调速器的基础知识
- 格式:doc
- 大小:63.00 KB
- 文档页数:7
调速器一、调速器的概述1、喷油泵的速度特性:在油量调节拉杆位置不变时,喷油泵每一循环供油量随转速变化而变化的关系。
产生喷油泵速度特性的原因:由于柱塞套上回油孔的节流作用,当n增加时,喷油器“早喷晚停”,供油量增加,反之,n下降时,供油量略有减少。
2、喷油泵速度特性对柴油机工作的影响:1、转速升高每循环供油量增加,充气系数下降,造成油多气少而冒黑烟,形成恶性循环而“超速”(飞车),严重时旋转机件损坏2.转速降低每循环供油量减少,充气系数上升,造成油少气多而“游车”(不稳定),甚至熄火。
3、调速器的功用:在发动机工作时,根据负荷情况,自动调节供油量,以稳定柴油机转速,并使之不发生超速和熄火。
4、调速器的分类:(1)两速式调速器:只稳定和限制柴油机的最高与最低转速,中间转速由人工操纵。
(2)全速式调速器:使发动机在全转速范围内稳定工作。
二、机械离心式调速器的工作原理:1、基本工作原理:离心元件产生的离心力随发动机转速的改变而改变,利用离心元件产生的离心力与调速弹簧不断取得平衡的过程,带动供油拉杆移动,改变供油量。
2、基本组成:离心力产生元件:飞球或飞块,支撑盘、滑动盘等。
调速部件:高、低速调速弹簧。
操纵部件:调节杠杆、操纵杆等。
3、离心式两速调速器的组成与工作原理(1)结构特点:加速踏板直接控制供油拉杆。
(2)工作过程:•柴油机不工作时,低速弹簧将滑动盘压向最左端,供油拉杆位于较大供油位置。
•柴油机起动后,转速上升,Fa > Fp,滑动盘右移,调节杠杆绕A点顺转,带动供油拉杆减油,直至Fa=Fp,此时,发动机在怠速下运转。
•当发动机转速低于怠速时, Fa < Fp,滑动盘左移,调节杠杆饶A点逆转,带动供油拉杆加油,直至Fa=Fp,发动机重新稳定在怠速运转。
达到稳定怠速的目的。
•当发动机转速高于怠速时,滑动盘推动球面顶块与高速弹簧滑座接触,高速弹簧刚性大,预压力大,即使转速继续增加, Fa也不足以推动高速弹簧座右移使供油拉杆右移减油,所以,在转速大于怠速的一段范围内,滑动盘位置保持不变,供油拉杆完全由人工控制。
调速器培训教材
并且提供结构化内容,要求使用有关行业术语。
第一章基本概念
1.1调速器的定义
调速器是一种系统控制元件,它可以控制机械系统中各部件的运动,以实现系统的动力调节、速度调节和位置控制。
1.2常用调速器类型
不同的机械系统需要不同类型的调速器,常用的调速器类型有:
(1)恒速调速器:可以在指定的转速范围内恒定转速运行;
(2)恒流调速器:用于恒定电流输出;
(3)可调率调速器:用于控制机械系统的负载变化;
(4)可变结构调速器:可以实现转速变化,以及对转动系统的可变结构控制;
(5)灵敏控制调速器:通过精确调整控制系统的反馈信号,实现更加精确的调速控制。
1.3调速器操作原理
调速器采用反馈控制原理,可以通过在控制系统中加入调速器来控制机械设备的转速及负载。
调速器通过采集实时信号进行比较和判断,再根据控制系统的要求发出指令,控制相应的操作以实现对机械设备的转速调节。
第二章调速器工作原理2.1调速器的结构。
水轮机调速器结构及工作原理水轮机调速器是水轮机系统中的重要设备,其主要功能是控制水轮机的转速,以满足不同负载工况下的运行要求。
本文将从结构和工作原理两个方面介绍水轮机调速器的基本知识。
一、水轮机调速器的结构水轮机调速器一般由调速机构、液压控制系统和电气控制系统三部分组成。
1. 调速机构调速机构是水轮机调速器的核心部分,它通过改变水轮机的导叶开度来调节水轮机的转速。
调速机构主要由调节器、传动装置和导叶机构组成。
调节器是水轮机调速器的关键部件,它通过接收输入信号,控制传动装置的运动,从而改变导叶的开度。
