脉冲分频信号产生器.
- 格式:doc
- 大小:5.38 MB
- 文档页数:17
脉冲信号在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。
脉冲信号之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。
频率是描述周期性循环信号(包括脉冲信号)在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是Hz(赫)。
电脑中的系统时钟就是一个典型的频率相当精确和稳定的脉冲信号发生器。
频率在数学表达式中用“f”表示,其相应的单位有:Hz(赫)、kHz(千赫)、MHz(兆赫)、GHz(吉赫)。
其中1GHz=1000MHz,1MHz=1000kHz,1kHz=1000Hz。
计算脉冲信号周期的时间单位及相应的换算关系是:s(秒)、ms(毫秒)、μs(微秒)、ns(纳秒),其中:1s=1000ms,1 ms=1000μs,1μs=1000ns。
CPU的主频,即CPU内核工作的时钟频率(CPU Clock Speed)。
通常所说的某某CPU是多少兆赫的,而这个多少兆赫就是“CPU的主频”。
很多人认为CPU 的主频就是其运行速度,其实不然。
CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。
主频和实际的运算速度存在一定的关系,但目前还没有一个确定的公式能够定量两者的数值关系,因为CPU的运算速度还要看CPU的流水线的各方面的性能指标(缓存、指令集,CPU的位数等等)。
由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。
比如AMD公司的AthlonXP系列CPU大多都能以较低的主频,达到英特尔公司的Pentium 4系列CPU较高主频的CPU性能,所以AthlonXP系列CPU才以PR值的方式来命名。
因此主频仅是CPU性能表现的一个方面,而不代表CPU的整体性能。
CPU的主频不代表CPU的速度,但提高主频对于提高CPU运算速度却是至关重要的。
举个例子来说,假设某个CPU在一个时钟周期内执行一条运算指令,那么当CPU运行在100MHz主频时,将比它运行在50MHz主频时速度快一倍。
分频器的设计一、课程设计目的1.学会使用电路设计与仿真软件工具Hspice,熟练地用网表文件来描述模拟电路,并熟悉应用Hspice内部元件库。
通过该实验,掌握Hspice的设计方法,加深对课程知识的感性认识,增强电路设计与综合分析能力。
2.分频器大多选用市售成品,但市场上出售的分频器良莠不齐,质量上乘者多在百元以上,非普通用户所能接受。
价格在几十元以下的分频器质量难以保证,实际使用表现平庸。
自制分频器可以较少的投入换取较大的收获。
二.内容分频器-概述分频器是指使输出信号频率为输入信号频率整数分之一的电子电路。
在许多电子设备中如电子钟、频率合成器等,需要各种不同频率的信号协同工作,常用的方法是以稳定度高的晶体振荡器为主振源,通过变换得到所需要的各种频率成分,分频器是一种主要变换手段。
早期的分频器多为正弦分频器,随着数字集成电路的发展,脉冲分频器(又称数字分频器)逐渐取代了正弦分频器,即使在输入输出信号均为正弦波时也往往采用模数转换-数字分频-数模转换的方法来实现分频。
正弦分频器除在输入信噪比低和频率极高的场合已很少使用。
分频器-作用分频器是音箱中的“大脑”,对音质的好坏至关重要。
功放输出的音乐讯号必须经过分频器中的各滤波元件处理,让各单元特定频率的讯号通过。
要科学、合理、严谨地设计好音箱之分频器,才能有效地修饰喇叭单元的不同特性,优化组合,使得各单元扬长避短,淋漓尽致地发挥出各自应有的潜能,使各频段的频响变得平滑、声像相位准确,才能使高、中、低音播放出来的音乐层次分明、合拍,明朗、舒适、宽广、自然的音质效果。
在一个扬声器系统里,人们把箱体、分频电路、扬声器单元称为扬声器系统的三大件,而分频电路对扬声器系统能否高质量地还原电声信号起着极其重要的作用。
尤其在中、高频部分,分频电路所起到的作用就更为明显。
其作用如下:合理地分割各单元的工作频段;合理地进行各单元功率分配;使各单元之间具有恰当的相位关系以减少各单元在工作中出现的声干涉失真;利用分频电路的特性以弥补单元在某频段里的声缺陷;将各频段圆滑平顺地对接起来。
