聚酰亚胺薄膜的改性、分类及其在电子行业中的应用

  • 格式:doc
  • 大小:52.50 KB
  • 文档页数:13

下载文档原格式

  / 14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚酰亚胺薄膜的改性、分类及其在电子行业中的应用

摘要

聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达 400℃以上,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数4.0,介电损耗仅0.004~0.007。而由于其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是"解决问题的能手",并认为"没有聚酰亚胺就不会有今天的微电子技术"。由于上述聚酰亚胺在性能上的特点,在众多的聚合物中,很难找到如聚酰亚胺这样具有如此广泛的应用方面,而且在每一个方面都显示了极为突出的性能。

首先是在薄膜上的应用:它是聚酰亚胺最早的商品之一,用于电机的槽绝缘及电缆绕包材料。主要产品有杜邦Kapton,宇部兴产的Upilex系列和钟渊Apical。透明的聚酰亚胺薄膜可作为柔软的太阳能电池底板。其次是在微电子器件中的应用:用作介电层进行层间绝缘,作为缓冲层可以减少应力、提高成品率。作为保护层可以减少环境对器件的影响,还可以对a-粒子起屏蔽作用,减少或消除器件的软误差。再则还可应用在电-光材料中:其用作无源或有源波导材料光学开关材料等,含氟的聚酰亚胺在通讯波长范围内为透明,以聚酰亚胺作为发色团的基体可提高材料的稳定性。

聚酰亚胺作为很有发展前途的高分子材料已经得到充分的认识,在绝缘材料中和结构材料方面的应用正不断扩大。在功能材料方面正崭露头角,其潜力仍在发掘中。

关键词:聚酰亚胺;薄膜;低介电常数;电子工业

1.引言

聚酰亚胺(PI)是重复单元中含有酰亚胺基团的芳杂环高分子化合物,刚性酰亚胺结构赋予了聚酰亚胺独特的性能,如良好的力学性能、耐高温性能、尺寸稳定性、耐溶剂性等,成功应用于航空、航天、电子电器、机械化工等行业。随着微电子工业的不断发展,对相关材料的耐热性能以及介电性能等提出了更高的要求,这为PI材料在微电子领域内的应用起到了极大的推动作用[1]。而随着科技的日新月异与工业技术的蓬勃发展,聚酰亚胺薄膜(Polyimide Film,简称PI)除能符合各类产品的基本物性要求,更具备高强度、高韧性、耐磨耗、耐高温、防腐蚀等特殊性能,可符合轻、薄、短、小之设计要求,是一种具有竞争优势的耐高温的绝缘材料。经过四十多年的发展,已经成为电子、电机两大领域上游重要原料之一,广泛应用于软板、半导体封装、光伏(太阳能)能源、液晶显示器等电子领域,在电机领域应用于航天军工、机械、汽车等各产业绝缘材料[2]。本论文通过介绍聚酰亚胺膜的各种改性方法及研究进展,来进一步认识其在电子行业中的应用。

2.对聚酰亚胺的不同改性尝试

根据Clausius-Mosotti方程,材料的介电常数与其摩尔极化率和摩尔体积密切相关[3]。如果分子的对称性好,在外加电场中不容易被极化,材料就具有较低的介电常数,如有机高分子;若分子变形能力强容易被极化,材料就具有较高的介电常数,如金属离子。因此,要得到低介电常数PI 绝缘材料,一种行之有效的方法就是引入原子序数小的元素,如氟元素,并减少离子键的数目。降低PI 介电常数的方法主要包括引入氟原子降低PI的极化率、引入硅氧烷增大PI 分子的自由体积、引入孔洞降低PI 材料的密度等。事实上,这些方法常常被结合起来使用以达到更好的效果[4]。