常见的调节器有液压调节器和电动调节器两种。
传动装置是将调节器的运动转化为导叶运动的装置,常见的传动装置有丝杠传动和液压传动两种。
导叶机构是通过传动装置将调节器的运动传递给导叶,改变导叶的开度。
导叶机构主要由导叶轴、导叶臂和导叶组成。
2. 液压控制系统液压控制系统是水轮机调速器的控制部分,它通过控制液压元件的工作状态,实现对调速机构的控制。
液压控制系统一般由液压泵站、液压缸和液压阀组成。
液压泵站负责提供液压能源,液压缸负责执行调速机构的运动,液压阀负责控制液压缸的工作状态。
3. 电气控制系统电气控制系统是水轮机调速器的辅助部分,它通过控制电气元件的工作状态,实现对液压控制系统的控制。
电气控制系统一般由控制柜、传感器和执行器组成。
控制柜负责接收输入信号和控制输出信号,传感器负责感知水轮机的运行状态,执行器负责执行控制柜的输出信号。
二、水轮机调速器的工作原理水轮机调速器的工作原理主要是通过调节水轮机的导叶开度来改变水轮机的转速。
当负载增加时,调速器接收到输入信号后,调节器会发出相应的指令,通过传动装置将运动转化为导叶的运动,导叶的开度逐渐增大。
导叶开度增大会减小水轮机叶片与水流的夹角,使水轮机的输出功率增加,从而使转速稳定在设定值附近。
当负载减小时,调速器接收到输入信号后,调节器会发出相应的指令,通过传动装置将运动转化为导叶的运动,导叶的开度逐渐减小。
本人一直不明白安卓cpu 和I/O,今日有幸找到,分享给大家一、CPU调速器现在很内核都会增加新的CPU调速器,很多人不知道内核中的CPU调速器有什么用,下面转一个CPU调速器Governor说明:什么是Governor?→Android的CPU 的频率并不是一成不变的,会因应程式所需而调整频率,通常会视乎CPU Loading% 而升/降频,在特定时间再检查是否升/降。
Governor就是默认的情景模式。
【ondemand】按需模式:→按需调节cpu频率,不操作手机的时候控制在最低频率,滑屏或进入应用后会迅速提升至最高频率,当空闲时迅速降低频率,性能较稳定,但因频率变化幅度过大,省电方面只有一般的水平。
是一种在电池和性能之间趋向平衡的默认模式,但是对于智能手机来说,ondemand在性能表现方面略有欠缺。
【interactive】交互模式:→和ondemand相似,规则是“快升慢降”,注重响应速度、性能,当有高需求时迅速跳到高频率,当低需求时逐渐降低频率,相比ondemand费电【conservative】保守模式:→和ondemand相似,规则是“慢升快降”,注重省电,当有高需求时逐渐提高频率,当低需求迅速跳至低频率。
【OndemandX】按需X模式:→在Ondemand基础上改进而来。
关屏时手机进入睡眠状态时,锁定最高频率频率为500Mhz【Scary】胆小模式:→基于Ondemand修改,CPU提升速度比ondemand慢,同时具有smartass的特点【interactiveX】交互X模式:→在interactive基础上改进而来。
关屏时手机进入睡眠状态时,锁定频率为最低值,同时在手机唤醒时能有更好的提升表现。
比interactive更注重保护电池。
【Wheatley】惠特利模式:→规则和Ondemand一样,但是响应速度稍慢,比Ondemand省电【hotplug】热拔插模式:→和ondemand模式差不多,当有高需求时直接跳到最高频率,当需求见效时逐级降低频率,但关屏时就单核低频运行,省电。
调速器讲义课件范文
不得少于1500字
什么是调速器?
调速器是一种调节机械装置,其功能是控制机械系统运行过程中的时
间和力矩。
换句话说,调速器可以改变机械系统的运动特性,使之可以按
照预定的规律运动。
有什么种类的调速器?