"分频"是说通过分频电路,将输入信号的频率进行降低后再输出.经过处理后,输出的信号频率如果是输入信号频率的1/2,叫2分频率;1/3,叫3分频;1/n,叫n分频;分频电路一般可以用数字电路来完成.2-4分频电路,可以用D或者JK触发器来实现.比如2分频原理就是让输入信号有两个脉冲时,输出端才出现一个脉冲,那么假如说输入信号为1000Hz,也就是输入信号每秒种有1000个脉冲,按照上面的原理,每2个输入脉冲才产生一个输出脉冲,那么输出信号就是500Hz,输出信号频率就变成了输入信号的1/2.如果要实现任意进制的分频,简单而且实用的电路是采用计数器电路.集成计数器芯片有74系列的74ls190、74ls191、74ls192等,以及40系列的CD4029等.实现n进制分频的原理是这样的:假如一个二进制计数器,如果计数到了5,那么4个输出端从高位到低位的状态是0101,按照8421码,这个输出就是5,我们可以将这4个输出端从高位到低位的第2、4个输出端的信号接到一个与门的输入端,按照与门的工作特性,只有当两个输入都为1时,输出才为1,而计数器计数到5时,也就是说计数的输入端信号有5个脉冲时,计数的输出端从高位到低位的第2、4个输出端的信号正好都为1,与门才输出1,除此之外的任何情况,与门的两个输入端都不可能同时为1,这就实现了5分频.与"分频"概念对应的还有"倍频".倍频就是使输出端信号频率为输入端信号频率的倍数,实现输出频率为输入频率2、3、4、n倍的电路,分别叫2倍频、3倍频、4倍频、n倍频电路.至于现实中电脑术语里提到的"分频"和"倍频",那是说的是CPU与总线、外设之间工作频率的关系.为什么会有分频、倍频这个说法,按照标准微机原理教科书的说法是,CPU的工作频率可以很高,但是有些外部设备如硬盘、软盘,按照现在技术手段,把他们的工作频率设计成到达CPU的工作频率是不可能的.也就是说,一般情况下,CPU的工作频率永远是高于外部设备的,为了协调CPU与外部设备的工作时序,就只有进行"分频"、"倍频"处理.__原先并没有倍频概念,CPU的主频和系统总线的速度是一样的,但CPU的速度越来越快,倍频技术也就应允而生。
秒脉冲发生器原理一、什么是秒脉冲发生器秒脉冲发生器是一种能够产生持续且稳定的微秒级脉冲信号的设备。
它通常由一个稳定的时钟源和一系列可编程逻辑电路组成,可以按照预定的时间间隔生成脉冲信号。
二、秒脉冲发生器的应用秒脉冲发生器在科研、工业生产以及通信等领域广泛应用。
以下是其一些常见的应用场景:2.1 电子测量在电子测量中,需要对被测物体进行时间测量。
秒脉冲发生器可以提供稳定的时间基准,用于测量信号的时延、周期等参数。
2.2 高速通信在光纤通信和无线通信等领域,需要精确地控制数据的传输速率。
秒脉冲发生器可以用于生成同步时钟信号,保证数据的可靠传输。
2.3 信号调制在无线电通信中,需要将基带信号调制成高频信号进行传输。
秒脉冲发生器可以提供精确的时序控制,实现信号的准确调制。
三、秒脉冲发生器的工作原理秒脉冲发生器的工作原理可以分为以下几个方面:3.1 时钟源秒脉冲发生器的稳定性主要依赖于使用的时钟源。
常用的时钟源有石英晶体振荡器、铯原子钟等。
时钟源会提供一个稳定的振荡周期作为脉冲发生器的基准。
3.2 时钟分频时钟分频是秒脉冲发生器中的关键步骤。
通过将时钟源的频率进行分频,可以得到更低频率的时钟信号,从而实现较长时间间隔的脉冲信号。
常用的分频电路有二分频、十分频等。
3.3 逻辑控制秒脉冲发生器中的逻辑电路用于控制脉冲信号的生成时间和持续时间。
逻辑控制通常采用计数器、触发器等组合逻辑电路实现。
通过编程逻辑电路,可以实现不同频率和时间间隔的脉冲信号。
3.4 输出驱动秒脉冲发生器的输出驱动电路用于提供足够的电流和电压来驱动下游设备。
输出驱动通常采用放大器、缓冲器等电路来增强输出信号的能力。
四、秒脉冲发生器的相关技术和发展趋势4.1 高精度时钟源技术为了提供更稳定和精确的时钟源,目前的研究方向包括使用更高精度的晶体振荡器、开发新型原子钟等技术。
这些技术的发展将使秒脉冲发生器具备更高的精度和稳定性。
4.2 高速时钟分频技术随着通信速率的提升,对于秒脉冲发生器的时钟分频要求也越来越高。
74161分频原理74161是一种常用的分频器,它可以将输入信号的频率分频为较低的频率。
在电子技术领域中,分频器是一种重要的电路元件,广泛应用于通信、计算机、测量等领域。
74161分频器采用二进制计数器的原理,可以将输入信号的频率分为2的n次方倍。
其中,n为计数器的位数。
74161分频器的位数为4位,因此可以将输入信号的频率分为2的4次方倍,即16倍。
74161分频器的工作原理如下:首先,将输入信号接入分频器的时钟输入端(CLK)。
然后,通过设置控制端(CTEN)的电平来选择分频器的工作模式。
当CTEN为高电平时,分频器开始工作;当CTEN为低电平时,分频器停止工作。
在分频器开始工作后,每当输入信号的一个周期结束时,分频器的计数器就会加1。
当计数器的值达到2的4次方时,即为16时,计数器会自动清零,并输出一个脉冲信号。
这个脉冲信号的频率就是输入信号频率的1/16。
