自动重合闸的作用及要求
- 格式:doc
- 大小:875.50 KB
- 文档页数:9
第六章自动重合闸第一节自动重合闸的作用及对它的基本要求一、自动重合闸的作用电力系统中的故障,大多数是送电线路的故障,其中架空线路的故障率最高。
架空线路故障大多是“瞬时性”的,例如由雷电引起的绝缘子表面闪络,大风引起的碰线,通过鸟类以及树枝等掉落在导线上引起的短路等。
当线路被继电保护迅速断开后,电弧自行熄灭,故障点的绝缘强度重新恢复,外界物体被移开或烧掉而消失。
此时,如果把断开的线路断路器再合上,就能恢复正常的供电,因此称这类故障是“瞬时性故障”。
对于由于线路倒杆﹑断线﹑绝缘子击穿或损坏等引起的故障,称为“永久性故障”。
因为在线路被断开后,它们仍然存在,此时即使再合上电源,线路会被继电保护再次断开,不能恢复正常的供电。
由于架空线路发生瞬时性故障的概率很高,因此,在线路被断开后再进行一次合闸,就有可能大大提高供电的可靠性。
为此在电力系统中广泛采用了自动重合闸装置(缩写为AR),即当断路器跳闸之后,能够自动地将断路器重新合闸的装置。
在线路上装设重合闸装置以后,由于它不能够判断是瞬时性故障还是永久性故障,因此,在重合以后可能成功恢复供电,也可能不成功。
用重合成功的次数与总动作次数之比来表示重合闸的成功率,根据运行资料的统计,成功率一般在60%~90%之间。
在电力系统中采用重合闸技术有显著的技术经济效果,可以大大提高供电的可靠性,减少线路停电的次数,这对单侧电源的单回线路尤为显著;在高压输电线路上采用重合闸,还可以提高电力系统并列运行的稳定性,从而提高输电线路的输送容量。
而且重合闸的投资很低,工作可靠,因此,在架空线路上获得了广泛的应用。
但是,如果重合于永久性故障,将使电力系统再一次受到故障的冲击,并可能降低系统并列运行的稳定性;而且要求断路器在很短的时间内连续两次切断短路电流,会使其工作条件变得更加严重。
因而,在短路容量较大的电力系统中,这些不利的条件往往限制了重合闸的使用。
二、对自动重合闸的基本要求一般情况下,当值班人员手动操作或遥控操作断路器跳闸时,或手动合闸于故障线路而跳闸时,自动重合闸装置均不应该进行合闸动作。
第六章自动重合闸第一节自动重合闸的作用及要求一、自动重合闸在电力系统中的作用架空线路故障大都是“瞬时性”的故障,在线路被继电保护迅速动作控制断路器断开后,故障点的绝缘水平可自行恢复,故障随即消失。
此时,如果把断开的线路断路器重新合上,就能够恢复正常的供电。
此外,也有“永久性故障”,“永久性故障”在线路被断开之后,它们仍然是存在的,即使合上电源,也不能恢复正常供电。
因此,在电力系统中采用了自动重合闸装置,即是当断路器由继电保护动作或其它非人工操作而跳闸后,能够自动控制断路器重新合上的一种装置。
二、重合闸在电力系统中的作用•大大提高供电的可靠性,减少线路停电的次数。
•在高压输电线路上采用重合闸,可以提高电力系统并列运行的稳定性。
•在架空线路上采用重合闸,可以暂缓架设双回线路,以节约投资。
•对断路器本身由于机构不良或继电保护误动作而引起的误跳闸,也能起纠正的作用。
但是,当重合于永久性故障上时,它也将带来一些不利的影响,如:(1)使电力系统又一次受到故障的冲击;(2)由于断路器在很短的时间内,连续切断两次短路电流,而使其工作条件变得更加恶劣。
三、对自动重合闸装置的基本要求•正常运行时,当断路器由继电保护动作或其它原因而跳闸后,自动重合闸装置均应动作。
•由运行人员手动操作或通过遥控装置将断路器断开时,自动重合闸不应起动。
•继电保护动作切除故障后,自动重合闸装置应尽快发出重合闸脉冲。
•自动重合闸装置动作次数应符合预先的规定。
•自动重合闸装置应有可能在重合闸以前或重合闸以后加速继电保护的动作,以便加速故障的切除。
