有理数运算应用题
- 格式:docx
- 大小:10.84 KB
- 文档页数:4
有理数应用题一、有理数加减法1)温度问题1、如图是某地方春季一天的气温随时间的变化图象:请根据上图回答:(1)、何时气温最低?最低气温是多少?(2)、当天的最高气温是多少?这一天最大温差是多少?2、某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃。
若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?3.一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1ºC,乙此时在山脚测得温度是5ºC,已知该地区每增加100米,气温大约降低0.6ºC,这个山峰的高度大约是多少米?4、已知水结成冰的温度是 0C,酒精冻结的温度是–117℃。
现有一杯酒精的温度为12℃,放在一个制冷装置里、每分钟温度可降低1.6℃,要使这杯酒精冻结,需要几分钟?(精确到0.1分钟)2)时差问题1.下表列出了国外几个大城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数)(1)如果现在是北京时间上午8:00,那么东京时间是多少?(2)如果小强在北京时间下午15:00打电话给远在纽约的姑姑,你认为合适吗?试说明你的理由。
3)路程问题1.柳州出租车司机小李,一天下午以白沙客站为出发点,在南北走向的跃进路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-13, +10,-7,-8,+12,+4,-5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发白沙客站多远? 在白沙客站的什么方向?(2)若每千米的价格为3.5元,这天下午小李的营业额是多少?2. 某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km)依先后次序记录如下:+9、-3、-5、+4、-8、+6、-3、-6、-4、+10。
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?3.李老师在学校西面的南北路上从某点A出发来回检查学生的植树情况,设定向南的路程记为正数.向北的路程记为负数,那么李老师所行路程依次为(单位:百米):+12,-l0,+10,-8,-6,-5,-3.(1)求李老师最后是否回到出发点A?(2)李老师离开出发点A最远时有多少千米? (3)李老师共走了多少千米?4.在一条东西走向的马路旁,有青少年宫、党校、商场、医院四家公共场所.已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处,若将马路近似地看作一条直线,以学校为原点,向东为正方向,用1个单位长度表示100m.(1)在数轴上表示四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.5.检修组乘汽车,沿公路检修线路,约定向东为正.向西为负,某天自A出发,到收工时,行走记录为(单位:千米):+8、-9、+4、+7、-2、-10、+18、-3、+7、+5 回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?6. 某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行-+-++--驶为负,一天中七次行驶纪录如下。
七年级数学有理数加减混合运算应用题
以下是一些七年级数学有理数加减混合运算应用题的例子:
1.小明从A地出发,向北走20米到达B地,然后向东走30米到达C地,最
后再向南走40米到达D地。
请问他最终离出发点A地有多远?
解答:小明从A地出发,先向北走20米到B地,再向东走30米到C地,最后向南走40米到D地。
因为北和南是相反的方向,所以20米和40米会相互抵消,只剩下向东的30米。
因此,他最终离A地30米。
2.一个书架上有10本图书,第一天借出了4本,第二天归还了2本。
请问两
天后书架上还剩多少本书?
解答:开始时有10本书,第一天借出了4本,所以剩下10 - 4 = 6本。
第二天归还了2本,所以6 + 2 = 8本。
因此,两天后书架上还剩8本书。
3.小华和小明一起从学校出发去图书馆。
小华先走了20分钟,然后小明开始
追赶他。
如果小明的速度是每小时6公里,而小华的速度是每小时4公里,请问小明需要多长时间才能追上小华?