除了输出脉冲信号外,74161分频器还可以输出计数器的二进制值。
这些二进制值可以通过输出端(Q0、Q1、Q2、Q3)读取。
当计数器的值为0时,Q0为低电平,Q1、Q2、Q3均为高电平;当计数器的值为1时,Q0为高电平,Q1为低电平,Q2、Q3均为高电平;以此类推,当计数器的值为15时,Q0、Q1、Q2、Q3均为高电平。
74161分频器的应用非常广泛。
在通信领域中,它可以用于频率合成器、频率分析仪等设备中。
在计算机领域中,它可以用于时钟发生器、计时器等设备中。
在测量领域中,它可以用于频率计、频谱分析仪等设备中。
总之,74161分频器是一种常用的分频器,它可以将输入信号的频率分频为较低的频率。
它采用二进制计数器的原理,可以将输入信号的频率分为2的n次方倍。
74161分频器的位数为4位,因此可以将输入信号的频率分为16倍。
它的工作原理简单明了,应用广泛,是电子技术领域中不可或缺的重要元件之一。
数电分频器的作用
数码分频器是一种重要的电路元件,它在现代电子设备中得到了广泛的应用,它的作用是将输入信号中的电压脉冲波形进行调整,并分频输出稳定的脉冲波形。
分频器一般由几个触发器、多路选择器、计数器、控制器等基础电路组成。
数码分频器有很多种形式,它们可以通过不同的输入频率进行操作,这种设备能够将一个较高频率的周期性信号输出为一个更低频率的周期性信号,并保持稳定的输出频率。
在电子技术中,分频器适用于大多数数字逻辑应用,例如计时器、频率合成器、时钟、物理模拟中的正弦波发生器等等。
数码分频器的工作原理是基于二进制计数器实现的。
它们通常采用计数器的输出来对输入信号进行分频。
在计数器到达最大值时,就会产生回归,因此可以进行无限的循环。
这个过程能够根据输入信号的速率进行重新同步,从而实现有效的频率分频。
分频器的主要优势是其非常便宜、易于使用和可靠。
而且,分频器还能够根据特定需要进行定制,因此可以适用于各种不同的应用场合中。
因此,它是现代电子设备中一个非常重要的电路元件,广泛地应用于各种不同领域。
一、实验目的1、了解等精度测频的方法和原理。
2、掌握如何在FPGA内部设计多种功能模块。
3、掌握VHDL在测量模块设计方面的技巧。
二、实验原理所谓频率就是周期性信号在单位时间(1s)内变化的次数。
若在一定时间间隔T(也称闸门时间)内测得这个周期性信号的重复变化次数为N,则其频率可表示为f=N/T由上面的表示式可以看到,若时间间隔T取1s,则f=N。
由于闸门的起始和结束的时刻对于信号来说是随机的,将会有一个脉冲周期的量化误差。
进一步分析测量准确度:设待测信号脉冲周期为Tx,频率为Fx,当测量时间为T=1s时,测量准确度为δ=Tx/T=1/Fx。
由此可知这种直接测频法的测量准确度与被测信号的频率有关,当待测信号频率较高时,测量准确度也较高,反之测量准确度较低。
因此,这种直接测频法只适合测量频率较高的信号,不能满足在整个测量频段内的测量精度保持不变的要求。
若要得到在整个测量频段内的测量精度保持不变的要求,应该考虑待精度频率测量等其它方法。
等精度频率测频的实现方法,可以用图7-1所示的框图来实现。
图7-1 等精度测频实现框图所谓等精度是指该频率计在所测量的整个频段内部,均可实现相同精度的测量,即测量精度与频率无关。
图中预置门信号通常为1s。
其内部包括一个同步门电路,用来实现被测频标与被测频率的同步,提高测量精度,减少基本误差。
该部分与清零脉冲协调工作用来控制两个计数器的启动脉冲。
计数器1和计数器2分别用来给频标和被测数字脉冲计数,设在同步门控制结束时计数器1计数N1,计数器2计数N2,假设频标频率为F1,被测频率位Fx,则可写出公式:Fx/N2=F1/N1; (1)Fx=(F1/N1)* N2 (2)由公式可以看出,测量精度与预置门时间无关,主要由F1的频率稳定度来确定,所以为了提高测量精度,主要是提高频标的频率稳定度,换句话说,测量精度基本上近似于频标的稳定度,若频标的稳定度位10-6,则测量误差边可达到10-6。
CLK通常代表时钟信号(Clock Signal),在电子电路中,分频原理是指将一个高频率的时钟信号转换为低频率的时钟信号的过程。
这通过使用分频器或分频电路实现,分频器可以是一段硬件电路,也可以是由软件实现的数字逻辑。
分频原理的基本过程如下:1. 输入信号:输入信号是一个高频率的时钟信号,例如1MHz(1兆赫兹)。
2. 分频器:分频器接收高频率的时钟信号,并按照预设的分频比进行分频。
分频比是由分频器的电路设计决定的,可以是任何整数,如1、2、3等。
3. 输出信号:分频器输出的信号频率是输入信号频率的倒数。
例如,如果分频比是1/2,那么输出信号将是500kHz(0.5MHz)的时钟信号。