•在双侧电源的线路上实现重合闸时,重合闸应满足同期合闸条件。
•当断路器处于不正常状态而不允许实现重合闸时,应将自动重合闸装置闭锁。
第二节单侧电源线路的三相一次自动重合闸三相一次自动重合闸就是在输电线路上发生任何故障,继电保护装置将三相断路器断开时,自动重合闸起动,经0.5~1s的延时,发出重合脉冲,将三相断路器一起合上。
05自动重合闸习题答案1、输电线路装设自动重合闸的作用,对自动重合闸装置有哪些基本要求?作用:(1)提高输电线路供电可靠性,减少因瞬时性故障停电造成的损失。
(2)对于双端供电的高压输电线路,可提高系统并列运行的稳定性,从而提高线路的输送容量。
(3)可以纠正由于断路器本身机构不良,或继电保护误动作而引起的误跳闸。
基本要求(1)ARD宜采用控制开关SA位置与断路器QF位置不对应的起动方式。
(2)ARD动作应迅速。
(3)ARD的动作次数应符合预先的规定。
(4)ARD应能在重合闸动作后或动作前,加速保护的动作。
(5)ARD动作后,应自动复归,准备好再次动作。
(6)手动跳闸时不应重合。
(7)手动合闸于故障线路时,保护动作使断路器跳闸后,不应重合。
(8)ARD可自动闭锁。
当断路器处于不正常状态(如气压或液压低)不能实现自动重合闸时,或自动按频率减负荷装置(AFL)和母差保护(BB)动作不允许自动重合闸时,应将ARD闭锁。
2、试说明图5-1所示重合闸装置接线,当线路发生永久性故障时,只重合一次。
ARD第一次使QF重合后,保护将再次动作使QF第二次跳闸,ARD再次起动,KT励磁,经tKT后,由于C充电时间(tP2+tYT+tKT)短,小于15~25,C来不及充电到UKM,KM不动作,因此QF不能再次重合。
3、图5-1所示的重合闸装置中,1)为什么KM要带自保持,2)是如何防止断路器“跳跃”的?为什么?1)由于C对KM电压线圈放电只是短时起动,不能保证合闸过程KM一直处在动作状态,于是通过自保持电流线圈使KM在合闸过程中一直处于动作状态,从而使断路器可靠合闸;2)当保护第二次动作,KCF动作,KCF1闭合,如果KM触点粘住而不能返回,则KCF电压线圈得到自保持,KCF2一直断开,切断了KMC的合闸回路,当QF第二次跳闸时,防止了QF第二次合闸。
4、对于图5-1所示重合闸装置接线,1)电容C绝缘电阻下降严重,已经降至下,运行中有什么现象发生?为什么?2)有人更换电阻3.4K ,运行中有什么现象发生?为什么?时,误将3.4M数值以换成1)运行中将发生C不能正常充电,不能实现重合闸。
考点5:输电线路自动重合闸的作用和要求1、自动重合闸的作用在电力系统中,线路是发生故障最多的元件,故障分为瞬时性故障和永久性故障两种。
运行经验表明,架空线路故障大多数为瞬时性的,永久性故障一般不到10%。
瞬时故障有雷击过电压引起的绝缘子表面闪络、大风引起短时碰线、线路对树枝放电、鸟害或风筝线索等落在导线上引起短路等。
对瞬时性故障,当故障线路由断路器跳闸与电源断开后,故障点经过去游离,电弧可以熄灭,绝大多数情况下绝缘可以自动恢复,故障随即自动消除,这时如果重新使断路器合闸,往往能够恢复供电,从而提高供电的可靠性。
永久性故障有绝缘子击穿或损坏、线路倒杆或断线等引起的故障。
对永久性故障,即使故障线路与电源断开,故障仍然存在,如果重新使断路器合闸,继电保护会再次动作将已合闸的断路器再次跳开,供电不能得到恢复。
线路上发生瞬时性故障时,重合断路器的工作如果由运行人员手动操作进行,则停电时间太长,降低了供电的可靠性和重合闸的成功率,因此在电力系统中广泛采用自动重合闸装置。
线路上发生故障,继电保护动作使断路器跳闸后,使断路器自动合闸的装置称为自动重合闸装置,实际上,自动重合闸装置是将非正常操作断开的断路器按需要自动重新合闸的一种自动装置。