解答:因为小华先走了20分钟,所以他已经走了4×20/60 = 1.33公里。
小明每小时比小华快6 - 4 = 2公里,所以他需要追赶1.33公里。
因此,所需时间为1.33/2 = 0.665小时,也就是40分钟。
含有理数原理的实际应用题题目一:购物计算假设你去超市购物,购买了以下商品:•牛奶:14元•面包:6元•鸡蛋:12元请计算你购买这些商品的总价格。
解答:不难发现,购物的总价格等于各种商品的价格之和。
我们可以用数学中的加法来表示这个关系。
所以,购物的总价格 = 牛奶的价格 + 面包的价格 + 鸡蛋的价格将每个商品的价格代入公式:购物的总价格 = 14元 + 6元 + 12元 = 32元所以,购买这些商品的总价格是32元。
题目二:温度转换假设现在的室外温度是摄氏30度,要将它转换为华氏温度,请计算。
解答:温度的转换关系有一个转换公式,我们可以使用这个公式来计算。
华氏温度 = 摄氏温度 × 1.8 + 32将摄氏30度代入公式进行计算:华氏温度 = 30 × 1.8 + 32 = 86所以,将摄氏30度转换为华氏温度是86度。
题目三:速度计算假设一辆汽车以每小时60公里的速度行驶,经过3个小时,它行驶了多远?请计算。
解答:速度的计算公式是:距离 = 速度 × 时间将题目中给出的速度和时间代入公式进行计算:距离 = 60公里/小时 × 3小时 = 180公里所以,经过3个小时,汽车行驶了180公里。
题目四:货币兑换假设你去国外旅行,想要将100美元兑换为人民币,汇率是1美元兑换为6.5人民币,请计算你可以得到多少人民币。
解答:货币兑换的计算公式是:兑换获得的货币 = 要兑换的货币 × 汇率将题目中给出的数据代入公式进行计算:兑换获得的人民币 = 100美元 × 6.5人民币/美元 = 650人民币所以,你可以得到650人民币。
题目五:面积计算假设一个正方形的边长是5米,求其面积。
请计算。
解答:正方形的面积计算公式是:面积 = 边长²将题目中给出的边长代入公式进行计算:面积 = 5米 × 5米 = 25平方米所以,这个正方形的面积是25平方米。
有理数应用题经典30题(学生版)一、题目:有理数应用题经典30题(学生版)1. 均匀缩小小明购买了一副长方形的相框,长和宽的比例是3:2。
如果将宽缩小10%,那么长也需要缩小多少才能保持原来的比例?解析:设原来宽为x,则长为1.5x。
缩小10%后的宽为0.9x,新的长应为1.5x*0.9=1.35x。
所以,长需要缩小15%。
2. 装满水壶一个16升的水壶和一个9升的水壶都是空的。
现在需要得到恰好4升的水,问如何操作才能实现?解析:首先,将9升水壶装满水,再倒入16升水壶中,此时9升水壶中剩余5升水。
然后,倒空16升水壶,将9升水壶中的5升水倒入16升水壶中。
最后,将9升水壶重新装满水,再倒入16升水壶中,此时16升水壶中已经有4升水。
3. 倒水比例小明用相同的速度向两个相同容积的杯子中倒水,第一个杯子先倒水,第二个杯子稍后开始倒水,小明一直保持恒定的速度进行倒水。
如果要使两个杯子中的水量一直保持比例3:5,那么第二个杯子开始倒水的时间点在第一个杯子开始倒水后的多久?解析:设第一个杯子开始倒水后经过t时间,第二个杯子开始倒水。
根据题意可得:水量比例=倒水时间比例。
即3/(3+t) = 5/t,解方程可得t=5/2,所以第二个杯子开始倒水的时间点在第一个杯子开始倒水后的2.5分钟。
4. 数字排列将1、2、3、4、5、6、7、8、9这九个数字分别填入以下的方框中,使得相邻的两个数字之和为偶数。
每个数字只能使用一次。
□□□□□□□□□解析:填入以下数字即可满足条件:1234567895. 数轴运动一只蚂蚁在数轴上从0点开始向右爬,并且每次只能移动1个单位。
如果这只蚂蚁每次以等概率向左或向右爬,那么在第5次移动后,它距离0点的期望距离是多少?解析:蚂蚁在第1次、第3次、第5次移动时一定是在偶数点上,而第2次、第4次移动时一定是在奇数点上。
所以在第5次移动后,它距离0点的期望距离为0。
6. 周长比较一个矩形的长和宽之比是3:2,另一个矩形的长和宽之比是2:3。