2.1 引入氟原子降低PI 的极化率

由于C—F键的偶极极化能力较小,且能够增加分子间的空问位阻,因而引入C—F键可以有效降低介电常数,使得含氟聚酰亚胺(Fluorinated Poly.imide,FPI)在微电子领域的应用相当广泛。人们相继开发出了一系列含有全氟脂肪链、含三氟甲基和六氟丙基、芳氢氟代、含氟侧基以及全氟的聚酰亚胺。其中,以通过在单体化学结构中引入三氟甲基提高含氟量的方法最为常见,这是因为庞大的三氟甲基的引入既能够阻止高分子链的紧密堆积,有效地减少高度极化的二酐单元的分子间电荷传递作用,还能进一步增加高分子的自由体积分数,达到降低介电常数的目的。

2.2 引入硅氧烷增大PI自由体积

由于聚合物自由体积的增大可以降低单位体积内极性基团的数量,实验中常采用加入硅氧烷如笼型倍半硅氧烷(POSS) 的方式。S.Devaraju 等[5]在由双酚A 醚二胺(BEAD) 和均苯四甲酸二酐(PMDA) 制备得到的PI 中引入OAPS,未加入OAPS 的PI 介电常数为3.34,而OAPS 在体系中质量分数为15% 时,可获得介电常数低至2.68 的POSS-PI 杂化材料。基于分子层面设计的低介电材料可用于集成电路工业,T. Seckin 等[6]将POSS 通过多点连接PI 制备了一种POSS–PI 星形纳米复合材料。包含PI 的POSS–NH2 表现出许多可取的特性,包括低的水

吸附性和高的热稳定性。研究表明,在PI 分子主链中适当引入POSS,能使材料的介电常数降低,同时改善其力学性能和热性能。N. Kivilcim 等[7]研究了基于四甲酸二酐和2,5-二氨基吡啶的PI 有机溶剂体系制备高度多孔聚合物–硅杂化材料的方法。3-氨基丙基三乙氧基硅烷(APS) 被用来增强链内的化学成键和跨链间的氢键,能够有效地影响所制备的膜的形态和特性,介电常数随着被SiO

2

改性的APS含量的增加而有效降低。

2.3 引入孔洞降低PI密度

对于多孔材料来说,孔隙率越高,则材料密度越低,因而介电常数越低。为此研究人员探索各种致孔方法,引入纳米级的分散孔隙,制备具有纳米微孔的PI 薄膜。材料除了被使用在集成电路中,多孔PI材料还被用于染料敏化太阳能电池中[8]。

贾红娟等[9]将纳米SiO

2

加入4,4'- 二胺基二苯醚(ODA) 和PMDA 中,原位

缩聚合成PI/SiO

2复合薄膜。用氢氟酸刻蚀SiO

2

纳米粒子,形成具有微孔的PI

薄膜。当致孔剂含量为15% 时,薄膜的介电常数从纯PI 的3.54 降低至3.05 (1

kHz)。W. Kim 等[10]通过在垂直的硅纳米线阵列上固化聚酰胺酸溶液后,使用二氟化氙(XeF

2

) 选择性地蚀刻掉硅纳米线阵列。孔隙的大小和密度是可控的:前者依赖于纳米线直径和蚀刻的持续时间,而孔隙密度由硅纳米线的密度决定。溶胶-凝胶过程也被用来制备含硅PI 杂化膜,Zhang Yihe 等[11]将PI前驱体和四

乙基原硅酸盐在DMAc 中混合,再以氢氟酸蚀刻杂化膜中的SiO

2

粒子,所得多孔膜比含硅杂化膜具有相对较低的介电常数。

Zhang Yaoming 等[12]发现加入SiO2 纳米粒子后,PI前驱体溶液在干燥过程中会形成由纯纳米粒子,纯聚合物以及两者混合物构成的三层结构,除去纳米粒子后可以获得多孔PI。Wang Qihua 等[13]也用此法制备了孔径可控的低介电微孔PI 材料,当孔隙率达到37% 时,PI介电常数从4.11下降至2.57。

在实际应用中,研究者更多的是将多种方法相结合以达到更低的介电常数。此外,近年来,也有研究者致力于PI 的高性能化,期望得到既有低介电性又有高力学性能的PI 材料。