自动重合闸成功次数除以重合闸应该动作的总次数的百分数为重合闸成功率。
运行统计资料表明,线路重合闸成功率很高,约在60%~90%。
线路采用自动重合闸装置后,其作用可归纳如下:1)发生瞬时故障时自动恢复正常供电,提高供电可靠性;2)弥补继电保护选择性不足,纠正各种情况造成的断路器的误跳闸;3)与继电保护配合,在很多情况下能够加速切除故障;4)对双侧电源供电的线路,提高并列运行的稳定性。
但是,当断路器重合闸于永久性故障时,故障电流再次出现,继电保护再次动作跳开断路器切除故障,这一过程会带来一些不良影响,主要有:1)使电力系统以及一些电气设备再次受到故障冲击;2)断路器负担加重,在很短时间内两次切断短路电流。
第六章自动重合闸第一节自动重合闸的作用及要求一、自动重合闸在电力系统中的作用架空线路故障大都是“瞬时性”的故障,在线路被继电保护迅速动作控制断路器断开后,故障点的绝缘水平可自行恢复,故障随即消失。
此时,如果把断开的线路断路器重新合上,就能够恢复正常的供电。
此外,也有“永久性故障”,“永久性故障”在线路被断开之后,它们仍然是存在的,即使合上电源,也不能恢复正常供电。
因此,在电力系统中采用了自动重合闸装置,即是当断路器由继电保护动作或其它非人工操作而跳闸后,能够自动控制断路器重新合上的一种装置。
二、重合闸在电力系统中的作用•大大提高供电的可靠性,减少线路停电的次数。
•在高压输电线路上采用重合闸,可以提高电力系统并列运行的稳定性。
•在架空线路上采用重合闸,可以暂缓架设双回线路,以节约投资。
•对断路器本身由于机构不良或继电保护误动作而引起的误跳闸,也能起纠正的作用。
但是,当重合于永久性故障上时,它也将带来一些不利的影响,如:(1)使电力系统又一次受到故障的冲击;(2)由于断路器在很短的时间内,连续切断两次短路电流,而使其工作条件变得更加恶劣。
三、对自动重合闸装置的基本要求•正常运行时,当断路器由继电保护动作或其它原因而跳闸后,自动重合闸装置均应动作。
•由运行人员手动操作或通过遥控装置将断路器断开时,自动重合闸不应起动。
•继电保护动作切除故障后,自动重合闸装置应尽快发出重合闸脉冲。
•自动重合闸装置动作次数应符合预先的规定。
•自动重合闸装置应有可能在重合闸以前或重合闸以后加速继电保护的动作,以便加速故障的切除。
•在双侧电源的线路上实现重合闸时,重合闸应满足同期合闸条件。
•当断路器处于不正常状态而不允许实现重合闸时,应将自动重合闸装置闭锁。
第二节单侧电源线路的三相一次自动重合闸三相一次自动重合闸就是在输电线路上发生任何故障,继电保护装置将三相断路器断开时,自动重合闸起动,经0.5~1s的延时,发出重合脉冲,将三相断路器一起合上。
若为瞬时性故障,则重合成功,线路继续运行;若为永久性故障,则继电保护再次动作将三相断路器断开,不再重合。
一、电磁式三相一次自动重合闸的工作原理和构成正常情况断路器处于合闸状态,QF1断开→2KM失电→2KM1断开。
而SA处在合后位置,其触点SA21-23接通,触点SA2-4断开→重合闸投入,指示灯HL亮。
重合闸继电器的电容C经4R充电,经 10~ 15s后,电容器 C两端电压等于电源电压,此电压可使中间继电器KM起动。
线路发生故障时:断路器跳开后,QF1闭合→2KM得电→2KM1闭合→起动KT→KT经过约0.5~1s的延时→KT1闭合→电容器C放电→KM起动→闭合其常开触点KM1、KM2、KM3。
→发出合闸脉冲。
若为瞬时性故障断路器合闸后,KM因电流自保持线圈失去电流而返回。
同时,2KM失电→2KM1断开→KT失电,触点KT1断开→电容器C经4R重新充电,经10~15s又使电容C两端建立电压。
整个回路复归,准备再次动作。