七年级上册数学应用题及答案大全一、有理数运算1. 某人的银行卡上存有 200 元钱,他取了 120 元钱,还了一笔帐,付了 67 元钱,最后他的银行卡上还剩下多少钱?答:银行卡上还剩下 13 元钱。
2. 某家饭店有 5 桌客人,每桌消费 78 元钱,另外还有一桌消费了 120 元钱。
饭店的总收入是多少?答:饭店的总收入是 510 元钱。
3. 汽车每小时行驶 56 公里,从 A 市到 B 市要行驶 448 公里,需要多长时间?答:汽车需要行驶 8 小时。
二、比例与比例应用1. 一朵花每天太阳下山后的 6 小时内会开放 9 朵花瓣,如果这朵花一天中太阳落山的时间为 18:30,那么它最晚开放多少朵花瓣?答:这朵花最晚开放 45 朵花瓣。
2. 一家糖果店有 4 种不同重量的糖果,它们的价格比分别是 1:2:3:4,如果第一种糖果每克 0.4 元,那么第四种糖果每克多少钱?答:第四种糖果每克 1.2 元。
3. 好视力党员比例是 3:7,全国共有 8000 万好视力人群,那么党员中好视力人群的人数是多少?答:好视力的党员人数是 3600 万。
三、平均数1. 某班有 50 个学生,他们的总成绩为 2500 分,平均分是多少?答:平均分是 50 分。
2. 一家餐厅一天供应 300 份饭菜,若中午饭时间供应的饭菜量是晚饭的 1.5 倍,中午共供应多少份饭菜?答:中午共供应 150 份饭菜。
3. 用一张面积为 20 $\mathrm{dm}^{2}$ 的长方形纸板剪出 5 个形状相同的小正方形,每个小正方形的面积是多少平方厘米?答:每个小正方形的面积是 20 平方厘米。
四、百分数1. 一桶汽油原价是 280 元,打了 8 折之后的价格是多少?答:打折后的价格是 224 元。
2. 某商场清仓促销,商品原价标价 60 元,打了 2 折的折扣,折后价格是多少?答:折后价格是 12 元。
3. 某自行车厂每条自行车生产 100 元的成本,标价 300 元,最终实际售价是标价的 80%,每条自行车的利润是多少?答:每条自行车的利润是 40 元。
有理数应用题经典例题一、温度变化问题1. 例题- 某地一天中午12时的气温是7℃,过5小时气温下降了4℃,又过7小时气温又下降了4℃,第二天0时的气温是多少?2. 解析- 中午12时过5小时后的气温为7 - 4=3℃。
- 再过7小时(此时是第二天0时)后的气温为3-4 = - 1℃。
二、海拔高度问题1. 例题- 某一矿井的示意图如下,以地面为基准,A点的高度是+4.2米,B、C两点的高度分别是 - 15.6米与 - 30.5米。
A点比B点高多少?比C点呢?2. 解析- A点比B点高的高度为A - B=( + 4.2)-(-15.6)=4.2 + 15.6 = 19.8米。
- A点比C点高的高度为A - C=( + 4.2)-(-30.5)=4.2+30.5 = 34.7米。
三、行程问题(正负数表示方向)1. 例题- 一辆汽车沿着一条南北方向的公路来回行驶。
某一天早晨从A地出发,晚上到达B地。
约定向北为正,向南为负,当天记录如下(单位:千米):+18.3, - 9.5,+7.1, - 14, - 6.2,+13, - 6.8, - 8.5。
- (1)B地在A地何处,相距多少千米?- (2)若汽车行驶每千米耗油0.2升,那么这一天共耗油多少升?2. 解析- (1)将所有数相加:( + 18.3)+(-9.5)+( + 7.1)+(-14)+(-6.2)+( + 13)+(-6.8)+(-8.5)- =18.3 - 9.5+7.1 - 14 - 6.2 + 13 - 6.8 - 8.5- =(18.3+7.1 + 13)-(9.5 + 14+6.2+6.8 + 8.5)- =38.4 - 45- =- 6.6千米。
- 所以B地在A地正南方向,相距6.6千米。
- (2)汽车行驶的总路程为|+18.3|+|-9.5|+|+7.1|+|-14|+|-6.2|+|+13|+|-6.8|+|-8.5|- =18.3 + 9.5+7.1+14+6.2 + 13+6.8+8.5- =83.4千米。
有理数应用题1. 小明家收入和支出小明的父母每个月的收入为7500元。