1.电动调速器。
电动调速器是利用电子元件,使电机的转速随电路输
入变化而变化的调速器,是一种电动控制技术,通常用于工业装置的控制。
2.液压调速器。
液压调速器是一种拧紧、松开或控制机械装置的运动
速度的装置,由液力驱动,它可以控制从螺杆到曲轴的循环运动,或控制
机械系统的位移。
3.蒸汽调速器。
蒸汽调速器是一种使用蒸汽动力来控制机械装置的速度,用于控制机械系统的位移或转速。
4.冷却水调速器。
冷却水调速器是一种使用冷却水动力的机械装置,
用于控制机械系统的位移或转速。
应用现状
由于调速器的广泛应用,它已成为生产现代机械制造和智能化控制中
最重要的部件。
用于风力发电机组的调速器是最常见的。
风力发电机组的调速器可以
控制风力发电机组的转速,使风力发电机组的发电效率达到最佳。
4调速器功能说明调速器是一种用于调整和控制旋转机械的转速的设备。
它通过改变电机的输入电压、输出频率或者改变内部开关状态来实现转速的调节。
调速器广泛应用于各个领域,如工业生产、交通运输、航空航天等。
调速器的工作原理主要有两种:一种是通过改变电机输入电压的大小来改变电机的转速;另一种是通过改变电机输出频率的大小来改变电机的转速。
调速器的主要功能有以下几个方面:1.转速控制:调速器能够根据实际需求,实现对电机转速的精确控制。
例如,对于生产线上的机械设备,可以根据不同产品的生产要求,调整电机转速,以达到最佳生产效果。
2.载荷适应:调速器能够根据机械设备的工作条件,自动调整电机转速,实现适应不同负载的需求。
在负荷增大时,调速器可以提供足够的输出功率,确保设备正常运行。
3.节能降耗:通过合理调整电机转速,调速器能够实现对电能的有效利用,避免无效能耗或者过量能耗。
节能降耗是调速器的一大优势,可以为企业节省大量能源开支。
4.启动控制:调速器具有启动控制功能,可以在电机启动时,控制电流的大小和时间,避免过大的起动电流对电网和电机设备造成损害。
5.平滑运行:调速器可以提供平滑的转速调节,避免电机在启停和转速变化时产生过大的冲击和振动,从而减少机械设备的磨损和故障率。
6.故障保护:调速器可以监测电机的工作状态,一旦出现异常情况如过电流、过载、过热等,调速器能够及时采取保护措施,避免电机设备的损坏。
7.稳定性控制:通过调整调速器工作参数,可以提高电机控制的稳定性和精度。
在需要高精度运动控制的应用场合,调速器可以提供更稳定、更精确的转速控制。
8.远程控制:一些先进的调速器设备支持远程监控和控制。
通过网络连接,操作人员可以实时监视电机工作状态,进行远程控制和调节。
综上所述,调速器是一种功能强大的设备,能够实现对电机转速的高精度控制和调节,提高设备的可靠性、节能性和稳定性。
在各个行业中,调速器的作用不可忽视,为机械设备的优化运行和提高生产效率发挥了重要作用。
技术培训教材(微机调速器)第一节原理及作用1、水轮机调速器的任务水轮发电机是将水能转换成电能的机械装置,水轮机调速器是控制水轮发电机组在各种工况下,安全运行的控制设备之一,它的任务是:控制水轮发电机组自动开机、停机、转速调节、负荷调整、机组各种运行工况的转换、机组或电力系统故障时紧急停机。
必要时还可以通过调速器的手动方式操作机组运行。
对转浆式水轮机调速器,还有维持机组在高效区运转的任务。
调速器在作转速调节和负荷调整时,其任务的实质是维持进入水轮机的能量和发电机组输出的电能之间的平衡。
2、调速器维持发电机组输入和输出能量平衡途径水轮机发电机组转速部份,是一个围绕固定轴线作旋转运动的刚体,机组转速的运动规律可由下述方程描述:dωJ———=Mt-MgdtJ——机组的转动部份转动惯量ω——机组的角速度,πŋω——机组的角速度,ω=————30Mt——水轮发电机的动力矩Mg——发电机组的阻力矩Mg发电机阻力矩包括电负荷产生阻力矩,与发电机输出电流、电压成比例,轴摩擦力、空气阻力及机组损耗产生的阻力。
Mt是水轮机的动力矩,由水流对水轮机叶片的作用力形成。
水轮机出力的经典计算公式:N=Mt·ω=9.81·Q·H·η因此:N 9.81×Q×H×ηMt=———=——————————ωω式中:Q——水轮机的流量m3/sH——水头mη——水轮机效率从式可知当Mg≠Mt时,机组的转速就会发生改变。
不是加速就是减速。
