∴+=解得:120,1,x x ==-【点睛】本题考查的是利用因式分解的方法解一元二次方程,掌握“把方程分右边变为0,再把左边分解因式”是解本题的关键.10、A【分析】根据一元二次方程的解,把3x =代入240x x m -+=得到关于m 的一次方程,然后解此一次方程即可.【详解】解:把3x =代入240x x m -+=得9120m -+=,解得3m =.故选:A .【点睛】本题考查了一元二次方程的解,解题的关键是掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.二、填空题1、11【分析】先根据一元二次方程根的定义得到2x 12=﹣3x 1+4,则4x 12+4x 1﹣2x 2化为﹣2(x 1+x 2)+8,再根据根与系数的关系得到x 1+x 2=﹣32,然后利用整体代入的方法计算. 【详解】解:∵x 1是方程2x 2+3x ﹣4=0的根,∴2x 12+3x 1﹣4=0,∴2x 12=﹣3x 1+4,∴4x 12+4x 1﹣2x 2=2(﹣3x 1+4)+4x 1﹣2x 2=﹣2(x 1+x 2)+8,∵x 1,x 2是方程2x 2+3x ﹣4=0的两个实数根,∴x 1+x 2=﹣32, ∴4x 12+4x 1﹣2x 2=﹣2(x 1+x 2)+8=﹣2×(﹣32)+8=11. 故答案为:11.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则12b x x a +=-,12c x x a=. 2、3 2【分析】 根据一元二次方程根与系数的关系:1212,b c x x x x a a +=-=解题. 【详解】解:方程x 2﹣3x +2=01,3,2a b c ==-=12123,2b c x x x x a a +=-=== 故答案为:3,2.【点睛】本题考查一元二次方程根与系数的关系—韦达定理,是重要考点,难度较易,掌握相关知识是解题关键.3、-2知道方程的一根,把x =2代入方程中,即可求出未知量k .【详解】解:将x =2代入一元二次方程x 2-x +k =0,可得:4-2+k =0,解得k =-2,故答案为:-2.【点睛】本题主要考查了一元二次方程的根的定义,把求未知系数的问题转化为解方程的问题,是待定系数法的应用.4、210(1)12.1x +=【分析】根据题意可得4月份的参观人数为10(1)x +人,则5月份的人数为210(1)x +,根据5月份的参观人数增加到12.1万人,列一元二次方程即可.【详解】根据题意设参观人数的月平均增长率为x ,则可列方程为210(1)12.1x +=故答案为:210(1)12.1x +=【点睛】本题考查了一元二次方程的应用,根据增长率问题列一元二次方程是解题的关键.5、2022【分析】将x =m 代入原方程即可求m 2-m 的值,然后整体代入代数式求解即可.解:将x =m 代入方程x 2-x -1=0,得m 2-m -1=0,即m 2-m =1,∴m 2−m +2021=1+2021=2022,故答案为:2022.【点睛】本题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,解题时应注意把m 2-m 当成一个整体,利用了整体的思想.三、解答题1、(1)见解析;(2)1k =.【分析】(1)计算224b ac k ∆=-=,证明0∆≥即可解题;(2)利用韦达定理212123,2b c x x k x x k a a+=-=⋅==,结合22121212)(4()x x x x x x +=--解题. (1)证明:22320x kx k -+=21,3,2a b k c k ==-=2222498b ac k k k ∆=-=-=20k ≥0∴∆≥∴该方程总有两个实数根;(2)22320x kx k -+=21212121,3,2b c x x x x k x x k a a-=+=-=⋅== 又22121212()()4x x x x x x -=+-22981k k ∴-=1k ∴=±0k >1k ∴=【点睛】本题考查一元二次方程根的判别式、韦达定理等知识,是重要考点,难度一般,掌握相关知识是解题关键.2、(1)125,1x x =-=(2)121,3x x =-=【分析】(1)先运用直接开平方法求得x +2,进而求得x 即可;(2)直接运用因式分解法求解即可.(1)解:(x +2)2﹣9=0(x +2)2=9x +2=±3所以125,1x x =-=.(2)解:x 2﹣2x ﹣3=0(x +1)(x -3)=0x -3=0或x +1=0所以121,3x x =-=.【点睛】本题主要考查了解一元二次方程,掌握直接开平方法和因式分解法是解答本题的关键.3、(1)实际购买时该农产品20元每千克.(2)存放70天后一次性出售可获利19600元.【分析】(1)设该农产品标价为x 元/千克,则实际为0.8x 元/千克.根据等量关系40000购买标价x 的产品数量+400=40000购买优惠的价格的产品数量,列方程40000400004000.8x x+=解方程即可; (2)设存放a 天后一次性卖出可获得19600元.根据售价×损失后的数量-a 天需要支出各种费用280a 元-进价=利润,列方程()40000200.58280400001960020a a a ⎛⎫+---=⎪⎝⎭,解方程即可. (1)解:设该农产品标价为x 元/千克,则实际为0.8x 元/千克. 依题意得:40000400004000.8x x +=, 解得25x =.经检验,25x =是原方程的解,且符合题意.0.82520⨯=元/千克.答:实际购买时该农产品20元每千克.(2)解:设存放a 天后一次性卖出可获得19600元.依题意得:()40000200.58280400001960020a a a ⎛⎫+---= ⎪⎝⎭, 化简得:214049000a a -+=,即()2700a -=,解得1270a a ==.经检验,70a =是原方程的解,且符合题意.答:存放70天后一次性出售可获利19600元.【点睛】本题考查列分式方程解销售问题应用题,以及列一元二次方程解储存增价损量问题应用题,掌握列方程的方法与步骤是解题关键.4、2【分析】先将,x y 进行分母有理化,再分别求出,xy x y +的值,然后将已知等式变形为219()851985x y xy =++,最后代入解一元二次方程即可得.【详解】解:n x y n +==+121x n n n ∴==++-=+-121n n n y =+++=++1xy =, 42x y n =∴++,2219123191985x xy y =++,219()851985x y xy ∴++=,219(42)851985n ∴=++,即260n n +-=,解得2n =或3n =-(与n 为正整数不符,舍去),故答案为:2.【点睛】本题考查了解一元二次方程、二次根式的分母有理化等知识点,熟练掌握二次根式的分母有理化是解题关键.5、(1)12k =或1k =;(2)0k < 【分析】(1)根据方程的特点,因式分解法解方程,进而求得k 的值;(2)根据方程的解,以及11<x ,21>x ,即可求得k 的取值范围.【详解】解:()()()222243431=9124320b ac k k k k k ∆=-=---+=-≥∴23310x kx k ++-=有实根 (1)23310x kx k ++-=即()()3110x k x +-+=解得121,13x x k =-=-122x x =即12(13)k -=-或213k -=- 解得12k =或1k = (2)若11<x ,21>x ,则121,13x x k =-=-∴131k ->解得0k <【点睛】本题考查了解一元二次方程,求得方程的解是解题的关键.。
2.1一元二次方程(1)同步练习A 组1、2121003m x x m -++=是关于x 的一元二次方程,则x 的值应为( ) A 、m =2 B 、23m = C 、32m = D 、无法确定 2、下列方程中不含一次项的是( )A .x x 2532=-B .2916x x =C .0)7(=-x xD .0)5)(5(=-+x x3、下列各数是方程21(2)23x +=解的是( ) A 、6 B 、2 C 、4 D 、04、根据下列表格对应值:判断关于x 的方程的一个解的范围是( )A 、x <3.24B 、3.24<x <3.25C 、3.25<x <3.26D 、3.25<x <3.285、判断下列方程,是一元二次方程的有____________.(1)32250x x -+=; (2)21x =; (3)221352245x x x x --=-+; (4)22(1)3(1)x x +=+;(5)2221x x x -=+;(6)20ax bx c ++=.6、方程23(1)5(2)x x -=+的二次项系数___________;一次项系数__________;常数项_________.7.已知关于x 的方程22(1)(1)0m x m x m --++=.(1)x 为何值时,此方程是一元一次方程?(2)x 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项B 组1.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( C ).A .2或-2B .2C .-2D .以上都不正确2.若(0)n n ≠是关于x 的方程220x mx n ++=的根,则m n +的值为( D )A .1B .2C .-1D .-23.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.4.若一元二次方程20,(0)ax bx c a ++=≠有一个根为1,则=++c b a _________;若有一个根是-1,则b 与a 、c 之间的关系为________;若有一个根为0,则c=_________.5.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值6. 应用一元二次方程根的定义,你能求出下列问题吗? 一个三角形的边长是3㎝和7㎝,第三边长是整数a ㎝,且a 满足a 2-10a +21 =0,求三角形的周长。