他们每个月的支出包括房租、水电费、食品和交通费等共计5200元。
请问小明的家庭每个月的结余是多少?解答:收入:7500元支出:5200元结余 = 收入 - 支出 = 7500 - 5200 = 2300元因此,小明的家庭每个月结余2300元。
2. 温度变化问题某城市的气温从早晨的-6℃上升到中午的12℃,再下降到晚上的-3℃。
请问一天中气温变化的总和为多少?解答:早晨气温:-6℃中午气温:12℃晚上气温:-3℃气温变化总和 = 中午气温 - 早晨气温 + 晚上气温 - 中午气温= 12 - (-6) + (-3) - 12= 18 - 15= 3℃因此,一天中气温变化的总和为3℃。
3. 数轴上的有理数问题将数轴上的点A、B、C、D依次标记为-3、-1、0、5,求线段AB 和线段CD的长度之和。
解答:线段AB的长度 = |-1 - (-3)| = 2线段CD的长度 = |5 - 0| = 5长度之和 = 线段AB的长度 + 线段CD的长度 = 2 + 5 = 7因此,线段AB和线段CD的长度之和为7。
4. 银行存款问题小玲在银行存款10000元,年利率为3%,计算存款一年后的本息和为多少?解答:存款金额:10000元年利率:3%本息和 = 存款金额 + 存款金额 ×年利率 = 10000 + 10000 × 0.03 = 10000 + 300 = 10300元因此,存款一年后的本息和为10300元。
5. 比例问题某班级男生数与女生数的比例为3:5,班级共有48名学生。
求该班级男生和女生各有多少人?解答:男生数:3x女生数:5x男生数 + 女生数 = 483x + 5x = 488x = 48x = 6男生人数 = 3x = 3 × 6 = 18人女生人数 = 5x = 5 × 6 = 30人因此,该班级男生有18人,女生有30人。
七年级有理数应用题50道一、温度相关(5道)1. 某天,哈尔滨的最高气温是 -12℃,最低气温是 -22℃,这天哈尔滨的温差是多少?解析:温差就是最高气温减去最低气温,即公式。
2. 已知某地区早晨的气温为 -5℃,中午上升了8℃,傍晚又下降了6℃,求傍晚的气温。
解析:早晨气温是 -5℃,中午上升8℃后,气温变为公式,傍晚又下降6℃,则傍晚气温为公式。
3. 若甲地温度为20℃,乙地温度比甲地低15℃,丙地温度比乙地低10℃,求丙地温度。
解析:乙地温度为公式,丙地温度比乙地低10℃,所以丙地温度为公式。
4. 某冷库的温度是零下10℃,下降 -3℃后又下降5℃,此时冷库的温度是多少?解析:零下10℃即 -10℃,下降 -3℃,实际是上升3℃,此时温度为公式,又下降5℃后,温度为公式。
5. 一天中,最高气温是6℃,最低气温是 -10℃,若以0℃为基准,最高气温比最低气温高多少度?解析:以0℃为基准,最高气温6℃比0℃高6℃,最低气温 -10℃比0℃低10℃,所以最高气温比最低气温高公式。
二、海拔高度相关(5道)1. 某山峰的海拔高度为1500米,山脚的海拔高度为 -200米,山峰与山脚的相对高度是多少?解析:相对高度是山峰海拔高度减去山脚海拔高度,即公式米。
2. 甲地海拔高度为 -30米,乙地海拔高度比甲地高20米,丙地海拔高度比乙地低15米,求丙地海拔高度。
解析:乙地海拔高度为公式米,丙地海拔高度为公式米。
3. 飞机在海拔8000米的高空飞行,潜艇在海拔 -500米的海底航行,飞机与潜艇的高度差是多少?解析:高度差为飞机的海拔高度减去潜艇的海拔高度,即公式米。
4. 一座山的山顶海拔为2000米,山腰处的海拔为1200米,山底的海拔为 -300米,山腰与山底的相对高度是多少?解析:相对高度为山腰海拔减去山底海拔,即公式米。
5. 某高原的平均海拔为3000米,某盆地的平均海拔为 -200米,高原比盆地高多少米?解析:高原比盆地高的高度为高原平均海拔减去盆地平均海拔,即公式米。
七年级有理数运算的应用题解析
有理数运算是数学中的一个重要概念,它广泛应用于实际问题的解决中。
在七年级的数学研究中,我们会遇到一些应用题,下面会对其中一些常见的应用题进行解析和讲解。
1. 银行存款
小明在银行存了500元,过了一段时间,他又存了300元。
那么他一共存了多少钱?