只有Mg=Mt时,机组才能维持匀速稳定运转。
Mg是发电机阻力矩,主要来自系统的电力负荷,它是一个随时在改变的量,从(2)可知,水头H,是不能随便改变的,维持Mg=Mt的平衡,只有调节进入水轮机的流量Q。
因此在水轮机中,设置有便于控制的导水叶(或喷针机构),调整导水时的开度,就改变进入水轮机的流量,改变了动力矩,维持能量平衡,从而使机组持速保持在规定的范围里。
第一章调速系统第一节概述一、水轮机调节的概念为了使水轮发电机组的供电频率稳定在一定的范围内,需要根据负荷变化而调节水轮机出力,这就是水轮机调节。
自动调节系统根据调节原理,分为闭环调节系统和开环调节系统。
闭环调节系统是具有反馈的调节系统。
即将系统的输出量反送回调节装置的输入端称为反馈。
闭环调节系统是根据反馈量和输入量(给定值)的综合结果进行调节控制,也就是系统的输出量对系统的调节作用有直接影响的。
开环调节系统的输出信号没有反馈至输入端,即系统的输出量的变化对调节作用没有直接影响。
在开环控制系统中,系统输出只受输入的控制,控制精度和抑制干扰的特性都比较差。
二、调速器的基本作用调速器的基本作用是调节机组转速。
随着生产的发展,现在调速器可起调整负荷、成组控制、分配负荷等作用,在引入其他信号作调节依据时还可起其它调节作用。
调速器也可用作进行自动控制与操作。
水电机组启动快,能适应负荷的变化,故电力系统中常把水电机组作为峰荷和热备用机组,此时自动调速器可以保证机组快速启动,快速带负荷。
发生事故时调速器可用来紧急停机以防止事故扩大。
水力发电的过程水能通过水轮机的导水机构,到水轮机的转轮,然后转换为机械能;机械能通过主轴传给发电机,发电机通过电磁转换变为电能传输给用户。
水轮机调速器,顾名思义,就是调节水轮机转速的机器。
对于发电机来说,也就是调节电气频率。
发电机所生产的电能,是通过输电线路直接供给各类用户的。
发电机组、电网本身不能贮存电能,供给用户的电能只能随发随用。
因此,发电、供电、用电三者关系密切,存在着直接的相互影响。
在电力系统中,系统的频率与机组出力和电网负荷之间的平衡程度有关,也决定了发电机的转速,和发电机输出电流的交变频率,而系统的总负荷是随电网用户的需要增减的。
在电网负荷变化的瞬间,系统内所有机组原有的输出功率与电网负荷的平衡关系即被破坏。
此时,如果所有发电机原动机的输入能量不及时地相应变化,势必引起机组转速升高或降低,造成输出电流交变频率及整个系统频率的变化。
调速器的基础知识.txt机会就像秃子头上一根毛,你抓住就抓住了,抓不住就没了。
我和你说了10分钟的话,但却没有和你产生任何争论。
那么,我们之间一定有个人变得虚伪无比!过错是短暂的遗憾,错过是永远的遗憾。
相遇是缘,相知是份,相爱是约定,相守才是真爱。
调速器的发展趋势?调速器问世百余年来,服务于各厂站的同时自身也在不断的发展、更新。
目前,总体来说调速器的发展有三大趋势:1、由常规油压向高油压发展。
液压执行机构长期以来一直被广泛用作水轮机调速器这种重载伺服控制系统的执行机构,它具有能容比大、惯性小、响应快、功率放大系数大、运行平稳、负载刚度大等特点。
随着液压技术的发展,其他许多采用液压系统的工业领域早已实现了高油压化,微机调速器也有从常规油压(2.5MPa、4.0MPa)向高油压发展的趋势。
采用高油压的调速器利于实现小型化、集成化、标准化。
2、机电转换接口控制方式从间接数字控制向直接数字控制发展。
所谓间接数字控制是指微机控制信号通过D/A转换环节将数字信号转换为模拟量信号(如0~10V、4~10mA等)后,再经放大后驱动电液伺服系统的控制方式。
该方式必须通过D/A转换环节,将数字量转换为模拟量实现数字控制,其主要存在以下问题:(1)由于控制器存在模拟电路,易产生温漂和零漂。
(2)多了D/A环节,降低了可靠性。
(2)阀的外控特性表现出滞环,消除滞环使阀的造价大大增加,结构复杂,可靠性降低。
(3)整体式磁性材料由于铁损引起的温升严重。
而直接数字控制不通过D/A接口,微机控制信号直接以数字开关信号与电液伺服系统接口实现数字控制,消除了间接数字控制存在的上述问题,使整个系统简单化,并实现整个系统的数字化,应用前景非常广阔。
3、整体制造及零配件从各厂家独立制造向标准化发展。