八年级数学下册《第二章一元二次方程》练习题-附答案(浙教版)一、选择题1.下列关于x的方程中,一定是一元二次方程的为( )A.ax2+bx+c=0B.x2﹣2=(x+3)2C.x2+3x﹣5=0D.x﹣1=02.一元二次方程4x2﹣3x﹣5=0的一次项系数是( )A.﹣5B.4C.﹣3D.33.若正数a是一元二次方程x2﹣5x+m=0的一个根,﹣a是一元二次方程x2+5x﹣m=0的一个根,则a的值是( )A.5B.5mC.1D.﹣14.根据下表判断方程x2+x﹣3=0的一个根的近似值(精确到0.1)是( )x 1.2 1.3 1.4 1.5x2+x﹣3 ﹣0.36 ﹣0.01 0.36 0.75A.1.3B.1.2C.1.5D.1.45.下列方程中,不能用直接开平方法的是( )A.x2﹣3=0B.(x﹣1)2﹣4=0C.x2+2x=0D.(x﹣1)2=(2x+1)26.用配方法解方程x2﹣6x﹣8=0时,配方正确的是( )A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=17.三角形两边的长是2和5,第三边的长是方程x2﹣12x+35=0的根,则第三边的长为( )A.2B.5C.7D.5或78.关于x的一元二次方程x2+2(m﹣1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是( )A.m≤12B.m≤12且m≠0 C.m<1 D.m<1且m≠09.在一幅长80厘米,宽50厘米的矩形风景画的四周镶一条金色的纸边,制成一幅矩形挂图,如图,如果要使整个挂图的面积是5400平方厘米,设金色纸边的宽为x厘米,那么满足的方程是( )A.x2+130x﹣1400=0B.x2+65x﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=010.定义新运算“※”:对于实数m,n,p,q,有[m,p]⊙[q,n]=mn+pq,其中等式右边是通常的加法和乘法运算,如:[2,3]⊙[4,5]=2×5+3×4=22.若关于x的方程[x2+1,x]⊙[5﹣2k,k]=0有两个实数根,则k的取值范围是( )A.k<54且k≠0 B.k≤54C.k≤54且k≠0 D.k≥54二、填空题11.一元二次方程3x2+2x﹣5=0的一次项系数是______.12.若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为________.13.用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n= .14.关于x的一元二次方程(a﹣5)x2﹣4x﹣1=0有实数根,则实数a的取值范围是 .15.篮球联赛实行单循环赛制,即每两个球队之间进行一场比赛,计划一共打36场比赛,设一共有x个球队参赛,根据题意,所列方程为 .16.对于实数 m,n 定义运算“※”:m※n=mn(m+n),例如:4※2=4×2(4+2)=48,若x1、x 2是关于 x 的一元二次方程x2﹣5x+3=0的两个实数根,则x1※x2=.三、解答题17.解方程:x2﹣6x+4=0(用配方法)18.解方程:﹣3x=1﹣x2(公式法)19.先化简,再求值:(x -1)÷(112-+x ),其中x 为方程x 2+3x +2=0的根.20.已知关于x 的方程x 2+ax +a ﹣2=0(1)求证:不论a 取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a 的值及该方程的另一个根.21.已知关于x 的一元二次方程x 2﹣(2m ﹣2)x +(m 2﹣2m)=0.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实数根为x 1,x 2,且x 12+x 22=10,求m 的值.22.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分枝,主干,支干和小分枝的总数是73,每个支干长出多少分枝?23.如图,在Rt△ABC中,AC=24 cm,BC=7 cm,P点在BC上,从B点到C点运动(不包括C 点),点P运动的速度为2 cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5 cm/s.若点P,Q分别从B,C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.(1)当t为何值时,P,Q两点的距离为5 2 cm?(2)当t为何值时,△PCQ的面积为15 cm2?24.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果的利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲.乙两种苹果的进价分别是每千克多少元;(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价均提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.参考答案1.C.2.C3.A4.A5.C6.A7.B8.B.9.B.10.C11.答案为:2.12.答案为:1213.答案为:41.14.答案为a ≥1且a ≠5.15.答案为:12x(x ﹣1)=36. 16.答案为:15.17.解:由原方程移项,得x 2﹣6x =﹣4等式的两边同时加上一次项系数的一半的平方,得x 2﹣6x +9=﹣4+9即(x ﹣3)2=5∴x =±5+3∴x 1=5+3,x 2=﹣5+3.18.解:﹣3x =1﹣x 2x 2﹣3x =1(x﹣)2=x﹣=±解得x1=,x2=;19.解:原式=(x-1)÷2-x-1 x+1=(x-1)÷1-x x+1=(x-1)·x+11-x=-x-1.解x2+3x+2=0,得x1=-1,x2=-2.∵1-x≠0,x+1≠0∴x≠±1,∴x=-2.当x=-2时,原式=-(-2)-1=2-1=1.20.解:(1)∵△=a2﹣4×1×(a﹣2)=a2﹣4a+8=(a﹣2)2+4>0 ∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程,得:1+a+a﹣2=0解得a=12,将a=12代入方程,整理可得:2x2+x﹣3=0即(x﹣1)(2x+3)=0解得x=1或x=﹣3 2∴该方程的另一个根﹣3 2.21.(1)证明:由题意可知Δ=[﹣(2m﹣2)]2﹣4(m2﹣2m)=4>0 ∴方程有两个不相等的实数根.(2)解:∵x1+x2=2m﹣2,x1x2=m2﹣2m∴x12+x22=(x1+x2)2﹣2x1x2=10即(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0 解得m=﹣1或m=3.22.解:由题意得1+x+x•x=73即x2+x﹣72=0∴(x+9)(x﹣8)=0,解得x1=8,x2=﹣9(舍去)答:每个支干长出8个小分支.23.解:(1)经过t s后,P,Q两点的距离为5 2 cm,则PC=(7﹣2t)cm,CQ=5t cm 根据勾股定理,得PC2+CQ2=PQ2,即(7﹣2t)2+(5t)2=(52)2.解得t1=1,t2=﹣(不合题意,舍去).所以,经过1 s后,P,Q两点的距离为5 2 cm.(2)经过t s后,△PCQ的面积为15 cm2,则PC=(7﹣2t)cm,CQ=5t cm由题意,得12×(7﹣2t)×5t=15.解得t1=2,t2=1.5.所以经过2 s或1.5 s后,△PCQ的面积为15 cm2.24.解:(1)设甲种苹果的进价为a元/千克,乙种苹果的进价为b元/千克根据题意得解得答:甲种苹果的进价为10元/千克,乙种苹果的进价为8元/千克. (2)根据题意得(4+x)(100﹣10x)+(2+x)(140﹣10x)=960整理得x2﹣9x+14=0解得x1=2,x2=7,经检验,x1=2,x2=7均符合题意.答:x的值为2或7.。
17.2 一元二次方程的解法一、课本巩固练习1:用适当的方法解方程:(1)()()137122+=--x x (2)()()5412=-+x x (3)()()02333222=+---x x(4)()5322=+-x x (5)03322=++x x2:已知关于x 的一元二次方程22(1)30m x mx m -+--=有一根是1,求m 的值.3:已知三角形的边长1和2,第三边长为20.090.210.10y y -+=的根,求这个三角形的周长.4. 已知x 为实数,且22(2)(21)6x x x x --+=,求x 的值.5. 如果1x ,2x 是一元二次方程20ax bx c ++=的两根,那么有1212,b cx x x x a a +=-=.这是一元二次方程根与系数的关系,我们利用它可以用来解题:设12,x x 是方程2630x x +-=的两根,求2212x x +的值.解法可以这样:126,x x +=-123,x x =-则222212112()2x x x x x x +=+-=2(6)2(3)42--⨯-=. 请你根据以上解法解答下题:已知12,x x 是方程2420x x -+=的两根,求: (1)1211x x +的值;(2)212()x x -的值.6、设a 是方程0120062=+-x x 的一个根,求代数式20061200722++-a a a 的值.二、基础过关一、选择题1.方程20y a +=的根是( )(A )a -(B )无解; (C )0; (D )a -或无解. 2.方程()()3532-=-x x x 的根为( )(A )25=x ; (B )3=x ; (C )25=x ,3=x ; (D )52=x . 3.方程(1)(3)1x x --=的两个根是( )(A )121,3x x ==; (B )122,4x x ==;(C )1222,22x x ==(D )1222,22x x =-=-. 4.关于x 的一元二次方程013222=+--a x x 的一个根为2,则a 的值是( ) A .1 B 33 D 35.若关于x 的一元二次方程()0235122=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .0 二、用配方法解下列方程。
一元二次方程 同步训练21.1 一元二次方程(1) 一元二次方程的概念一、学习要求:通过学习感受现实生活和学习环境中方程知识的实际意义、体会建模思想,接受和理解一元二次方程及相关概念,通过交流、辨析,能将方程化为一般形式,认识二次项系数、一次项系数、常数项等概念,并注意系数的符号.二、同步训练: (一)填空题:1.一元二次方程5x 2=3x +2的一般形式是____________,它的二次项系数是______,一次项系数是______,常数项是______.2.已知方程(m +1)x 2-2mx =1是一元二次方程,那么m ≠______.3.当m ______时,方程223213x x mx =--不是关于x 的一元二次方程. 4.已知:方程(m 2-4)x 2-6(m -2)x +3m -4=0,当m ______时,它是一元二次方程,当m ______时,它是一元一次方程.(二)选择题:5.把方程(2x +1)(3x +1)=x 化成一般形式后,一次项系数和常数项分别是( ) (A)4,1 (B)6,1 (C)5,1 (D)1,6 6.下列方程中,一元二次方程是( )(A)2x 4-5x 2=0(B)(2x 2+7)2-3=0 (C)012=+xx(D)0312142=++-x x 7.把方程(2x -1)(3x +2)=x 2+2化成一般形式后,二次项系数和常数项分别是( )(A)5,-4 (B)5,1 (C)5,4 (D)1,-4 (三)解答题:8.根据题意,列出方程:(1)一个三角形的底比高多2cm ,三角形面积是30cm 2,求这个三角形的底和高.(2)两个连续正整数的平方和是313,求这两个正整数.(3)已知两个数的和为6,积为7,求这两个数.9. 已知关于x 的一元二次方程3(x -k )2+4k -5=0的常数项等于1,则所得关于k 的一元二次方程的一般形式是什么?21.1 一元二次方程(2) 一元二次方程的进一步理解一、学习要求:进一步理解一元二次方程的概念,灵活掌握二次项系数、一次项系数、常数项,体会一元二次方程与现实生活的关系.二、同步训练: (一)填空题:1.方程(x +1)(x +2)=3化为一般形式是____________. 2.