分频器的工作原理通常基于以下几种技术:-振荡器与反馈:使用LC振荡器或RC振荡器产生一个稳定的振荡信号,然后通过反馈网络来控制振荡频率。
反馈网络的设计决定了分频比。
-数字逻辑电路:在数字电路中,可以使用计数器或状态机来实现分频。
计数器按照预设的递减模式计数,当计数到特定的值时,输出一个脉冲信号,从而实现分频。
-触发器与时序:使用触发器和其他时序逻辑元件来控制时钟信号的输出。
当输入时钟信号的边沿到来时,触发器根据其当前状态改变输出,从而实现分频。
分频在电子系统中有很多应用,例如:-降低时钟频率:在数据通信中,高速时钟信号需要被降低到适中的频率,以便于后续的数字信号处理。
-定时与同步:在同步系统中,需要统一的时钟信号来协调不同模块的操作,分频器可以提供这种同步。
-频率转换:在无线通信和雷达系统中,可能需要在不同频率间转换信号,分频器是实现这一转换的关键组件之一。
分频器的实现方式根据应用场景的不同而有所差异,其设计和实现需要考虑到稳定性、精确度和成本等因素。
脉冲电路原理脉冲电路是一种特殊的电路,它能够处理和产生脉冲信号。
脉冲信号是一种短暂的、高幅度的信号,它在电子设备中起着非常重要的作用。
脉冲电路可以用来产生、延时、放大、整形和检测脉冲信号,广泛应用于计算机、通信、雷达、遥感、医疗设备等领域。
本文将介绍脉冲电路的基本原理,以及常见的脉冲电路类型和应用。
脉冲电路的基本原理是利用开关元件(如晶体管、集成电路等)控制信号的开关和放大。
脉冲信号可以是正脉冲、负脉冲或者双向脉冲。
在脉冲电路中,我们通常会用到触发器、计数器、多谐振荡器等元件。
触发器可以用来延时和整形脉冲信号,计数器可以用来计数和分频脉冲信号,多谐振荡器可以用来产生稳定的脉冲信号。
这些元件的组合可以实现各种复杂的脉冲电路功能。
常见的脉冲电路类型包括单稳态电路、多谐振荡电路、斩波电路等。
单稳态电路可以产生一个脉冲信号,然后恢复到稳态;多谐振荡电路可以产生多个频率的脉冲信号;斩波电路可以将一个连续的信号转换成脉冲信号。
这些电路在实际应用中有着各自的特点和优势,可以根据具体需求进行选择和设计。
脉冲电路在通信系统中有着重要的应用。
在数字通信中,脉冲信号可以表示数字信号,经过调制和解调可以实现数字信息的传输。
在雷达系统中,脉冲信号可以用来测量目标的距离和速度。
在医疗设备中,脉冲信号可以用来控制和监测生命体征。
脉冲电路的应用范围非常广泛,它在现代电子技术中扮演着不可或缺的角色。
总之,脉冲电路是一种重要的电子电路,它能够处理和产生脉冲信号,具有广泛的应用前景。
通过对脉冲电路的原理和类型的了解,我们可以更好地应用它来解决实际问题,推动电子技术的发展。
希望本文能够帮助读者更好地理解脉冲电路,并在实际应用中发挥作用。
数控脉冲宽度调制信号发生器摘要:脉冲宽度调制(PWM),简称脉宽调制,是利用微处理器等的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制于变换的许多领域中。
在本设计中设计了一种输出频率高、结构简单、控制方便的数控脉冲宽度调制信号发生器,脉冲的占空比及周期由两个8位的预置输入A、B确定。
核心器件采用Altera公司的CPLD芯片,大大缩减了电路的体积,提高了电路的稳定性,产生的PWM能达到较高的频率。
信号发生器输出脉冲的占空比及周期可通过拔码开关方便地改变。
关键词:脉冲宽度调制,信号发生器,CPLDAbstract: the pulse width modulation (PWM), hereinafter referred to as the pulse width modulation is the use of microprocessors etc to the digital output to the analog circuit to control a very effective technology, widely used in measuring, from communication to power control to transform in many areas. In this design design A kind of high frequency output, simple structure, convenient control numerical control pulse width modulation signal generator, the pulse of empty ratio and cycle by two of the eight preset input of A and B sure. The core device using Altera company CPLD chip, greatly curtailed