长期以来,虽然各调速器生产厂家生产的调速器规格基本一致,但是调速器的设计、生产标准、各零部件不尽相同,不仅给用户带来检修、维护不便,而且无法实现批量生产。
调速器培训资料一、调速器的工作原理调速器通过测速元件测量到水轮发电机组的转速信号,而后将测频元件和信号反馈元件送来的信号加以综合,并将此综合信号加以放大后传送到调速器的执行元件(液压系统),去调节和控制水轮机的导水机构的运动,从而完成水轮机的转速及输出功率的调控。
二、调速器的作用1、自动或手动调整机组的转速和负荷2、自动或手动启动、停机或事故停机;3、当机组并列运行时,自动地分配各机组之间的变动负荷。
水轮机自动调节系统以被调节参数(调频)的偏差作为调节导叶开度的依据。
三、调速器的五个主要部分(一) 电调部分(控制部分)该部分由法国奈尔皮克原装引进,型号为DIGIPID 1500。
可根据需要修改参数以满足机组最优运行。
它由各个插件组成,方便检修维护。
1.结构组成电器箱从左自右布臵图:调速模块:ESB1、ESB2、UCT、INT,位臵调节模块:POS、PUI1、PUI2(备选),电源模块:ALIM1+5V、+15V、-15V、ALIM2+24V1.1 调速模块:ESB1、ESB2、UCT、INT1.1.1 ESB模块:输入-输出终端区a.对调速器的输入量输出量起保护和绝缘作用。
b.接收机组自动化命令及反馈信息(如:开停机命令、增减有功、增减开限、功率、水头等)1.1.2 UCT模块:中央处理单元a.调速器核心部分,内有32位微处理器b.对自动检查系统及INT和ESB模块测得的物理量(如转速、功率)进行访问;c.通过键盘及电气箱前面板的显示器进行监视;d.与位臵调节器进行对话;e.存储设备用户参数及调速器参数;f.通过专用软件STATUS用RS-232接口实现PC机与调速器之间联接;g.将故障信息传送至自动监控器,及盘柜指示仪表。
1.1.3 INT模块:接口将从ESB模块输入的信号传送到UCT模块,并通过模块前面的DISP接头控制前面板上4个闪光指示灯1.2位臵调节模块1.2.1POS模块:位臵调节器a.根据设定值与测量位臵值间的差值产生一个控制量,并将此控制量传送到各控制装臵的PUI模块b.计算程序控制调节装臵;c.存储设定参数及配臵;d.将信息传送到盘柜位臵指示仪表;e.能够允许调速器独立操作(手动控制)。
调速器知识文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-一调节系统参数1 水流惯性时间常数wT水流惯性时间常数是指在额定工况下,表征过水管道中水流惯性的特征时间,其表达式为223580r rar rJ GD nTM Nω==rwr rLVQ LTgH S gH==∑∑式中wT为水流惯性时间常数,Qr为水轮机设计流量,Hr为水轮机设计水头,S为每段过水管道的截面面积,L为相应每段过水管道的长度,V为响应每段过水管道的流速,G为重力加速度wT表示过水管道水流的惯性,它是水轮机主动力矩变化存在滞后的主要原因,也是造成调节系统不稳定和动态品质恶化的主要因素。
在其他条件不变时,wT越大,水流惯性越大,水击作用越显着,则调节过程的振幅越大,振荡次数越多,调节时间越长,以至最后超出稳定范围。
2 机组惯性时间常数机组惯性时间常数是指机组在额定转速时的动量矩与额定转矩之比。
其表达式为式中Ta为机组惯性时间常数,Jωr为额定转速时机组的动量矩,GD2为机组飞轮力矩,Mr为机组额定转矩,Nr为发电机额定功率,n r 为机组额定转速T a 的物理意义是:在与发出额定功率相当的额定转矩下,机组由静止达到额定转速所需要的时间。
T a 越大,越有利于调节系统的稳定,而且在调节过程中能够见效转速的偏差和减缓转速的变化,但有可能使调节时间变长。
若T a 过小,将使调节系统难以稳定。
3永态转差系数b p 、永态调差系数e p调节系统的静特性有两种情况:图1(a )为无差静特性,表示机组出力不论为何值,调节系统均保持机组转速n 0,即静态误差为零。
图1(b )为有差静特性,当机组出力增大时,调节系统将保持较低的机组转速,即静态误差不为零,永态调差系数e p 定义为调速系统静特性曲线图上某一规定点的斜率的负数。