两个连续奇数的积是255,求这两个数,若设较小奇数为x ,则根据题意,可得方程为____________.3.一个矩形的长比宽多2cm ,面积为30cm 2,求这个矩形的长与宽,设矩形的长为x cm ,列出方程为____________.(二)选择题:4.下列各方程中,一定是关于x 的一元二次方程的是( ) (A)mx 2+8x =6x (x -1)-2 (B)ax 2+bx +c =0(C)(m 2+1)x 2-5x +3=0(D)x1+5x +8=0 5.下列各方程中,一定是关于x 的一元二次方程的个数是( )①1232=-x x ;②mx 2+nx -4=0;③11-=-x x x ;④x 2-x 2(1+x 2)-2=0 (A)4个 (B)3个 (C)2个 (D)1个6.长50cm ,宽30cm 的矩形薄铁片,在四个角截去四个大小相同的正方形,做成底面积为1200cm 2的无盖长方体盒子.设截去的小正方形边长为x cm ,列出的正确方程是( )(A)(50-2x )(30-2x )=1200 (B)(50-x )(30-x )=1200 (C)(50-2x )(30-x )=1200 (D)50 ×30-4x 2=1200 (三)解答题:7.根据下列问题,列出方程(不必求解).学校有一块长方形空地,长42米,宽30米,准备在中间开辟花圃,四周修建等宽的林荫小道,使小道的面积和花圃面积相等,求小道的宽.8. 根据方程:(50+x )(40+x )=3000,你能结合身边的实际,编一个应用问题吗?试试看.21.1 一元二次方程(3) 直接开平方解一元二次方程一、学习要求:在进一步理解一元二次方程的有关概念的基础上,结合平方根的意义,初步体会利用开平方可以将一些一元二次方程降次转化为一元一次方程.二、同步训练: (一)填空题:1.x (x +2)=5(x +2)的一般形式是_______,其中二次项系数是______,一次项系数是______,常数项是______.2.若x =2满足方程x 2-12x -m =0,则m =______. 3.形如方程x 2=a (a ≥0)的解是______.4.形如方程(x +m )2=n (n ≥0)的解是______. (二)选择题:5.方程(x +2)2=9的解为( ) (A)x 1=9,x 2=-9 (B)x 1=9,x 2=0 (C)x 1=-9,x 2=0 (D)x 1=1,x 2=-56.方程(x +3)2-9=0的解的情况为( ) (A)x 1=3,x 2=-3 (B)x 1=0,x 2=-6 (C)x 1=9,x 2=-6 (D)x 1=6,x 2=07.方程4x 2-1=0的根的情况是( )(A)x =±2(B)0,2121=-=x x (C)21±=x (D)无实根(三)解答题: 8.解下列方程: (1)x 2=169; (2)5x 2=125; (3)(x +3)2=16;(4)(6x -7)2-128=0.9. 若等式24x a ·(a 1-2x)4=a 9成立,求x 的值.21.2 降次——解一元二次方程21.2.1 配方法一、学习要求:在掌握了利用求平方根的方法解一元二次方程以后,结合完全平方的特征,体会转化思想:即配方转化降次求解一元二次方程.理解配方法的要领,掌握配方法的基本步骤.二、同步训练: (一)填空题: 1.根据公式a 2±2ab +b 2=(a ±b )2,填充下列各式:(A)x 2+8x +______=(x +______)2 (B)x 2-2x +______=(x -______)2 (C)x 2+x +______=(x +______)2 (D)x 2-x +______=(x -______)2 (二)选择题:2.用配方法解方程x 2-3x -1=0时,以下解法中的配方过程正确的是( ) (A)x 2-3x -1=0 (B)x 2-3x -1=0 (C)x 2-3x -1=0 (D)x 2-3x -1=0x 2-3x +9=9+1 x 2-3x +9=1 1494932+=+-x x1232332+=+-x x(x -3)2=10 (x -3)2=1 413)23(2=-x 25)23(2=-x (三)解答题:3.用配方法解下列方程: (1)x 2-6x +4=0; (2)x 2+5x -6=0; (3)x 2+6x +8=0;(4)x 2+4x -12=0; (5)(2x -3)2-3=0; (6)x 2+2mx -n 2=0.4. 求证:不论a 、b 取何实数,多项式a 2b 2+b 2-6ab -4b +14的值都不小于1.21.2.2 公式法(1)一、学习要求:在理解了配方法的基本思想和配方过程的基础之上,通过对一般形式的一元二次方程进行配方,从而导出求根公式,对求根公式要在理解的基础上记住它,并能利用它求解一元二次方程.二、同步训练: (一)填空题: 1.一元二次方程4x (x +3)=5(x -1)+2的一般形式是______,其中a =______,b =______,c =______.2.一元二次方程ax 2+bx +c =0的根的判别式为______. 3.已知关于x 的一元二次方程s -r =sx 2-rx +sx -rx 2+t (s -r ≠0)的一般形式是______,其中a =______,b =______,c =_______.(二)选择题:4.已知一元二次方程x 2-2x -m =0,用配方法解该方程,配方后的方程是( ) (A)(x -1)2=m 2+1 (B)(x -1)2=m -1 (C)(x -1)2=1-m (D)(x -1)2=m +1 5.方程x 2=x +1的解是( )(A)1+=x x(B)251±=x (C)1+±=x x(D)251±-=x 6.方程x 2-6x -3=0的解的情况为( ) (A)有两个相等的实数根 (B)有两个不等的实数根 (C)有一个实数根 (D)没有实数根 7. 在方程x 2+mx +n =0的两个根中,有一个根为0,另一个根不为0,那么m ,n 应满足( ) (A)m =0,n =0 (B)m ≠0,n ≠0 (C)m ≠0,n =0 (D)m =0,n ≠0 (三)解答题:8.用公式法解方程: (1)2x 2+2x =1; (2)5x +2=3x 2; (3)x (x +8)=16; (4)(2y +1)(3y -2)=3.21.2.2 公式法(2)一、学习要求:在理解配方法和掌握求根公式之后,应能准确认识公式中的a ,b ,c .结合实际应用它.应用公式法求解一元二次方程.要养成认真踏实的学习习惯,提高运算的正确率.二、同步训练: (一)填空题:1.方程x 2+x -3=0的两根是____________. 2.方程x (x +1)=2的根为____________.3.两个连续奇数之积是143,设其中较小的奇数为y +1,则可得关于y 的一元二次方程的一般形式是________________________.(二)选择题:4.已知px 2-3x +p 2-p =0是关于x 的一元二次方程,则( )(A)p =1 (B)p >0 (C)p ≠0 (D)p 为任意实数5.已知x 2-3x +1=0,则xx 1的值为( ) (A)3(B)-3 (C)23(D)16.下列方程中,两实根之和等于零的是( ) (A)9x 2+4=0 (B)(2x +3)2=0 (C)(x -1)2=4 (D)5x 2=6 (三)解答题: 7.解下列方程: (1)x 2+3x -4=0; (2)x 2-x -1=0; (3)-2x 2=5x -3; (4)3x 2+2x =4.8. 一根长36cm 的铁丝剪成相等的两段,一段弯成矩形,另一段弯成有一边长为5cm 的等腰三角形.如果弯成的矩形和等腰三角形的面积相等,求矩形的长与宽.21.2.3 因式分解法(1)一、学习要求:在理解了利用求平方根的思想来达到降次求解一元二次的方程之后,因式分解又是一种转化的思想,来实现将一元二次方程降次为一元一次方程求解.二、同步训练:(一)填空题:1.当x=3时,(x-3)(x+3)的值为____________.2.方程x(x-3)=0的根为______________.3.方程x2=x的右边化为零后变为________,左边分解因式后化为______,原方程的解为______(二)选择题:4.关于x的方程(m2-m)x2+mx+n=0是一元二次方程的条件是( )(A)m≠0(B)m≠1(C)m≠0或m≠1(D)m≠0且m≠15.方程x2=2x的解是( )(A)x=0 (B)x=2 (C)x=0或x=2 (D)x=±26.方程(x-3)2=3-x的解是( )(A)x=3 (B)x=2或x=3 (C)x=2 (D)x=4(三)解答题:7.用因式分解法解方程:(1)(x-1)(x-2)=0;(2)x2-3x=0;(3)x2-4x+4=0;(4)x2-5x+4=0.8. 若等腰三角形的两边长分别是方程x2-9x+14=0的两根.那么这个等腰三角形的周长是多少?21.2.3 因式分解法(2)一、学习要求:进一步体会利用因式分解法降次的基本思想,掌握因式分解法求解一元二次方程.二、同步训练:(一)填空题:1.分解因式:2x2+5x-3=____________.2.用因式分解法解方程x2-5x=6,得方程的根为____________.3.方程2(x+3)2-5(x+3)=0的解为______.最简便的解法是____________.4.若代数式x2+6x的值为零,则x的值为______.(二)选择题:5.已知(x+y)(x+y+2)=15,则x+y的值为( )(A)3或5 (B)3或-5 (C)-3或5 (D)-3或-56.下列方程:①x2-5x-6=0;②x2-6x-5=0;③x2+5x+6=0;④x2+6x+5=0.适宜用因式分解求解的是( )(A)①、②、③、④(B)①、③、④(C)①、②、③(D)②、③、④(三)解答题:7.解下列方程:(1)9(x-3)2=25;(2)6x2-x=1;(3)x2+4x-96=0;(4)x(x-1)=2;(5)4(2x-1)2=9(x-2)2;(6)(2x-3)2-2(3-2x)=8.8. 当k是什么整数时,方程(k2-1)x2-6(3k-1)x+72=0只有正整数根?21.2 解一元二次方程综合一、学习要求:在掌握了配方法、公式法及因式分解法求解一次二次方程之后,同学们应注意灵活地应用这些知识.二、同步训练: (一)填空题:1.方程0)75.0)(5.0()43(2=--+-x x x 的较小根是____________.2.已知单项式xxb a 3222-与4221b a -是同类项,则x 的值是__________. 3.++x x 222______=(x +______)2. 4.4x 2-______+9=(______-3)2. (二)选择题:5.方程x (x 2+1)=0的实数根的个数是( ) (A)0 (B)1 (C)2 (D)36.下列方程中,两根分别为-1+3和-1-3的是( ) (A)0)31)(31(=--++x x(B)0)31)(31(=+--+x x(C)0)31)(31(=--+-x x (D)0)31)(31(=++-+x x (三)解答题: 7.解下列方程 (1)x 2-6x +4=0; (2)x 2-22x -3=0; (3)2y (y +2)=(y +2);(4)(2x -1)2-4=0; (5)3y 2+1=23y ; (6)(2x -1)(x -2)=-1.8. 小明养了一群鸽子,小亮问小明养了几只鸽子,小明说:“如果你给我一只鸽子,那么鸽子总数的平方是鸽子总数的9倍.”