the volume of the circuit, improve the stability of the circuit, and the resulting PWM can achieve higher frequency. The output pulse signal generator of empty ratio and cycle can be pulled through code switch convenient to change.Keywords: pulse width modulation, signal generator, CPLD目录1、简介 (2)1.1 EDA简介 (2)1.2 Verilog HDL简介 (2)1.3 QuartusII简介 (2)2、总体方案设计 (5)2.1设计内容 (5)2.2设计方案比较 (5)2.3方案论证 (6)2.4方案选择 (7)3、单元模块设计 (8)3.1有源晶振电路 (8)3.2 供电电路 (9)3.3 PS配置电路 (10)3.4 八位计数器输入电路 (11)3.5 D触发器电路 (11)4、特殊器件的介绍 (12)4.1 CPLD器件介绍 (12)4.2 FPGA器件介绍 (12)4.3 EP1K30TC144器件介绍 (13)5、最小系统原理图 (14)6、软件实现 (15)6.1软件设计 (15)6.2思考题扩展 (17)7、系统仿真及调试 (19)7.1仿真 (19)7.2 调试 (20)8、总结 (22)8.1设计小结 (22)8.2设计收获 (22)8.3设计改进 (22)8.4 致谢 (22)9 、参考文献 (23)1.1 EDA简介EDA是电子设计自动化(Electronic Design Automation)的缩写,在20世纪90年代初从计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测试(CAT)和计算机辅助工程(CAE)的概念发展而来的。
设计题目:秒脉冲发生器的设计设计小组:第三组1 秒脉冲发生器整体设计方案1.1秒脉冲发生设计方案概述秒脉冲发生器是由100HZ时钟产生电路和分频电路两部分构成,其中100HZ时钟产生电路主要由555定时器组成的时钟电路,主要用来产生100HZ的脉冲信号;分频电路主要由74LS192组成的100进制计数器电路,主要用于将100HZ 脉冲信号分成1HZ脉冲信号。
该方案通过了Multisim软件仿真,并得到了1HZ的脉冲信号,基本实现了工程训练的要求。
1.2 秒脉冲发生器整体设计电路设计图图1 秒脉冲发生器整体设计电路设计图1.3 秒脉冲发生器整体设计电路仿真图图2 秒脉冲发生器整体设计电路仿真图2 各分电路的元件介绍及设计方案2.1 100HZ时钟产生电路图3 100HZ时钟产生电路2.1.1元件介绍555芯片引脚图及引脚描述:555的8脚是集成电路工作电压输入端,电压为5~18V,以UCC表示;从分压器上看出,上比较器A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。
1脚为地。
2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。
当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平;2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。
6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc/3时才有效。
3脚在高电位接近电源电压Ucc,输出电流最大可打200mA。
4脚是复位端,当4脚电位小于0.4V时,不管2、6脚状态如何,输出端3脚都输出低电平。
5脚是控制端。
7脚称放电端,与3脚输出同步,输出电平一致,但7脚并不输出电流,所以3脚称为实高(或低)、7脚称为虚高。
第10章脉冲波形的产生与整形电路内容提要:本章主要介绍多谐振荡器、单稳态触发器和施密特触发器的电路结构、工作原理及其应用。
它们的电路结构形式主要有三种:门电路外接RC电路、集成电路外接RC电路和555定时器外接RC电路。
10.1概述导读:在这一节中,你将学习:⏹多谐振荡器的概念⏹单稳态触发器的概念⏹施密特触发器的概念在数字系统中,经常需要各种宽度和幅值的矩形脉冲。
如时钟脉冲、各种时序逻辑电路的输入或控制信号等。
有些脉冲信号在传送过程中会受到干扰而使波形变坏,因此还需要整形。
获得矩形脉冲的方法通常有两种:一种是用脉冲产生电路直接产生,产生脉冲信号的电路称为振荡器;另一种是对已有的信号进行整形,然后将它变换成所需要的脉冲信号。