若为永久性故障断路器合闸后,继电保护动作再次将断路器断开→QF1闭合→2KM得电→2KM1闭合,KT起动→KT1经过约0.5~1s的延时闭合→电容器C放电。
思考:KM会不会起动?手动跳闸SA 发出预跳命令→其触点SA2-4接通→将C上的电荷瞬时放掉。
SA发出跳闸命令→其触点SA6-7接通→断路器跳闸→ 2KM1闭合→KT起动,经过约0.5~1s的延时→KT1闭合。
这时,储能电容器C两端早已没有电压,KM不能起动→重合闸不能重合。
手动合闸SA发出跳闸命令→ SA5-8触点闭合,接通合闸回路,QF合闸。
SA25-28触点闭合,起动加速继电器3KM。
当合于故障线路时,保护动作,经3KM的常开触点使QF加速跳闸。
C尚未充满电,不能使KM起动,所以断路器不能自动重合。
说明:防跳继电器1KPJL的功用:在手动合闸及自动重合闸过程中防止断路器跳跃。
如:当KM1、KM2、KM3接点卡住或粘住时,可以由1KM来防止将断路器多次重合到永久性故障上。
二、单侧电源线路晶体管型三相一次自动重合闸的工作原理当线路正常运行时断路器在合闸位置,QF1接点接通,三极管VT1截止,电容器C3两端经R5和R6充满至电源电压,1点电位为+E,2点电位为0V,充满此电压所需的时间为15~25s。
由于2点电位为0V,因此,稳压管VS2(其击穿电压选为10V)截止,VT2由R7供给基流而导通,VT2的导通使VT3截止,因此信号继电器KS和重合闸执行继电器1KM均不动作。
当线路发生故障时断路器跳闸,QF1接点打开→ C1经R1充电,经预定的延时后,C1两端充电电压达稳压管W1的击穿电压→VT1经R1和VS1供给基流而导通,故VDl也正向导通→1点电位突变为0V,2点电位被迫变为-E →VS2被击穿,使负电压加于VT2的基极→ VT2截止,随之VT3导通,1KM和KS动作,向断路器发出合闸脉冲,同时给出重合闸动作的信号。
若线路发生的是永久性故障时则在重合闸以后,继电保护将再次动作跳闸→此时QF 1接点又将打开→”重合闸起动与时间元件”动作同前→使VT 1导通,但是由于C 3尚来得及充满电压→ VT 2并不截止,“一次合闸脉冲元件”就不会再发出宽度为0.1秒的脉冲,这就保证了只进行一次重合。
控制开关手动跳闸时当控制开关在预跳位置, SA 2接点接通→一方面接通了C 3经R 4和D2的放电回路,使C 3放电→另一方面又使VT 2的集电极输出经VD 4接通0V ,实现手动闭锁就保证了手动跳闸以后不致重合。
在手动跳闸以后。
QF 1接点打开,则C 3一直处于放电状态。
用控制开关手动合闸时合闸后QF 1接点接通→VT 1截止,C 3开始充电→经 15~25s 时间后,C 3充满电压。
如果线路上存在故障→继电保护动作跳闸后→ C 3两端的充电电压尚不足以使V 2截止→不会发生断路器自动重合。
第三节 双侧电源线路的三相一次重合闸一、 双侧电源线路重合闸的特点(1)当线路上发生故障时,两侧的保护装置可能以不同的时限动作于跳闸,例如一侧为第I 段动作,而另一侧为第II 段动作,此时为了保证故障点电弧的熄灭和绝缘强度的恢复,以使重合闸有可能成功,线路两侧的重合闸必须保证在两侧的断路器都跳闸以后,再进行重合;(2)当线路上发生故障跳闸以后,常常存在着重合闸时两侧电源是否同步,以及是否允许非同步合闸的问题。
二、快速自动重合闸方式 采用快速重合闸的条件如下:• 必须装设全线速动保护,如高频保护。
• 线路两侧装设可以进行快速重合闸的断路器,如快速空气断路器。
• 在两侧断路器非同期重新合闸瞬间,输电线路上出现的冲击电流,不能超过电力系各元件的冲击电流的允许值。
如对于变压器三、具有同步检定和无电压检定的重合闸 线路发生故障: 两侧断路器跳闸以后,检定线路无电压的M 侧重合闸首先动作,使断路器投入。
若重合不成功:断路器再次跳闸。