你知道小明现在有几只鸽子吗?阅读与思考——一元二次方程的近似解与连分数学习要求:将一些具体值代入所要解的一元二次方程,大致估计出一元二次方程解的范围,再在这个范围内逐步加细赋值,逐步估计出一元二次方程的近似解.这就是求一元二次方程近似解的基本要领.下面介绍另外一种估计一元二次方程近似解的方法.方程:x 2-3x -1=0,因为x ≠0,所以先将其变形为x =x 13+,用x 13+代替x ,得xxx 131313++=+=反复若干次用x 13+代替x ,就得到xx +++++++=31313133313形如上式右边的式子称为连分数.可以猜想,随着替代次数的不断增加,右式最后的x1对整个式子的值的影响将越来越小,因此可以根据需要,在适当的时候把x 1忽略不计,例如,当忽略x =x13+中的x 1时,就得到x =3,当忽略xx 1313++=的x 1时,就得到313+=x ;如此等等.于是就可以得到一系列分数:,,3131313,31313,313,3 ++++++即:.30303.333109,3.31033,333.3310,3 ===可以发现它们越来越趋于方程x 2-3x -1=0的正根.同学们不妨利用此方法求一求方程x 2-5x -1=0的近似解.21.3 实际问题与一元二次方程(1)一、学习要求:在学习一元二次方程的解法的过程中,同学们应注意与实际问题相联系,逐步培养用方程的思想与知识解决实际问题的能力,培养学数学用数学的意识.二、同步训练:(一)填空题:1.某公司10月份产值为a 万元,比5月份增长20%,则5月份产值为____________.2.一个六位数,低位上的三个数字组成的三位数是a ,高位上的三个数字组成的三位数是b ,现将a ,b 互换,则得到的六位数是____________3.一项工程,甲班干完需m 天,乙班干完需(m +2)天,甲、乙两班合干,完成工程需___________天.(二)选择题:4.甲走20天的路程乙走30天,已知乙每天走15千米,问甲每天走多少千米?在下列几种设未知数的写法中,正确的是( )(A)设甲每天走x (B)设甲速为x 千米 (C)设甲走x 千米 (D)设甲每天走x 千米5.一件工作,甲独做4天完成,乙独做6天完成,则二人合做( )天完成.(A)6 (B)5 (C)512 (D)2(三)解答题:6.列方程解应用题:(1)两个数的差为4,它们的积为45,求这两个数.(2)一个直角三角形的三条边的长是三个连续的整数,求三条边的长.(3)某林场第一年造林200亩,第一年到第三年共造林728亩,求后两年造林面积的平均增长率.7. 我国古代数学家杨辉所著的《田亩比类乘除捷法》中有这样一题:直田积(矩形面积)八百六十四步(平方前),只云长阔(长与宽)共六十步,问阔及长各几步?21.3 实际问题与一元二次方程(2)一、学习要求:进一步运用方程解决实际问题,逐步培养逻辑思维能力和分析问题、解决问题的能力.二、同步训练:(一)填空题:1.某公司今年的年产值是1000万元,若以后每年的平均增长率为10%,则两年后该公司的年产值是______万元.2.制造某种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是每件81元,则平均每次降低成本的百分率是______.3.一块长方形硬纸片,在它的四个角上截去四个小正方形,折成一个没有盖子的长方体盒子,已知纸片的长为40cm,宽为32cm,要使盒子的底面积为768cm2,则截去的小正方形边长应为______cm.(三)解答题:4.有一个两位数恰等于其个位与十位上的两个数字乘积的3倍,已知十位上的数字比个位上的数字小2,求这个两位数.5.某电冰箱厂今年每个月的产量都比上个月增长同样的百分数.已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了12000台,求该厂今年产量的月增长率.6.某养鸡场的矩形鸡舍一边靠墙,另三边用竹篱笆围成,现有材料可制作竹篱笆13m,若欲围成20m2的鸡舍,鸡舍的长、宽应各是多少?7. 第6题中,利用13m的竹篱笆,能围成21m2的鸡舍吗?能围成22m2的鸡舍吗?若能围成,求出鸡舍的长和宽,若不能围成,说明理由.21.3 实际问题与一元二次方程(3)一、学习要求:通过应用一元二次方程解决一些实际问题,进一步体会学数学用数学的意识,培养分析问题和解决问题的能力.二、同步训练:(二)选择题:1.已知两个连续奇数的积为63,求这两个数.设其中一个数为x ,甲、乙、丙三同学分别列出方程 ①x (x +2)=63 ②x (x -2)=63 ③(x -1)(x +1)=63其中正确的是( )(A)只有① (B)只有② (C)只有①② (D)①②③都正确2.某机床厂今年一月份生产机床500台,三月份生产机床720台,求二,三月份平均每月的增长率,设平均每月增长的百分率为x ,则列出方程正确的是( )(A)500+500x =720 (B)500(1+x )2=720 (C)500+500x 2=720 (D)(500+x )2=7203.生物兴趣小组的同学,将自己采集到的标本向本组其他组员各赠送一件,全组共互赠了182件,全组共有多少名同学?设全组有x 名同学,则根据题意列出的方程是( )(A)x (x +1)=182 (B)x (x -1)=182 (C)x 21(x +1)=182 (D)x 21(x -1)=182 4.某经济开发区今年一月份工业产值达50亿元,第一季度总产值175亿元,问二月、三月平均每月的增长率是多少.设每月的平均增长率为x ,根据题意列方程为( )(A)50(1+x )2=175 (B)50+50(1+x )2=175(C)50(1+x )+50(1+x )2=175 (D)50+50(1+x )+50(1+x )2=175(三)解答题:5.为响应国家“退耕还林”的号召,改变某省水土流失严重的现状,2004年某省退耕还林1600公顷,到2006年全年退耕还林1936公顷,问这两年平均每年退耕还林的增长率是多少?6.某人用1000元人民币购买一年期的甲种债券,到期后兑换人民币并将所得利息购买一年期的乙种债券,若乙种债券的年利率比甲种债券的年利率高2个百分点,到期后,此人将乙种债券兑换人民币共得本息和112元,求甲种债券的年利率.7. 在长为a 的线段AB 上有一点C ,且AC 是AB 和BC 的比例中项,试求线段AC 的长.*21.4 观察与猜想——一元二次方程根与系数的关系一、学习要求:一元二次方程根与系数的关系作为观察与猜想提供给同学们,同学们还是应认真研究,交流体会,它能更深入地认识和理解一元二次方程.学有余力的同学还可以学习它在其它方面的应用.二、同步训练:(一)填空题:1.如果x 1,x 2是方程2x 2+4x -1=0的两根,那么x 1+x 2=______,x 1·x 2=______.2.若α,β是一元二次方程x 2-3x -2=0的两个实数根,则11αβ+=______. 3.若α,β是方程x 2-3x =5的两根,则α2+β2-αβ的值是______4.若x 1,x 2是方程2x 2+ax -c =0的两个根,则x 1+x 2-2x 1x 2等于______(结果用a ,c 表示).(二)选择题:5.一元二次方程ax 2+bx +c =0有一个根是零的条件是( )(A)b 2-4ac =0 (B)b =0 (C)c =0 (D)c ≠06.若α,β是方程2x 2+3x -4=0的两根,则++的值是( )(A)-7 (B)213- (C)21- (D)77.已知一元二次方程5x 2+kx -6=0的一个根是2,则方程的另一个根为( ) (A)53 (B)53- (C)-3 (D)38.已知一元二次方程2x 2-3x +3=0,下列说法中正确的是( )(A)两个实数根的和为23-(B)两个实数根的和为23 (C)两个实数根的积为23 (D)以上说法都不正确 (三)解答题:9.设x 1,x 2是方程2x 2-6x +3=0的两个根,利用根与系数的关系计算下列各式的值: (1);221221x x x x +(2)(x 1-x 2)2.10.若关于x 的方程2x 2+(k +1)x +k +2=0的一个根是2,求它的另一个根.11. 已知关于x 的方程x 2-2(m -2)x +m 2=0.问:是否存在实数m ,使方程的两个实数根的平方和等于56.若存在,求出m 的值;若不存在,请说明理由.一元二次方程 数学活动数学活动(1)一、学习要求:通过合作、交流、归纳与探索,挖掘一元二次方程两根与一些二次三项式的分解因式之间的内在联系,认识二次三项式的因式分解,并进一步理解一元二次方程的根.二、做一做:我们已经学过一些特殊的二次三项式的因式分解,如3x 2-2x =x (3x -2),x 2-9=(x +3)(x -3),x 2+4x +4=(x +2)2但对于一般的二次三项式ax 2+bx +c (a ≠0),你能把它分解因式吗?x 1,x 2,则二次三项式分解因式为ax 2+bx +c =_________________________.你能说说其中的道理吗?根据你们得到的结论,试一试将下列因式分解.(1)x 2+20x -69; (2)24x 2-2x -35; (3)x 2-x -1; (4)2x 2-6x +3.数学活动(2)一、学习要求:通过合作、交流利用方程的知识解决一些实际问题,体会建立数学模型、学数学用数学的意识,提高学习基本素养.二、同步训练:1.如果与水平面成45°角向斜上方投掷标枪,那么标枪飞行的水平距离S (单位:m)与标枪出手的速度v (单位:m/s)之间大致有如下关系:28.92+=v S .某同学按这种要求投掷标枪,标枪飞行的水平距离为42m ,求标枪出手时的速度(结果精确到0.1m/s).2.某商场销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果这种衬衫的售价每降低1元,那么商场平均每天可多售出2件.商场若要平均每天盈利1200元,每件衬衫应降价多少元?3.小明将勤工俭学挣得的500元钱按一年定期存入银行,到期后取出50元用来购买学习用品,剩下的450元连同应得税后利息又全部按一年定期存入银行.如果存款的年利率保持不变,且到期后可得税后本息约461元,那么这种存款的年利率大约是多少?(利息税为利息的20%,结果精确到0.01%).数学活动(3)一、学习要求:通过合作、交流、实践与探索,初步学习把现实世界的问题化为纯数学的问题,即建立数学模型,培养创新精神与实践能力.二、课题:洗衣服的数学问题.现在衣物已打好了肥皂,揉搓得很充分了,再拧一拧,当然不可能完全把水拧干,设衣服上还残留含有污物的水1斤,用20斤清水来漂洗,怎样才能漂得更干净?(1)如果把衣服一下放到20斤清水里,那么连同衣服上那1斤水,一共21斤水,污物均匀分布在这21斤水里,拧干后,衣服上还有1斤水,所以污物残存量是原来的 211如何洗,效果更佳呢?(2)如果衣服上残存水量是1.5斤或2斤,洗衣用水量是37斤,那么又该怎么洗法?第二十一章 一元二次方程 小结一、学习要求:通过复习,全面认识和理解一元二次方程的有关概念,掌握用公式法、因式分解法求解一元二次方程.理解配方法原理及这一思想的含意,会用方程的思想解决一些实际问题,认识根与系数之间的关系.二、同步训练:(一)填空题:1.方程(2x -1)(3x +2)=x 2+2化为一般形式后,a =______,b =______,c =______.2.y 2-4y +______=(y -______)2.3.