(反馈为功率反馈)图1(c )也为有差静特性,它以接力器行程Y 为横坐标,以机组转速n 为纵坐标 (反馈为导叶反馈)。
一 调节系统参数1 水流惯性时间常数w T水流惯性时间常数是指在额定工况下,表征过水管道中水流惯性的特征时间,其表达式为 223580r r a r r J GD n T M N ω==r w r rLV Q L T gH S gH ==∑∑ 式中w T 为水流惯性时间常数,Q r 为水轮机设计流量, H r 为水轮机设计水头,S 为每段过水管道的截面面积,L 为相应每段过水管道的长度,V 为响应每段过水管道的流速,G 为重力加速度w T 表示过水管道水流的惯性,它是水轮机主动力矩变化存在滞后的主要原因,也是造成调节系统不稳定和动态品质恶化的主要因素。
在其他条件不变时,w T 越大,水流惯性越大,水击作用越显着,则调节过程的振幅越大,振荡次数越多,调节时间越长,以至最后超出稳定范围。
2 机组惯性时间常数机组惯性时间常数是指机组在额定转速时的动量矩与额定转矩之比。
其表达式为式中T a 为机组惯性时间常数,J ωr 为额定转速时机组的动量矩,GD 2为机组飞轮力矩,M r 为机组额定转矩,N r 为发电机额定功率,n r 为机组额定转速T a 的物理意义是:在与发出额定功率相当的额定转矩下,机组由静止达到额定转速所需要的时间。
T a 越大,越有利于调节系统的稳定,而且在调节过程中能够见效转速的偏差和减缓转速的变化,但有可能使调节时间变长。
若T a 过小,将使调节系统难以稳定。
3永态转差系数b p 、永态调差系数e p调节系统的静特性有两种情况:图1(a )为无差静特性,表示机组出力不论为何值,调节系统均保持机组转速n 0,即静态误差为零。
图1(b )为有差静特性,当机组出力增大时,调节系统将保持较低的机组转速,即静态误差不为零,永态调差系数e p 定义为调速系统静特性曲线图上某一规定点的斜率的负数。
(反馈为功率反馈)图1(c )也为有差静特性,它以接力器行程Y 为横坐标,以机组转速n 为纵坐标 (反馈为导叶反馈)。
调速器的基础知识.txt机会就像秃子头上一根毛,你抓住就抓住了,抓不住就没了。
我和你说了10分钟的话,但却没有和你产生任何争论。
那么,我们之间一定有个人变得虚伪无比!过错是短暂的遗憾,错过是永远的遗憾。
相遇是缘,相知是份,相爱是约定,相守才是真爱。
调速器的发展趋势?调速器问世百余年来,服务于各厂站的同时自身也在不断的发展、更新。
目前,总体来说调速器的发展有三大趋势:1、由常规油压向高油压发展。
液压执行机构长期以来一直被广泛用作水轮机调速器这种重载伺服控制系统的执行机构,它具有能容比大、惯性小、响应快、功率放大系数大、运行平稳、负载刚度大等特点。
随着液压技术的发展,其他许多采用液压系统的工业领域早已实现了高油压化,微机调速器也有从常规油压(2.5MPa、4.0MPa)向高油压发展的趋势。
采用高油压的调速器利于实现小型化、集成化、标准化。
2、机电转换接口控制方式从间接数字控制向直接数字控制发展。
所谓间接数字控制是指微机控制信号通过D/A转换环节将数字信号转换为模拟量信号(如0~10V、4~10mA等)后,再经放大后驱动电液伺服系统的控制方式。
该方式必须通过D/A转换环节,将数字量转换为模拟量实现数字控制,其主要存在以下问题:(1)由于控制器存在模拟电路,易产生温漂和零漂。
(2)多了D/A环节,降低了可靠性。
(2)阀的外控特性表现出滞环,消除滞环使阀的造价大大增加,结构复杂,可靠性降低。
(3)整体式磁性材料由于铁损引起的温升严重。
而直接数字控制不通过D/A接口,微机控制信号直接以数字开关信号与电液伺服系统接口实现数字控制,消除了间接数字控制存在的上述问题,使整个系统简单化,并实现整个系统的数字化,应用前景非常广阔。
3、整体制造及零配件从各厂家独立制造向标准化发展。
长期以来,虽然各调速器生产厂家生产的调速器规格基本一致,但是调速器的设计、生产标准、各零部件不尽相同,不仅给用户带来检修、维护不便,而且无法实现批量生产。
伺服电机与步进电机类调速器的区别与比较?电机类调速器分为伺服电机及步进电机两种。
伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。