典型的矩形脉冲产生电路有双稳态触发电路、单稳态触发电路和多谐振荡电路三种类型。
(1)双稳态触发电路又称为触发器,它具有两个稳定状态,两个稳定状态之间的转换都需要在外加触发脉冲的作用下才能完成。
(2)单稳态触发电路又称为单稳态触发器。
它只有一个稳定状态,另一个是暂时稳定状态(简称“暂稳态”),在外加触发信号作用下,可从稳定状态转换到暂稳态,暂稳态维持一段时间后,电路自动返回到稳态,暂稳态的持续时间取决于电路的参数。
(3)多谐振荡器能够自激产生连续矩形脉冲,它没有稳定状态,只有两个暂稳态。
其状态转换不需要外加触发信号触发,而完全由电路自身完成。
若对该输出波形进行数学分析,可得到许多各种不同频率的谐波,故称“多谐”。
脉冲整形电路能够将其它形状的信号,如正弦波、三角波和一些不规则的波形变换成矩形脉冲。
施密特触发器就是常用的整形电路,它利用其著名的回差电压特性来实现。
自测练习1.获得矩形脉冲的方法通常有两种:一种是();另一种是()。
2.触发器有()个稳定状态,分别是()和()。
3.单稳态触发器有()个稳定状态。
4.多谐振荡器有()个稳定状态。
10.2 多谐振荡器导读:在这一节中,你将学习:⏹ 门电路构成多谐振荡器的工作原理 ⏹ 石英晶体多谐振荡器电路及其优点 ⏹ 秒脉冲信号产生电路的构成方法多谐振荡器是一种无稳态电路,它不需外加触发信号,在电源接通后,就可自动产生一定频率和幅度的矩形波或方波。
555定时器构成脉冲信号555定时器是一种常用的集成电路,用于产生脉冲信号。
它被广泛应用于计时、频率分频、脉冲宽度调制等领域。
本文将介绍555定时器的原理、工作模式以及应用案例。
一、555定时器的原理555定时器是一种集成电路,由内部电路组成。
其基本原理是通过内部电阻、电容和比较器的工作,实现对输入信号的计时和产生相应的输出脉冲。
二、555定时器的工作模式555定时器有三种常用的工作模式:单稳态、多谐振荡和双稳态。
1. 单稳态模式在单稳态模式下,555定时器输出一个固定时间宽度的脉冲信号。
当触发脚接收到一个低电平信号时,输出端会产生一个高电平脉冲,持续一段时间后恢复为低电平。
这个时间宽度由外部电阻和电容决定。
2. 多谐振荡模式在多谐振荡模式下,555定时器可以产生一系列固定频率的脉冲信号。
通过调节电阻和电容的数值,可以实现不同的频率输出。
3. 双稳态模式在双稳态模式下,555定时器的输出状态会保持不变,直到触发脚接收到一个低电平信号。
这种模式常用于触发器、频率分频等应用。
三、555定时器的应用案例555定时器由于其稳定性和可靠性,被广泛应用于各种电子设备和电路中。
1. 计时器555定时器可以用作计时器,通过调节电阻和电容的数值,实现不同的计时功能。
例如,可以将555定时器配置为一个分钟计时器,用于计算时间。
2. 频率分频器555定时器可以用作频率分频器,通过调节电阻和电容的数值,将输入频率分频为所需的频率。
这种应用常用于数字电子设备中的时钟电路。
3. 脉冲宽度调制555定时器可以用作脉冲宽度调制器,通过改变电阻和电容的数值,调节输出脉冲的宽度。
这种应用常用于通信系统中的调制电路。
4. 声音发生器555定时器可以用作声音发生器,通过改变电阻和电容的数值,调节输出波形的频率和幅度。
这种应用常用于电子乐器和音频设备中。
5. PWM调光控制555定时器可以用作PWM调光控制器,通过改变电阻和电容的数值,实现对LED灯的亮度调节。
分频器的VHDL代码在数字电路中,常需要对较高频率的时钟进行分频操作,得到较低频率的时钟信号。
我们知道,在硬件电路设计中时钟信号是最重要的信号之一。
下面我们介绍分频器的VHDL 描述,在源代码中完成对时钟信号CLK 的 2 分频,4 分频,8 分频,16 分频。
这也是最简单的分频电路,只需要一个计数器即可。
LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY clkdiv ISPORT(clk : IN STD_LOGIC;clk_div2 : OUT STD_LOGIC;clk_div4 : OUT STD_LOGIC;clk_div8 : OUT STD_LOGIC;clk_div16 : OUT STD_LOGIC);END clk_div;ARCHITECTURE rtl OF clk_div ISSIGNAL count : STD_LOGIC_VECTOR(3 DOWNTO 0);BEGINPROCESS(clk)BEGINIF (clk"event AND clk=" 1" ) THENIF(count=” 1111” ) THENCount <= (OTHERS =>" 0" );ELSECount <= count +1;END IF ;END IF ;END PROCESS;clk_div2 <= count(0);clk_div4 <= count(1);clk_div8 <= count(2);clk_div16 <= count(3);END rtl;对于分频倍数不是 2 的整数次幂的情况,我们只需要对源代码中的计数器进行一下计数控制就可以了,如下面源代码描述一个对时钟信号进行 6 分频的分频器。