+-x x 252______=(x -______)2. 4.如果关于x 的一元二次方程x 2+px +q =0的两个根是x 1=1,x 2=3,那么这个一元二次方程是______.5.等腰△ABC 两边的长分别是一元二次方程x 2-5x +6=0的两个解,则这个等腰三角形的周长是______.(二)选择题:6.①,542=-x ②xy =1,③2122=+x x;④0312=x ,以上方程中,是一元二次方程的有( ) (A)0个 (B)1个 (C)2个 (D)3个7.x 2-3=3x 化为一般式后,a ,b ,c 的值分别为( )(A)0,-3,-3 (B)1,-3,3 (C)1,3,-3 (D)1,-3,-38.解方程3x 2+27=0得( )(A)x =±3 (B)x =3 (C)x =-3 (D)无实根9.方程0)21()21(2=--+x x 的解是( ) (A)332,021-==x x (B)223,121-==x x (C)322,021-==x x(D)x 1=0,x 2=110.下面是李刚同学在一次测验中解答的填空题,其中答对的是( ) (A)若x 2-8=0,则22=x (B)方程x (2x -1)=2x -1的解为x =1(C)若方程x 2+2x +k =0有一个根是-3,则k =-3 (D)若分式1232-+-x x x 的值等于零,则x =1或2 (三)解答题:11.用适当的方法解下列方程: (1);17.052=+x (2)4x 2+3x =0; (3)x 2-25x +144=0;(4)(3y -2)2-5(3y -2)=14; (5)x 2-6x +6=0;(6)(x +6)(x -7)=14.12.一个两位数的两个数字之和为9,把个位数与十位数字互换后所得的新数乘以原数,积为1458,求这个两位数.13.有一个两位数等于其各位数字之和的4倍,其中十位数字比个位数字小2,求此两位数.14.已知关于x 的方程x 2-bx -a =0有两等根,且一次函数y=ax +b 的图像如图所示,又a 、b 满足5||2=--b a b ,求a 2+b 2的值.15.爱华中学从2003年到2006年四年内师生共植树2008棵,已知该校2003年植树353棵,2004年植树500棵,如果2005年和2006年植树棵数的年增长率相同,那么该校2006年植树多少棵?一元二次方程 全章测试一、填空题(每题6分,满分36分)1.一元二次方程的一般形式是________________,当一次项系数为零时,其形式为________________.2.方程2x 2=9的二次项系数是________________,一次项系数是________________常数项是________________二、选择题:3.方程①5x 2-38=x ,②4x 2-5y +9=0,032=x ③,0312=+-x x ④中,是一元二次方程的有( ) (A)①② (B)① (C)①③④ (D)①③4.把方程x 2+3=4x 配方,得( )(A)(x -2)2=7 (B)(x +2)2=1 (C)(x -2)2=1 (D)(x +2)2=25.方程x 3=3x 的所有的解为( )(A)0 (B)0,3 (C)3,3- (D)3,3,0-6.方程(x +m )2=n 2的解为( )(A)x =-m ± n (B)x =m ±n (C)x =m +n (D)x =-m +n三、解答题:7.解下列方程:(每题6分,满分36分)(1)x 2-3x +2=0; (2)(y -2)2=3; (3)(2x +1)2+3(2x +1)=0;(4)x 2-4x =8; (5)6x 2-4=2x ; (6)3x 2+5(2x +1)=0.8.(9分)一个两位数,它的十位数字比个位数字小3,而它的个位数字的平方恰好等于这个两位数,求这个两位数.9.(9分)某发电厂规定,该厂家属区的每户居民如果一个月的用电量不超过akWh ,那么这个月这户居民只要交10元电费.如果超过akWh ,则这个月除仍要交10元电费外,超过部分还要按100a 元/kWh 交费.下表是一户居民3月和410.(10分)一次函数y =x +b 与反比例函数xk y 3+=图象的交点为A (m ,n ),且m 、n (m <n )是关于x 的一元二次方程kx 2+(2k -7)x +k +3=0的两个不相等的实数根,其中k 为非负整数,m 、n 为常数.(1)求k 的值;(2)求点A 的坐标与一次函数、反比例函数的解析式.一元二次方程 同步训练 参考答案21.1 一元二次方程(1) 一元二次方程的概念1.5x 2-3x -2=0,5,-3,-2. 2.-1 3.=3 4.≠±2, =-2 5.A 6.D 7.A 8.(1)设宽为x cm ,x (x +2)=15 (2)设两个连续的整数分别为x ,x +1.x 2+(x +1)2=313.(3)设一个数为x .x (6-x )=7 9. 3k 2+4k -6=021.1 一元二次方程(2) 一元二次方程的进一步理解1.x 2+3x -1=0 2.x (x +2)=255 3.x (x -2)=30 4.C 5.D 6.A 7.设小道的宽为x 米.(42-2x )(30-2x )=304221⨯⨯ 8. 略 21.1 一元二次方程(3) 直接开平方解一元二次方程1.x 2-3x -10=0,1, -3, -10 2.-20 3.a x ±= 4.n m x ±-= 5.D 6.B 7.C8.(1)x =±13 (2)x =±5 (3)x 1=1,x 2=-7 (4)6287±=x 9. 25或21- 21.2.1 配方法1.(A)16,4 (B)1,1 (C)21,41 (D).21,41 2.C 3.(1),531+=x 532-=x (2)x 1=1,x 2=-6 (3)x 1=-2,x 2=-4 (4)x 1=2,x 2=-6 (5)233±=x (6)22n m m +±- 4. 提示:将a 2b 2+b 2-6ab -4b +14进行配方为a 2b 2-6ab +9+b 2-4b +4+1=(ab -3)2+(b -2)2+1,可证21.2.2 公式法(1)1.4x 2+7x +3=0,4,7,3 2.b 2-4ac 3.(s -r )x 2+(s -r )x -s +r +t =0,s -r ,s -r , -s +r +t 4.D 5.B 6.B 7.C 8. (1)231±-=x (2)2,3121=-=x x ,(3)x 244±-= (4)65,121-==y y 21.2.2 公式法(2)1.2131,213121--=+-=x x 2.x 1=-2,x 2=1 3.y 2+4y -140=0 4.C 5.A 6.D 7.(1)x 1=1,x 2=- 4 (2)251,25121-=+=x x (3)211=x ,x 2=- 3 (4)3131,313121--=+-=x x 8. 长:cm 2219+ 宽cm 2219-,或长cm 2339+ 宽cm 2339- 21.2.3 因式分解法(1) 1.0 2.x 1=0,x 2=3 3.x 2-x =0,x (x -1)=0,x 1=0,x 2=1 4.D 5.C 6.B 7.(1)x 1=1,x 2=2 (2)x 1=0,x 2=3 (3)x 1=x 2=2 (4)x 1=4,x 2=1 8. 1621.2.3 因式分解法(2)1.(2x -1)(x +3) 2.x 1=6,x 2=-1 3.-3,21- 因式分解 4.0或-6 5.B 6.B 7.(1)34,31421==x x (2)31,2121-==x x (3)x 1=8,x 2=-12 (4)x 1=2,x 2=-1 (5)78,421=-=x x(6)25,2121=-=x x 8. 1,2,3.提示:分两种情况讨论:(1)当k 2-1=0,即k =±1,检验当k =1时,x =6,k =-1时,x =-3(不合题意舍去) (2)k 2-1≠0时,用因式分解法可得,16,11221-=+=k x k x 因k 为整数,要使x 1,x 2,都为整数,只有k =2,k =3,综上所述k =1,2,321.2 解一元二次方程综合1.85 2.4或-1 3.2,2 4.12x ,2x 5.B 6.D 7.(1)53,5321-=+=x x (2)52,5221-=+=x x (3)21,221=-=y y (4)23,2121=-=x x (5)3321==y y (6)1,2321==x x 8. 8只 21.3 实际问题与一元二次方程(1)1.a 65万元 2.1000a +b 3.22)2(++m m m 4.D 5.C 6.(1)5,9或-5,-9 (2)3,4,5 (3)20% 7. 阔为24步,长为36步21.3 实际问题与一元二次方程(2)1.1210 2.10% 3.4 4.24 5.20% 6.长8m ,宽2.5m 或长5m ,宽4 m .7. 能围成21m 2的,长为7m ,宽为3m ,也可为长6m ,宽3.5m ,不能围成22m 2的21.3 实际问题与一元二次方程(3)1.C 2.B 3.B 4.D 5.10% 6.10% 7.a 215- *21.4 观察与猜想——一元二次方程根与系数的关系1.-2,21- 2.23- 3.24 4.c a +-2 5.C 6.B 7.B 8.D 9.(1)29 (2)3 10.21- 11. m =-2,提示:由,562221=+x x ,即(x 1+x 2)2-2x 1x 2=56,所以有[2(m -2)]2-2m 2=56 解之m 1=-2,m =10,检验可知m =10不合题意第二十一章 一元二次方程 数学活动(1):(1)(x -3)(x +23) (2)(6x +7)(4x -5) (3))251)(251(--+-x x (4))233)(233(2--+-x x (2):1.标枪出手时的速度约为19.8m/s. 2.每件衬衫应降价20元. 3.这种存款的年利率大约为1.44%(3):略第二十一章 一元二次方程 小结1.5,1,-4 2.4,2 3.45,1625 4.x 2-4x +3=0 5.7或8 6.B 7.D 8.D 9.C 10.C 11.(1)26±=x (2)43,021-==x x (3)x 1=9,x 2=16 (4)y 1=0,y 2=3 (5)33±=x (6)x 1=-7,x 2=8 12.18或81 13.24 14.45 15.605棵第二十一章 一元二次方程 全章测试1. ax 2+bx +c =0(a ≠0),ax 2+c =0(a ≠0)2. 2,0,-93. D4. C5. D6. A7. (1)x 1=1,x 2=2 (2)32,3221-=+=y y (3)211-=x ,x 2=-2 (4)x 1=,322+ 3222-=x (5)321-=x ,x 2=1 (6)3105,310521--=+-=x x 8. 25或36 9. a =50(kWh) 10. (1)k =1,(2)A (1,4),y =x +3,4 yx。