N 侧同步检定继电器不动作,该侧重合闸不起动。
若重合成功:N 侧在检定同步之后,再投入断路器,线路即恢复正常工作。
e B I X I 1≤思考:在检定线路无电压一侧的断路器,如重合不成功,就要连续两次切断短路电流,因此,该断路器的工作条件就要比同步检定一侧断路器的工作条件恶劣。
如何解决这个问题呢?解决方法:通常在每一侧都装设无电压检定和同步检定的继电器,利用联接片进行切换,使两侧断路器轮换使用每种检定方式的重合闸,因而使两侧断路器工作的条件接近相同。
思考:在使用检查线路无电压方式的重合闸的M 侧,当其断路器在正常运行情况下由于某种原因而跳闸时,由于对侧并未动作,因此,线路上有电压,因而就不能实现重合。
如何解决这个问题呢?解决方法:通常都是在检定无电压的一侧也同时投入同步检定继电器,两者的触点并联工作。
此时如遇有上述情况,则同步检定继电器就能够起作用,当符合同步条件时,即可将误跳闸的断路器重新投入。
无电压检定继电器:就是一般的低电压继电器,其整定值的选择应保证只当对侧断路器确实跳闸之后,才允许重合闸动作。
根据经验,通常都是整定为0.5倍额定电压。
电磁型同步检定继电器内部接线: 由铁芯、两个电压线圈、反作用弹簧及触点等构成。
两个电压线圈,分别从母线侧和线路侧的电压互感器上接入同名相结论:∆U 的大小与断路器两侧电压的幅值和相位差δ有关,如δ=0︒时,∆U=0,Φ∑=0,δ增加,Φ∑也增大,则作用于活动舌片上的电磁力矩增大。
当δ大到一定数值后,电磁吸力吸动舌片,即把继电器的常闭触点打开,将重合闸闭锁,使之不能动作。
当U M =U N 时、≤δ20︒时,同步检定继电器KVV 常闭触点闭合,起动重合闸继电器,重合闸继电器经0.5~1s 后,发出合闸脉冲。
2sin2M U U =∆第四节 自动重合闸与继电保护的配合一、自动重合闸前加速 当线路发生故障时,继电保护加速电流保护的第III 段,造成无选择性瞬时切除故障,然后重合闸进行一次重合。
若重合于瞬时性故障,则线路就恢复了供电。
若重合于永久性故障,则保护带时限有选择性地切除故障。
系统的每条线路都装设过电流保护,1QF 处装设自动重合闸装置,变电站B 和C 没有装自动重合闸装置。
当d 1点或d2点短路时,1QF 的过电流保护动作,通过加速继电器3KM 的常闭触点瞬时跳闸。
1QF 跳开后,起动重合闸继电器进行重新合闸,与此同时,起动加速继电器3KM ,加速继电器3KM 的常闭触点断开。
若重合不成功,过电流保护再次动作,这时通过KT 的延时接点有选择性地切除故障。
应用 :用于35kV 以下由发电厂或重要变电所引出的直配线路上。
采用前加速保护的优点:(1) 能快速地切除瞬时性故障。
(2)使瞬时性故障不至于发展成永久性故障.从而提高重合闸的成功率。
(3)使用设备少,只需装设一套重合闸装置,简单、经济。
采用前加速保护的缺点:(1) 断路器1QF 的工作条件恶劣,动作次数增多。
(2)对永久性故障,故障切除时间可能很长。
(3)如果重合闸或断路器1QF 拒绝合闸,将扩大停电范围。
UU MU LOδ2δ二、自动重合闸后加速就是当线路发生故障时,首先保护有选择性动作切除故障,重合闸进行一次重合。
若重合于瞬时性故障,则线路恢复供电:如果重合于永久性故障上,则保护装置加速动作,瞬时切除故障。
当输电线路上发生故障时,KA动作→KT得电→KT触点延时闭合→起动K,OM 即继电保护有选择性地动作。
重合闸进行重新合闸,与此同时,将加速继电器3KM起动→其常开触点瞬时闭合而延时返回。
若发生的是永久性故障,则过电流保护再次起动,这时通过,切除故障。
3KM的常开触点瞬时起动KOM应用:应用于35KV以上的网络及对重要负荷供电的送电线路上。
后加速保护的的优点:(1)第一次有选择性的切除故障,不会扩大停电范围。