沈阳航空航天大学课程设计(说明书)脉冲分频信号产生器设计班级24020103学号2012040201131学生姓名郁健指导教师关庆阳沈阳航空航天大学课程设计任务书课程名称电子技术综合课程设计____ 课程设计题目脉冲分频信号产生器课程设计的内容及要求:一、设计说明与技术指标设计一个脉冲分频信号产生器,技术指标如下:①能够输出1KHz脉冲信号;②能够输出10KHz脉冲信号;③能够输出100Hz脉冲信号;二、设计要求1.在选择器件时,应考虑成本。
2.根据技术指标,通过分析计算确定电路和元器件参数。
3.画出电路原理图(元器件标准化,电路图规范化)。
三、实验要求1.根据技术指标制定实验方案;验证所设计的电路,用软件仿真。
2.进行实验数据处理和分析。
四、推荐参考资料1. 童诗白,华成英主编.模拟电子技术基础.[M]北京:高等教育出版社,2006年五、按照要求撰写课程设计报告成绩评定表:序号评定项目评分成绩1 设计方案正确,具有可行性,创新性(15分)2 设计结果可信(例如:系统分析、仿真结果)(15分)3 态度认真,遵守纪律(15分)4 设计报告的规范化、参考文献充分(不少于5篇)(25分)5 答辩(30分)总分最终评定成绩(以优、良、中、及格、不及格评定)指导教师签字:2015 年01 月14日一、概述该脉冲分频信号产生器可以实现10KHZ 、1KHZ 、100HZ 三路频率输出,电路结构相对简单,输出频率相对稳定,且能够有效的实现频率间的转变,具有节能,经济,功能具备的特点。
二、方案论证设计一个脉冲分频信号产生器,技术指标如下: ①能够输出1KHz 脉冲信号; ②能够输出10KHz 脉冲信号; ③能够输出100Hz 脉冲信号; 方案一:方案一原理框图如图1所示。
降频 降频图1 方案一脉冲分频电路的原理框图方案二:方案二原理框图如图2所示。
升频 降频图2 方案二脉冲分频电路的原理框图由555定时器组成的多谐振荡器产生频率为10KHZ 的脉冲信号由74LS160组成的十分频电路 由74LS160组成的十分频电路输出 1KHZ 输出 100HZ 输出 10KHZ由555定时器组成的多谐振荡器产生频率为1KHZ 的脉冲信号 锁相环升频 74LS160降频 输出10KHZ输出100HZ输出1KHZ本设计采用的是方案一,555构成的多谐振荡器电路较容易实现10KHZ的脉冲,由10KHZ的脉冲依次降频分别得到1KHZ和100HZ的脉冲比较容易实现,电路不复杂且性价比较高。
三、电路设计1.由555定时器组成的多谐振荡电路原理图和输出波形图如图3和图4所示图3 由555定时器组成的多谐振荡器图4 输出波形(1)工作原理多谐振荡器由555定时器组成,将555定时器的V1和V2(2脚和6脚)连在一起接成施密特触发器,然后再将V0经RC积分电路接回输入端便构成了多谐振荡器。
当接通电源以后,因为电容上的初始电压为零,所以输出为高电平,并开始经电阻R向电容C充电。
当充到输入电压为V1=VT-时,输出跳变为低电平,电容C又经电阻R开始放电。
当放电至V1=VT-时,输出电位又跳变成高电平,电容C重新开始充电,周而复始,电路便不停的振荡。
V0和V1的电压波形如图4所示。
(2)周期、频率计算由V1的波形可以求得电容C的充电时间T1和放电时间T2。
T1=(R1+R2)*C*ln2 T2=R2*C*ln2故电路的振荡周期为:T=(R1+2R2)*C*ln2 故振荡频率为f=1/T=1/(R1+2R2)*C*ln2通过改变电阻R 和电容C 的参数即可改变振荡频率。
根据设计要求,由555组成的多谐振荡器输出的频率为10KHZ 。
经过计算可取: R1=5KHZ R2=5KHZ C1=10nF 2.十分频电路十分频电路由十进制计数器74LS160构成,74LS160芯片如图5所示其功能表如表一所示。
图5 计数器芯片 表一 74LS160计数器功能表工作原理:十进制计数器74LS160,ABCD 引脚分别是计数器的输入端,ENP 和ENT 是工作状态控制端,正常工作时应接高电位,LOAD 是置数端,CLR 是异步置零端,CLK 是脉冲输入端,RCO 是进位输出端,QAQBQCQD 是计数输出端。
使计数器从零开始计数,ABCD 接地,脉冲输入端CLK 接10KHZ 脉冲信号,根据功能表RD ’、LD ’、ET 和EP 端接高电平,使电路正常计数。