沪教版(上海)八年级上册数学17.3一元二次方程根的判别式同步练习(含答案)17.3 一元二次方程根的判别式同步练习1.一元二次方程x 2-4x +5=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根2.下列一元二次方程有两个相等实数根的是( )A .x 2+3=0B .x 2+2x =0C .(x +1)2=0D .(x +3)(x -1)=03.一元二次方程4x 2+1=4x 的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根4.方程2x 2-x -1=0的根的判别式的值为________.5.一元二次方程12x 2=2x -1的根的情况是__________________. 6.不解方程,判别下列方程根的情况.(1)x 2+2x -3=0;(2)5x 2=-2(x -10);(3)8x 2+(m +1)x +m -7=0.7.若关于x 的一元二次方程x 2-3x +m =0有两个不相等的实数根,则实数m 的取值范围为( )A .m>94B .m<94C .m =94D .m<-948.若关于x 的一元二次方程4x 2-4x +c =0有两个相等的实数根,则c 的值是( )A .-1B .1C .-4D .49.如果关于x 的一元二次方程x 2+4x -m =0没有实数根,那么m 的取值范围是________.10.已知关于x 的一元二次方程x 2+4x +m =0.(1)当m 的值为17时,请利用根的判别式判断此方程的解的情况;(2)请你为m 选取一个合适的整数,使得到的方程有两个不相等的实数根,并说明你的理由.11.已知关于x 的方程x 2-2(m +1)x +m 2=0.(1)当m 取何值时,方程有两个实数根?(2)请你为m 选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.12.已知关于x 的方程x 2+ax +a -2=0.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.13.若a 满足不等式组2a -1≤1,1-a 2>2,则关于x 的方程(a -2)x 2-(2a -1)x +a +12=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .以上三种情况都有可能14.若关于x 的一元二次方程(m -2)x 2+2x +1=0有实数根,则m 的取值范围是( )A .m≤3B .m <3C .m <3且m≠2D .m≤3且m≠215.有两个一元二次方程M :ax 2+bx +c =0;N :cx 2+bx +a =0,其中ac≠0,a≠c.下列四个结论中,错误的是( )A .如果方程M 有两个相等的实数根,那么方程N 也有两个相等的实数根B .如果方程M 的两根符号相同,那么方程N 的两根符号也相同C .如果5是方程M 的一个根,那么15是方程N 的一个根 D .如果方程M 和方程N 有一个相同的根,那么这个根必是x =116.若关于x 的方程kx 2-4x -23=0有实数根,则k 的取值范围是________. 17.若关于x 的一元二次方程x 2+mx +n =0有两个相等的实数根,则2m 3-8mn +2017的值为________.18.已知关于x 的一元二次方程x 2-(2k +1)x +k 2+k =0.(1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值.19.若方程x 2-4|x|+5=m 有4个互不相等的实数根,则m 应满足______________.20.已知关于x 的一元二次方程mx 2-(m +2)x +2=0.(1)求证:不论m 为何值时,方程总有实数根;(2)当m 为何整数时,方程有两个不相等的正整数根?参考答案1.D [解析] ∵b 2-4ac =(-4)2-4×5=-4<0,∴方程没有实数根.故选D .2.C [解析] 计算根的判别式的值,再根据判别式的意义可对A ,B ,C 三项进行判断.由于D 项的两根可直接得到,所以显然D 项不符合题意.其中选项C 的判别式值为0.故选C .3.C [解析] 原方程可化为4x 2-4x +1=0,∵Δ=(-4)2-4×4×1=0,∴方程有两个相等的实数根.故选C .4.9 [解析] Δ=(-1)2-4×2×(-1)=9.5.有两个相等的实数根 [解析] 将原方程化为一般形式得12x 2-2x +1=0,因为Δ=(-2)2-4×12×1=0,所以原方程有两个相等的实数根.6.解:(1)因为Δ=b 2-4ac =4+12=16>0,所以方程有两不相等的实数根.(2)原方程可化为5x 2+2x -20=0,因为Δ=b 2-4ac =4+4×5×20=404>0,所以方程有两不相等的实数根.(3)因为Δ=(m +1)2-4×8(m -7)=(m -15)2≥0,所以方程有实数根.7.B [解析] 根据题意,得Δ=(-3)2-4m >0,解得m <94.故选B . 8.B [解析] ∵一元二次方程4x 2-4x +c =0有两个相等的实数根,∴Δ=(-4)2-4×4c =0,解得c =1.故选B .9.m <-410.解:(1)当m =17时,方程为x 2+4x +17=0.∵a =1,b =4,c =17,∴b 2-4ac =42-417=4(4-17)<0,∴此方程没有实数解.(2)要使方程有两个不相等的实数根,故方程根的判别式Δ=16-4m >0,可得m <4.又m 为整数,故m 的值可以为3,2,1,…11.解:(1)由题意知Δ=b 2-4ac =[-2(m +1)]2-4m 2=[-2(m +1)+2m][-2(m +1)-2m]=-2(-4m -2)=8m +4≥0,解得m≥-12. ∴当m≥-12时,方程有两个实数根. (2)答案不唯一,如选取m =0,方程为x 2-2x =0,解得x 1=0,x 2=2.12.解:(1)当x =1时,方程为1+a +a -2=0,得a =12.此时方程为x 2+12x -32=0,(x -1)(2x +3)=0,∴x 1=1,x 2=-32,∴方程的另一根为-32. (2)证明:Δ=a 2-4(a -2)=a 2-4a +8=a 2-4a +4+4=(a -2)2+4.∵(a -2)2≥0,∴(a -2)2+4>0,∴Δ>0,∴不论a 取何实数,该方程都有两个不相等的实数根.13.C [解析] 解不等式组2a -1≤1,1-a 2>2,得a <-3,∵Δ=(2a -1)2-4(a -2)(a +12)=2a +5,∵a <-3,∴Δ=2a +5<0,∴方程(a -2)x 2-(2a -1)x +a +12 =0没有实数根. 14.D [解析] 因为关于x 的一元二次方程(m -2)x 2+2x +1=0有实数根,所以m -2≠0且Δ≥0,即22-4×(m -2)×1≥0,解得m≤3,故m 的取值范围是m≤3且m≠2.15.D [解析] A 选项,如果方程M 有两个相等的实数根,那么Δ=b 2-4ac =0,所以方程N 也有两个相等的实数根,结论正确,不符合题意;B 选项,如果方程M 的两根符号相同,那么Δ=b 2-4ac≥0,-b +b 2-4ac 2a ·-b -b 2-4ac 2a >0,即c a >0,所以a 与c 符号相同,a c >0,又-b +b 2-4ac 2c ·-b -b 2-4ac 2c =a c ,所以方程N 的两根符号也相同,结论正确,不符合题意;C 选项,如果5是方程M 的一个根,那么25a +5b +c =0,两边同时除以25,得125c +15b +a =0,所以15是方程N 的一个根,结论正确,不符合题意; D 选项,如果方程M 和方程N 有一个相同的根,那么ax 2+bx +c =cx 2+bx +a ,(a -c)x 2=a -c ,由a≠c ,得x 2=1,x =±1,结论错误,符合题意.故选D .16.k≥-6 [解析] k =0时,-4x -23=0,解得x =-16,符合题意;当k≠0时,方程kx 2-4x -23=0是一元二次方程,根据题意可得Δ=16-4k×(-23)≥0,解得k≥-6,k≠0,综上k≥-6.17.2017 [解析] ∵一元二次方程x 2+mx +n =0有两个相等的实数根,∴Δ=m 2-4n =0,∴2m 3-8mn +2017=2m(m 2-4n)+2017=2017.18.解:(1)证明:∵在关于x 的一元二次方程x 2-(2k +1)x +k 2+k =0中,a =1,b =-(2k +1),c =k 2+k ,∴Δ=b 2-4ac =[-(2k +1)]2-4×1×(k 2+k)=1>0,∴方程有两个不相等的实数根.(2)∵x 2-(2k +1)x +k 2+k =0,∴(x -k)[x -(k +1)]=0,∴方程的两个不相等的实数根为x 1=k ,x 2=k +1.∵△ABC 的两边AB ,AC 的长是方程的两个实数根,第三边BC 的长为5,∴有两种情况:第一种情况:x 1=k =5,此时k =5,满足三角形构成条件;第二种情况:x 2=k +1=5,此时k =4,满足三角形构成条件.综上所述,k 的值为4或5.19.m >1且m <5 [解析] 设y =|x|,则原方程为:y 2-4y +5=m.∵方程x 2-4|x|+5=m 有4个互不相等的实数根,∴方程y 2-4y +5=m 有2个互不相等的正实数根.设y 1与y 2是方程y 2-4y +5=m 的两个根,∴Δ=b 2-4ac =16-4(5-m)=4m -4>0,y 1·y 2=5-m >0,∴m>1且m <5.20.解:(1)证明:Δ=(m +2)2-8m=m 2-4m +4=(m -2)2.∵不论m 为何值时,都有(m -2)2≥0,∴Δ≥0,∴方程总有实数根.(2)解方程,得x =m +2±(m -2)22m =m +2±(m -2)2m , x 1=2m,x 2=1. ∵方程有两个不相等的正整数根,∴m =1或m =2(不合题意),∴m =1.。
艾迪教育《一元二次方程》练习题一元二次方程的概念1、下列各方程中,不是一元二次方程的是( )A 、01232=++y yB 、 m m 31212-=C 、032611012=+-p pD 、0312=+-x x2、若01322=-+-p x px 是关于x 的一元二次方程则( ) A 、p=1 B 、p 〉0 C 、p ≠0 D 、p 为任意实数3、把一元二次方程)(5))((22x a a x a x a ax -=--+化成关于x 的一般形式是 。
4、一元二次方程6275)3(2-=+--mx m mx x m 中,二次项系数为 ;一次项为 ;常数项为 ;5、把方程)2(5)2(-=+x x x 化成一般式,则a 、b 、c 的值分别是( )A 10,3,1-B 10,7,1-C 12,5,1-D 2,3,16、若(b — 1)2+a 2= 0 下列方程中是一元二次方程的只有( )(A) ax 2+5x – b=0(B ) (b 2– 1)x 2+(a+4)x+ab=0 (C )(a+1)x – b=0 (D)(a+1)x 2– bx+a=07、下列方程中,不含一次项的是( )(A )3x 2– 5=2x (B) 16x=9x 2(C )x(x –7)=0 (D)(x+5)(x —5)=08、一元二次方程12)3)(31(2+=-+x x x 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。
9、关于x 的方程023)1()1(2=++++-m x m x m ,当m 时为一元一次方程;当m 时为一元二次方程。
10、当m 时,方程()05122=+--mx x m 不是一元二次方程,当m 时,上述方程是一元二次方程。
11、若方程mx 2+3x -4=3x 2是关于x 的一元二次方程,则m 的取值范围是 。