步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。
在目前国内的数字控制系统中,步进电机的应用十分广泛。
随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。
为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。
虽然两者在控制方式上相似(脉冲信号和方向信号),但在使用性能和应用场合上存在着较大的差异,从控制精度、低频特性、距频特性、过载能力、速度响应能力比较起来,全数字式交流伺服电机无疑比步进电机优异得多。
但步进电机应用于调速器上,可以使用这样的控制方式:仅控制步进电机的转动方向和启/停,因为伺服电机主要强调的闭环控制,这种开环的控制方式是伺服电机不具备的控制方式。
这样就可以和调节器构成一个以“模糊控制”为基础的直接数字控制方式的调速器。
(注:不是所有的步进式调速器均采用这种控制方式,其区别具在于调节器是否具有D/A环节)。
综上所述,在基于间接数字控制模式的调速器中,全数字式交流伺服电机调速器比步进电机具有优越性;但基于直接数字控制的步进式调速器明显优于间接数字控制的各型调速器。
调速器机械液压系统随电液转换方式的不同,分为:电液转换器类、比例伺服阀类、数字阀类及电机类。
其中电机类还分为步进电机和伺服电机两类。
水轮机微机调速器是一个典型的数字式液压位置伺服系统,数字式液压位置伺服系统按电液转换环节接口控制方式主要分为两大类:间接数字控制和直接数字控制。
间接数字控制是指电液伺服系统通过D/A转换环节,以模拟量接口实现数字控制。
比例伺服阀采用4~20mA的线性电流作为驱动信号,微机调节器必须通过D/A转换环节,以模拟量接口实现控制,因此比例伺服阀调速器是一个典型的间接控制方式的数字式液压位置伺服系统。
传统的各类伺服阀也都属于这类伺服系统。
随着计算机技术在流体控制系统中的大量应用,数字化成了一种必然的趋势。
与间接数字控制方法相反,控制量不通过D/A接口,直接以数字开关信号与电液伺服系统接口实现数字控制的方式称为直接数字控制。
目前主要有以下两种方式实现:其一是利用数字执行元件——步进电机加适当的旋转—直线运动转换机构驱动阀芯实现直接数字控制,由于这类数字控制元件一般按步进的方式工作,因而常称为步进式数字阀或离散式比例阀。
通过合理的设计,这类阀具用重复精度高及无滞环的优点。
其二是对高速开关阀的(脉宽或脉冲调制)控制。
通过控制开关元件的通断时间比,以获得在某一段时间内流量的平均值,进而实现对下一级执行机构的控制。
在流体动力系统中,这种控制方式的控制信号是开关量,因而是直接数字控制。
该控制方式具有不堵塞、抗污染能力强及结构简单的优点。
采用间接控制方式构成的系统通过D/A接口实现数字控制,这种方法存在如下缺点:(1)由于控制器中存在着模拟电路,易于产生温飘和零飘,这不仅使得系统易受温度变化的影响;同时,也使得控制器对伺服阀本身的非线性因素如死区、滞环等难以实现彻底补偿。
(2)用于驱动比例阀和伺服阀的比例电磁铁和力矩马达存在着固有的磁泄现象,导致阀的外控制特性表现出2%-8%的滞环,采用阀芯位置检测和反馈等闭环控制的方法可以基本消除比例阀的滞环,但却使阀的造价大大增加,结构复杂,可靠性降低。
(3)由于结构特点所决定,比例电磁铁的磁路一般只能由整体式磁性材料构成,在高频信号作用下,由铁损而引起的温升较为严重。
因此直接数字控制方式明显优于间接数字控制方式。
作为直接数字控制方式的步进式数字阀和开关阀相比较:步进式数字阀按步进的方式工作,具用重复精度高及无滞环的优点。
但是,步进式数字阀通过阀芯的步进运动将输入的信号量转化为相应的步数(脉冲数),因而存在着量化误差,通过增加阀的工作步数可以减小量化误差,但却使阀的响应速度大大降低。
同时,步进式调速器必须保留有引导阀和主配结构,造成步进式调速器的结构较复杂,加工件较多,不具有良好的通用互换性。
相较而言,高速开关阀与控制系统的接口更简单,且不需要中间环节就能构成直接数字控制系统,应用前景十分广阔。
将高速开关阀应用于水轮机微机调速器,能实现整个系统的数字化,构成全数字式调速器。