在电路正常工作的情况下,输入端的脉冲每来一次,计数器就开始记一次数,当计数器记到1001时,此时计时器已经经历了10个脉冲,记下了CLK RD' LD' EP ET 工作状态 * 0 * * * 置零 1 0 * * 预置数 * 1 1 0 1 保持 *1 1 * 0 保持C=01111计数十个数,由于是十进制计数器,当第十个脉冲到来时计数器从0000进到1001时,进位输出端输出高电平进位信号,当第十一个脉冲到来时,计数器回到0000状态开始新一轮的计数,此时进位输出端从高电平越变到低电平,形成一个脉冲,周而复始,每经过十个CLK脉冲信号,进位输出端就会产生一个脉冲,把进位输出端作为信号产生器的输出端,就会产生与CLK脉冲信号差十倍的脉冲信号,从而实现了分频。
由555定时器产生的10KHZ脉冲信号一次经过分频电路就会分别得到1KHZ和100HZ的脉冲信号。
分频电路如图6所示。
图6 十分频电路四、性能测试1.由555定时器组成的多谐振荡器的测试。
输出波形如图7所示图7 由555定时器组成的多谐振荡器的输出波形表2 多谐振荡器电路测试数据表R1值(kΩ)R2值(kΩ)C(nF)周期(us) 频率(KHZ)5 5 10 100.379 9.9622.十分频降频电路的测试由10KHZ脉冲信号经十分频电路分频到1KHZ的输出波形和频率计显示结果如图8图9所示。
图8 十分频电路输出波形图9 频率计显示结果表3 分频电路测试数据表由1KHZ 脉冲信号经十分频电路分频到100HZ 的输出波形和频率计显示结果如图10和图11所示。
图10 十分频电路输出波形图11 频率计显示结果CLK 脉冲信号频率(KHZ) 输出信号周期(ms) 输出信号频率 (KHZ) 100.9791.021测试数据如表4所示表4 分频电路测试数据表3.脉冲分频信号产生器总电路测试。
10KHZ 、1KHZ 、100HZ 三路输出波形如图12所示。
图12 三路输出波形五、结论本实验方案所设计的脉冲分频产生器是以555定时器和计数器74LS160为核心组成的,其中由555定时器组成的多谐振荡器产生10KHZ 频率的脉冲,由计数器74LS160组成十分频电路,分别产生1KHZ 和100HZ 的脉冲信号。
该实验方案所设计的电路具有结构简单,较容易实现的特点,从经济的角度考虑,本实验只采用了三片芯片,一片555定时器和两片计数器74LS160,节省了制作成本,从功能上考虑,具有10KHZ 、1KHZ 、100HZ 的三路输出频率,实现了所具有的输出功能。
但本实验方案也有一定的缺点,由于电路采用了连续降频的设计方案,存在着输出误差,其中对误差影响最大的是多谐振荡器输出的频率,为了减小误差,应尽量的调整多谐振荡器的电容或电阻,使其输出频率达到10KHZ ,以减小对后续电路输出频率的影响。
该实验方案存在着优点也存在着缺点,也有一定的局限性,只能输出三路频率,不能输出其他频率,为加强电CLK 脉冲信号频率(KHZ) 输出信号周期(ms) 输出信号频率(HZ)19.846101.563路的功能性和提高输出频率的精确度,可对电路进行改进,把多谐振荡器的固定电阻R1或R2换成可调电阻,或把电容C1换成可调电容,通过调节,就可以获得不同的频率,使脉冲分频器的功能更加完备,另外通过调节电阻或电容的大小,也会大大降低电路的输出误差。
参考文献[1] 阎石主编. 数字电子技术. [M]北京:高等教育出版社,2006年[2] 陈振官等编著. 新颖高效声光报警器. [M]北京:国防工业出版社,2005年[3] 童诗白主编. 模拟电子技术基础. [M]北京:高等教育出版社,2006年[4] 邱关源主编. 电路. [M]北京:高等教育出版社,2005年[5] 谢昭光主编. 分频器设计与制作. [M]辽宁:辽宁科学技术出版社,1985年[6] 杨鲁平主编. 数字电子技术基础. [M]成都:电子科技大学出版社,2009年[7] 王冠华主编. Multisim10电路设计及应用. [M]北京:国防工业出版社,2008年[8] 郑君里主编. 脉冲数字电路及应用. [M]北京:人民邮电出版社,1985年[9] 王毓银主编. 脉冲与数字电路. [M]北京:高等教育出版社,1985年[10] 王家礼主编. 频率合成技术. [M]西安:西安电子科技大学出版社,2009年附录I 总电路图附录II 元器件清单序号编号名称型号数量1 U1555定时器LM555CN 12 U2计数器74LS106 23 R1 电阻5KΩ 24 R2 电阻100Ω 35 C1 电容10nF 16 C2 电容1uF 17 D1 二极管SB560 58 LED 发光二极管 39 J1 开关 31011附录III 实物图输出10KHZ波形图10KH分频到1KHZ波形输出1KHZ分频到100HZ波形。