12、关于x 的一元二次方程4)7(3)3(2-+=-y y y 的一般形式是 ;二次项系数是 ,一次项系数是 ,常数项是 ;13、下列方程中,属于一元二次方程的是( )14、方程()()223210x x x --++=的一般形式是( )2222x -5x+5=0 x +5x-5=0 x +5x+5=0 x +5=0 A B C D 、、、、一元二次方程的解法1、已知x=2是一元二次方程02232=-a x 的一个解,则12-a 的值( ) A 、3 B 、4 C 、5 D 、62、一元二次方程)1(5)1(-=-x x x 的解是( ) A 、1 B 、5 C 、1或5 D 、无解22221320 B 2x +y-1=0 C x 00 D x xA x -+==、、、、3、方程0)2)(1(=-+x x x 的解是( )A 、—1,2B 、1,—2C 、0,-1,2D 、0,1,—24、如果x 2+2(m -2)x +9是完全平方式,那么m 的值等于( )A.5B.5或-1 C 。
八年级数学下册第17章 一元二次方程同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、股市规定:股每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停,现有一支股票某天涨停,之后两天时间又跌回到涨停之前的价格.若这两天此股票股价的平均下跌率为x ,则x 满足的方程是( )A .()()211011x +-=%B .()()211011x -+=%C .()()110121x -+=%D .()()110121x +-=% 2、南宋著名数学家杨辉所著的《杨辉算法》中记载:“直田积八百六十四步,只云长阔共六十步,问长阔各几何?”意思是“一块矩形田地的面积是864平方步,只知道它的长与宽的和是60步,问它的长和宽各是多少步?”设矩形田地的长为x 步,根据题意可以列方程为( )A .2608640x x --=B .(60)864x x +=C .2608640x x -+=D .(30)864x x +=3、某公司今年10月的营业额为2500万元,按计划第十二月的总营业额要达到9100万元,求该公司11;12两个月营业额的月均增长率,设该公司11,12两个月营业额的月均增长率为x ,则根据题意可列的方程为( )A .910025002500100%2x -=⨯B .()2910012500x -=C .()2250019100x +=D .()2910012500x += 4、已知m ,n 是方程21010x x -=+的两根,则代数式29m m n -+的值等于( )A .0B .11-C .9D .115、已知关于x 的一元二次方程x 2﹣kx +k ﹣3=0的两个实数根分别为x 1,x 2,且x 12+x 22=5,则k 的值是( )A .﹣2B .2C .﹣1D .16、关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .根据m 的取值范围确定7、一元二次方程2230x x -+=的二次项系数是( )A .0B .1C .-2D .38、一元二次方程210x x --=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断9、2021年5月11日,国新办发布我国第七次人口普查结果,全国总人口约14.11亿,与第五次、第六次人口普查数据相比较,我国人口总量持续增长.据查,2000年第五次人口普查全国总人口约12.95亿.若设从第五次到第七次人口普查总人口的平均增长率为x ,则可列方程为( )A .12.95(1)14.11+=xB .212.95(12)14.11+=xC .12.95(12)14.11+=xD .212.95(1)14.11+=x10、若关于x 的不等式组5324x x x a⎧-≤⎪⎨⎪->⎩无解,且关于x 的一元二次方程()21420a x x -++=有两个不相等的实数根,则符合条件的所有整数a 的和为( )A .-1B .0C .1D .2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、有3人患了流感,经过两轮传染后共有192人患流感,设每轮传染中平均一个人传染了x 人,则可列方程为____________.2、已知x ,那么2263x x +-的值是______.3、己知t 是方程x 2﹣x ﹣2=0的根,则式子2t 2﹣2t +2021的值为_____.4、若m 是一元二次方程2x 2+3x ﹣1=0的一个根,则4m 2+6m ﹣2021=________.5、已知关于x 的一元二次方程20(a 0)++=≠ax bx c 有一个根为1,一个根为1-,则=a b c ++_________,=a b c -+__________.三、解答题(5小题,每小题10分,共计50分)1、求证:无论m 取任何实数,关于x 的方程mx 2﹣(3m ﹣1)x +2m ﹣2=0恒有实数根.2、已知关于x 的一元二次方程23210x x a -+-=有两个不相等的实数根.(1)求a 的取值范围;(2)若a 为正整数,求方程的根.3、用公式法解方程:2214x x -=4、某公司2月份销售新上市的A 产品20套,由于该产品的经济适用性,销量快速上升,4月份该公司A 产品达到45套,并且2月到3月和3月到4月两次的增长率相同.(1)求该公司销售A 产品每次的增长率;(2)若A 产品每套盈利2万元,则平均每月可售30套.为了尽量减少库存,该公司决定采取适当的降价措施,经调查发现,A 产品每套每降2万元,公司平均每月可多售出80套;若该公司在5月份要获利70万元,则每套A 产品需降价多少?5、解方程:2144x x -=-.-参考答案-一、单选题1、A【分析】股票的一次涨停便涨到原来价格的110%,再从110%跌到原来的价格,且跌幅小于等于10%,这样经过两天的下跌才跌到原来价格,x表示每天下跌的百分率,从而有110%•(1-x)2=1,这样便可找出正确选项.【详解】设x为平均每天下跌的百分率,则:(1+10%)•(1-x)2=1;故选:A.【点睛】考查对股票的涨停和跌停概念的理解,知道股票下跌x后,变成原来价格的(1-x)倍.2、C【分析】设长为x步,则宽为(60-x)步,根据矩形田地的面积为864平方步,即可得出关于x的一元二次方程,此题得解.【详解】设长为x步,则宽为(60-x)步,依题意得:x(60-x)=864,整理得2608640-+=:.x x故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.3、C【分析】根据等量关系第10月的营业额×(1+x )2=第12月的营业额列方程即可.【详解】解:根据题意,得:()2250019100x +=,故选:C .【点睛】本题考查一元二次方程的应用,理解题意,正确列出方程是解答的关键.4、C【分析】利用方程的解的定义和一元二次方程根与系数的关系,可得21010m m -+=,10m n += ,从而得到2101m m -=-,再代入,即可求解. 【详解】解:∵m ,n 是方程21010x x -=+的两根,∴21010m m -+=,10m n += ,∴2101m m -=-,∴229101109m m n m m m n -+=-++=-+=.故选:C【点睛】本题主要考查了方程的解的定义和一元二次方程根与系数的关系,熟练掌握使方程左右两边同时成立的未知数的值就是方程的解;若1x ,2x 是一元二次方程()200++=≠ax bx c a 的两个实数根,则12b x x a +=-,12c x x a⋅=是解题的关键. 5、D【分析】用根与系数的关系可用k 表示出已知等式,可求得k 的值.【详解】解:∵关于x 的一元二次方程x 2﹣kx +k ﹣3=0的两个实数根分别为x 1,x 2,∴x 1+x 2=k ,x 1x 2=k ﹣3,∵x 12+x 22=5,∴(x 1+x 2)2﹣2x 1x 2=5,∴k 2﹣2(k ﹣3)=5,整理得出:k 2﹣2k +1=0,解得:k 1=k 2=1,故选:D .【点睛】本题考查一元二次方程根根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键.6、A【分析】根据根的判别式判断即可.【详解】∵22()41(2)(2)40m m m ∆=--⨯⨯-=-+>,∴方程有两个不相等的实数根.【点睛】本题考查一元二次方程根的判别式,当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根,熟记判别式并灵活应用是解题关键.7、B【分析】直接根据一元二次方程的一般形式求得二次项系数即可.【详解】解:∵2230x x -+=∴1a =,即二次项系数为1故选B【点睛】本题考查了一元二次方程的一般形式,掌握一元二次方程的一般形式是解题的关键.一元二次方程的一般形式是:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.8、A【分析】计算出判别式的值,根据判别式的值即可判断方程的根的情况.【详解】∵1a =,1b =-,1c =-,∴224(1)41(1)50b ac =-=--⨯⨯-=>,∴方程有有两个不相等的实数根.【点睛】本题考查了一元二次方程根的判别式,根据判别式的值的情况可以判断方程有无实数根.9、D【分析】根据等量关系第五次总人口×(1+x )2=第七次总人口列方程即可.【详解】解:根据题意,得:12.95(1+x )2=14.11,故选:D .【点睛】本题考查一元二次方程的应用,理解题意,找准等量关系列出方程是解答的关键.10、B【分析】由x 的不等式组无解可解得2a ≥-,由x 的一元二次方程有两个不相等的实数根可解得3a <,故23a -≤<中符合条件的所有整数有-2,-1,0,1,2,所有整数a 的和为0.【详解】532x x -≤ 移项得332x ≤解得2x ≤4x a -> 解得4x a >+∵关于x 的不等式组无解解得2a ≥-一元二次方程()21420a x x -++=中a =a -1,b =4,c =2则()22444121688248b ac a a a =-=-⋅-⋅=-+=-△∵x 的一元二次方程()21420a x x -++=有两个不相等的实数根∴240b ac =->即2480a ->解得3a <综上所述符合题意的整数有-2,-1,0,1,2则-2-1+0+1+2=0故选:B .【点睛】一元二次方程根的判别式的应用主要有以下三种情况:不解方程,由根的判别式直接判断根的情况;根据方程根的情况,确定方程中字母系数的取值范围;应用根的判别式证明方程根的情况(无实根、有两个不相等实根、有两个相等实根).已知不等式(组)的解集,求不等式(组)中待定字母的取值范围问题,首先把不等式(组)的解集用含有字母的形式表示出来,然后把它与已知解集联系起来求解,这类问题有时要运用方程知识,有时要用到不等式知识,在求解过程中可以利用数轴进行分析.二、填空题1、()3333192x x x +++=【分析】根据题意可得, 每轮传染中平均一个人传染了x 个人,经过一轮传染之后有33x +人感染流感,两轮感染之后的人数为192人,依此列出二次方程即可.解:设每轮传染中平均一个人传染了x 个人,依题可得:()3333192x x x +++=,故答案为:()3333192x x x +++=.