但由于流量、压力脉动等因素的限制,数字阀在大型调速器上的应用范围受到一定的限制,目前仅能应用于操作功不大于17000kg.m的非双调机组的调节控制。
综上所诉,中小型调速器选用数字阀较为适宜,大型调速器宜选用步进电机(但要注意控制方式——参见后述关于电机类调速器的比较说明)。
调节器应选用双微机系统还是单微机系统?由于调节器硬件平台的演变,我国微机调速器的系统结构经历了从单微机系统、双微机系统到双通道容错系统的发展过程。
一段时间,基本上公认双通道容错的系统结构可靠性较高、容错能力较强。
但随着PLC(可编程逻辑控制器)的微机调速器的问世,由于计算机主机系统的可靠性大幅度提高,人们对双微机系统的必要性提出了质疑?为了提高微机调速器的可靠性,国内不少厂家对微机系统的设计采用了冗余结构。
但是,从现场运行的状况来看,其故障绝大部分来自微机系统外部,元器件特别是大规模集成电路的故障率毕竟很低,而出自软件内部的问题,靠冗余无法解决;对于双微机系统,多一个双机通讯和检测切换电路,多一个双机切换时的负荷扰动,就会多一个故障隐患和不可靠因素。
从实际效果来看,双机系统的硬/软件结构复杂,可靠性不一定比单机系统高。
而且从理论上讲,结构越简单可靠性越高,而且结构简单可省掉双机系统必需的一些通讯、检测和切换组件,用户以后的维护也更加方便。
从国外的水轮机微机调节器系统结构来看,既有单系统、也有双系统的。
但国外一些著名的调速器制造公司,如Vioth、ABB、WOODWARD等,均采用了信号测量和调节处理完全分开的设计思想,即采用多CPU的结构形式。
所以可靠性的提高在于将任务进行合理的划分,而不是任务的集中管理。
同时,模块化的硬件设计不仅容易得到可靠性的保证,而且使得软件的设计具有更大的灵活性和针对性。
微机调速器的调节器(电气部分)如何选型?目前微机调速器的调节器硬件构成有单片机、工控机、可编程控制器三大类调节器。
单片机、单板机是微机调速器早期的调节器产品,系各调速器厂家根据调速系统任务需要,选择如8051、8086、8096等微控制器(MCU)为硬件基础,自行设计线路板构成调节器。
由于可靠性低、抗干扰能力差等原因,故障率高。
为提高调节器的可靠性,减少故障率,后提出以双机冗余方式构成双微机调节器,但由于缺乏专业的抗干扰设计,生产上又缺乏严格的元器件老化、筛选过程以及严格的焊接工艺保证等多方面原因,未能根本解决可靠性问题。
因此逐步退出了市场,但由于成本低廉,依然有些厂家生产。
后随着基于IPC(工业控制微机)和PLC(可编程逻辑控制器)等通用处理器平台的不断发展完善。
国内迅速的将可靠性能高的IPC和PLC等通用微机平台应用于水轮机调速器领域,实现了调节器的硬件可靠性的进步,放弃了以单板机、单片机及基于8098、8086等的双微机作为主机硬件平台的专用调节器之路。
IPC(工业控制微机)是通过对个人计算机(PC)的板路、内存以及机箱等进行专门电磁兼容设计,使它能应用于环境恶劣的工业控制环境的PC。
其特点是:程序移植性强;能实现多任务并发等。
但由于其硬件设计还是基于商用个人计算机(PC)的总线结构,而且软件平台必须基于windows或liux等操作系统上,因此其可靠性还是比完全针对工业现场设计的PLC(可编程逻辑控制器)少一个数量级。
正是由于这个原因,近年各IPC(工业控制微机)厂家纷纷推出按PLC总线构架的工业控制微机(PCC)。
与常规PLC相比较,PCC最大的特点在于其类似于大型计算机的分时多任务操作系统,支持多任务并发处理。
其可靠性到没有很大提高。
PLC(可编程逻辑控制器)是专门为解决工业现场恶劣环境而诞生的工业控制计算机系统,其高可靠性已得到广泛的验证。
国内将其应用于水轮机调速器后,以其优异的高可靠性能立即成为调速器的主流方向。
目前出现的各种调速器控制系统还没有比PLC可靠性更高的,因此宜优先选用PLC作为调速器的调节控制核心。
水轮机调速器调速器有哪些类型?如何划分?水轮机调速器的分类方法较多,按调节规律可分为PI和PID调速器;按系统构成分为机械式调速器(机械飞摆式)、电液式调速器及微机调速器;实际应用中常用是以下几种区分方式:1、按我国水轮机调速器国家型谱以及调速器行业规范,调速器分为:中、小型调速器;冲击式调速器;大型调速器等。