【点睛】本题考查了由实际问题与一元二次方程,关键是得到两轮传染数量关系,从而可列方程求解.2、-5【分析】先利用配方法把所求的代数式配方,然后代值计算即可.【详解】解:∵x =, ∴2263x x +-()2233x x =+-29152342x x ⎛⎫=++- ⎪⎝⎭ 2315222x ⎛⎫=+- ⎪⎝⎭ 21522=-⎝⎭ 21522=⨯-⎝⎭515=-22=-,5故答案为:-5.【点睛】本题主要考查了配方法的使用和代数式求值,解题的关键在于能够熟练掌握配方法.3、2025【分析】根据一元二次方程的解的定义得到t2-t-2=0,则t2-t=2,然后把2t2-2t+2021化成2(t2-t)+2021,再利用整体代入的方法计算即可.【详解】解:当x=t时,t2-t-2=0,则t2-t=2,所以2t2-2t+2021=2(t2-t)+2021=4+2021=2025.故答案为:2025.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.用了整体代入思想.4、﹣2019【分析】根据方程的根的定义,把x=m代入方程求出2m2+3m的值,然后整体代入代数式进行计算即可得解.【详解】解:∵m是一元二次方程2x2+3x-1=0的一个根,∴2m2+3m-1=0,整理得,2m2+3m=1,∴4m 2+6m -2021=2(2m 2+3m )-2021=2×1-2021=-2019.故答案为:﹣2019.【点睛】本题考查了一元二次方程的解,利用整体思想求出2m 2+3m 的值,然后整体代入是解题的关键. 5、0 0【分析】一元二次方程的解,就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;分别将1和﹣1代入方程即可得到两个关系式的值.【详解】将1代入方程得:2110a b c ⨯+⨯+=,即0a b c ++=;将﹣1代入方程得:()()2110a b c ⨯-+⨯-+=,即0a b c +=﹣; 故答案为0,0.【点睛】本题考查了一元二次方程的根,即方程的解的定义,深刻理解根的定义是解题关键.三、解答题1、见解析【分析】分两种情况,当m =0时,方程为一元一次方程,有一个实数解;当m ≠0时,方程为一元二次方程,由于b 2-4ac =(m ﹣1)2≥0,则可判断方程有两个实数根.【详解】证明:当m =0时,方程化为x ﹣2=0,解得x =2;当m ≠0时,∵b 2-4ac =(3m ﹣1)2﹣4m (2m ﹣2)=(m ﹣1)2≥0,∴关于x 的一元二次方程mx 2﹣(3m ﹣1)x +2m ﹣2=0有两个实数根,综上所述,无论m 取任何实数,关于x 的方程mx 2﹣(3m ﹣1)x +2m ﹣2=0恒有实数根.【点睛】本题考查了一元一次方程的解,以及一元二次方程根的判别式,分类讨论是解答本题的关键.2、(1)a <518;(2)12x x == 【分析】(1)根据方程的系数结合根的判别式Δ=b 2-4ac >0,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围;(2)由(1)的结论结合a 为正整数,即可得出a =1,将其代入原方程,再利用公式法解一元二次方程,即可求出原方程的解.【详解】解:(1)∵关于x 的一元二次方程23210x x a -+-=有两个不相等的实数根,∴2(3)4(21)a ∆=--->0,解得a <518,∴a 的取值范围为a <518.(2)∵a <518,且a 为正整数,∴1a =,代入23210x x a -+-=,此时,方程为2310x x -+=.∴解得方程的根为12x x ==本题考查了根的判别式以及公式法解一元二次方程,解题的关键是:(1)牢记“当Δ>0时,方程有两个不相等的实数根”;(2)利用因式分解法求出方程的两个根.3、12x x == 【分析】22410x x --=中2,4,1a b c ==-=-;代入24b ac =-△判根,代入x =求解即可. 【详解】解:22410x x --=2,4,1a b c ==-=-()()22Δ44421240b ac ∴=-=--⨯⨯-=>=x ∴=12x ∴== 【点睛】本题考查了公式法解一元二次方程.解题的关键在于找出公式中字母所对应的数值.4、(1)该公司销售A 产品每次的增长率为50%(2)每套A 产品需降价1万元【分析】(1)设该公司销售A 产品每次的增长率为x ,利用增长率表示4约分销售量为20(1+x )2根据4月份销量等量关系列方程即可;(2)设每套A 产品需降价y 万元,则平均每月可售出(30+802y )套,求出每套利润,根据每套利润×销售套数=70万,列方程求解即可.(1)解:设该公司销售A产品每次的增长率为x,依题意,得:20(1+x)2=45,解得:x1=0.5=50%,x2=-2.5(不合题意,舍去).答:该公司销售A产品每次的增长率为50%.(2)解:设每套A产品需降价y万元,则平均每月可售出(30+802y)套,依题意,得:(2-y)(30+802y)=70,整理,得:4y2-5y+1=0,解得:y1=14,y2=1,∵尽量减少库存,∴y=1.答:每套A产品需降价1万元.【点睛】本题考查列一元二次方程解增长率与降价增量问题应用题,掌握列一元二次方程解增长率与降价增量问题应用题方法与步骤,抓住等量关系用增长率表示4月份的销量=45;利用每套利润×销售套数=70列方程是解题关键.5、x1=1,x2=3【分析】利用因式分解法,令两个一次因式都等于0,进而得出结果.【详解】解:2144x x -=-(1)(1)4(1)x x x +-=-(1)(14)0x x -+-=(1)(3)0x x --=(1)0x ∴-=或(3)0x -=解得11x =或23x =11x ∴=或23x =【点睛】本题考察了一元二次方程的求解.解题的关键与难点在于对多项式进行因式分解.。
沪科版八年级下册数学17.4一元二次方程的根与系数同步练习一、选择题(本大题共6小题)1. 若方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,则x1+x2=()A.﹣4 B.3 C.D.2. 若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为()A.﹣1 B.0 C.2 D.33. 小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为()A.x2﹣3x+6=0 B.x2﹣3x﹣6=0 C.x2+3x﹣6=0 D.x2+3x+6=04. 设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是()A.2 B.1 C.﹣2 D.﹣15. 若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣56. 定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0 B.1 C.2 D.与m有关二、填空题(本大题共4小题)7. 设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n= .8. 设x1,x2是一元二次方程x2+5x﹣3=0的两根,且2x1(x22+6x2﹣3)+a=4,则a= .9. 设x1、x2是方程5x2﹣3x﹣2=0的两个实数根,则+的值为.10. 关于x的一元二次方程x2+2x﹣2m+1=0的两实数根之积为负,则实数m的取值范围是.11. 设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)= .三、计算题(本大题共4小题)12. 若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程。
13. 已知关于x的一元二次方程x2-2x+m-1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.14. 已知关于x的一元二次方程x2﹣6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2+x1+x2≥20,求m的取值范围.15. 关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.(1)求m的取值范围;(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.参考答案:一、选择题(本大题共6小题)1. D分析:由方程的各系数结合根与系数的关系可得出“x1+x2=”,由此即可得出结论.解:∵方程3x2﹣4x﹣4=0的两个实数根分别为x1,x2,∴x1+x2=﹣=故选D.2. D分析:由根与系数的关系得出“x1+x2=2,x1•x2=﹣1”,将代数式x12﹣x1+x2变形为x12﹣2x1﹣1+x1+1+x2,套入数据即可得出结论.解:∵x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,∴x1+x2=﹣=2,x1•x2==﹣1.x12﹣x1+x2=x12﹣2x1﹣1+x1+1+x2=1+x1+x2=1+2=3.故选D.3. 小B分析:利用根与系数的关系分别建立等式解答即可。
7.1一元二次方程
一、填空
1.一元二次方程化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:。
2.关于x的方程,当时为一元一次方程;当
时为一元二次方程。
3.已知直角三角形三边长为连续整数,则它的三边长是。
4. ;。
5.直角三角形的两直角边是3︰4,而斜边的长是15㎝,那么这个三角形的面积是。
6.若方程的两个根是和3,则的值分别为。
7.若代数式与的值互为相反数,则的值是。
8.方程与的解相同,则=。
9.当时,关于的方程可用公式法求解。
10.若实数满足,则=。
11.若,则=。
12.已知的值是10,则代数式的值是。
二、选择
1.下列方程中,无论取何值,总是关于x的一元二次方程的是()(A)(B)
(C)(D)
2.若与互为倒数,则实数为()
(A)± (B)±1 (C)± (D)±
3.若是关于的一元二次方程的根,且≠0,则的值为()(A)(B)1 (C)(D)
4.关于的一元二次方程的两根中只有一个等于0,则下列条件正确的是()
(A)(B)(C)(D)
5.关于的一元二次方程有实数根,则()
(A)<0 (B)>0 (C)≥0 (D)≤0 6.已知、是实数,若,则下列说法正确的是()
(A)一定是0 (B)一定是0 (C)或(D)且
7.若方程中,满足和,则方程的根是()
(A)1,0 (B)-1,0 (C)1,-1 (D)无法确定
三、解方程
1.选用合适的方法解下列方程
(1)(2)
(3)(4)
四、解答题
1.已知等腰三角形底边长为8,腰长是方程的一个根,求这个三角形的腰。
2.已知一元二次方程有一个根为零,求的值。
参考答案
一、填空题
1、,;
2、;
3、;
4、;
5、54;
6、-1,-6;
7、1或;
8、;
9、;10、11、-4,2;12、19
二、选择题
1、C
2、C
3、A
4、B
5、D
6、C
7、C
三、计算题
1、-4或1;
2、1
3、;
4、
四、解答题
1、解
答等腰三角形的腰为5
2、解
世上没有一件工作不辛苦,没有一处人事不复杂。
不要随意发脾气,谁都不欠你的。