解析:
小明一共存了500元和300元,我们可以用有理数的加法来计算:
500 + 300 = 800
所以小明一共存了800元。
2. 温度变化
一天中,早上的气温是-5摄氏度,在中午时升高了10摄氏度,那么中午的气温是多少摄氏度?
解析:
早上的气温是-5摄氏度,上升了10摄氏度,我们可以用有理
数的加法来计算:
-5 + 10 = 5
所以中午的气温是5摄氏度。
3. 海拔高度
A城市的海拔高度是-100米,B城市的海拔高度是200米,那
么B城市的海拔高度比A城市高多少米?
解析:
B城市的海拔高度是200米,A城市的海拔高度是-100米,我
们可以用有理数的减法来计算:
200 - (-100) = 300
所以B城市的海拔比A城市高300米。
以上是七年级有理数运算应用题的解析,希望能帮助你更好地理解有理数运算的应用。
七年级数学上册必考题有理数应用题1.某个体儿童服装店老板以每件32元的价格购进30条连衣裙,针对不同的顾客,连衣裙的售价不完全相同,若以47元为标准,超过的钱数记为正,不足的钱数记为负,记录的结果如下表所示:问服装店老板在售完这30件连衣裙后,赚了多少钱?解:由题意可得:6×2+4×1+5×0+4×(-1)+5×(-2)+6×(-1)+(47-32)×30 =-4+450=446(元),答:服装店老板在售完这30件连衣裙后,赚了446元。
2.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,如表是某周的生产情况(超产为正,减产为负):(1)根据记录可知前三天共生产()辆;(2)产量最多的一天比产量最少的一天多生产()辆;(3)该厂实行计件工资制,每辆车60元,每天超额生产一辆奖15元,少生产一辆扣5元,那么该厂工人这周的工资总额是多少?解:(1)∵5-2-4+600=599(辆),故答案为599;(2)∵13-(-10)=23(辆),故答案为23;(3)5-2-4+13-10+6-9=-1(1400-1)×60+5×15-2×5-4×5+13×15-10×5+6×15-9×5 =84000-60+75-10-20+195-50+90-45 =84175答:该厂工人这一周的工资总额是84175元,3.某水果店新进某种水果12箱,以每箱15千克为标准(不含纸箱重量),超过或不足的千克数分别用正、负数来表示,见下表:(1)12箱水果中,最重的一箱比最轻的一箱多()千克;(2)求这12箱水果总的重量;(3)若购进这批水果成本共900元,该店以8元/千克的价格出售,在销售过程中有10%的水果损耗,求该水果店售完这批水果获利多少元?解:(1)2-(-1)=2+1=3(千克),即12箱水果中,最重的一箱比最轻的一箱多3千克,故答案为:3;(2)-1×1+1×2+0×4+1×4+2×1+12×15=-1+2+0+4+2+180=187(千克)答:这12箱水果总的重量为187千克;(3)8×187×(1-10%)-900=1346.4-900=446.4(元)答:该水果店售完这批水果获利446.4元。
有理数应用题专题练习题
题目一
某城市的气温由负10度逐渐升高,每小时上升2度。
请问经
过多少小时气温会升到0度?
解析
设经过x个小时,气温上升到0度。
根据题意,气温每小时上
升2度,可以列出方程:-10 + 2x = 0。
解这个方程可以得到x的值,即经过多少小时气温会升到0度。
答案
经过5个小时,气温会升到0度。
题目二
一辆汽车从A地出发,以60公里/小时的速度向B地行驶,行驶了3小时后又返回A地,每小时的速度为80公里/小时。
请问整个行程的平均速度是多少?
解析
设整个行程的平均速度为v,根据题意可列出方程:3 * 60 + 3 * 80 = 2v * 3。
解这个方程可以得到v的值,即整个行程的平均速度。
答案
整个行程的平均速度为70公里/小时。
题目三
甲乙两个人同时从同一地点出发,甲以每小时5公里的速度向东行驶,乙以每小时4公里的速度向西行驶。
已知两人相遇后共行驶了8小时,求他们相遇时距离出发地点的距离是多少?
解析
设两人相遇时距离出发地点的距离为d,根据题意可列出方程:5t + 4t = d。
解这个方程可以得到d的值,即两人相遇时距离出发地点的距离。
答案
两人相遇时距离出发地点的距离为72公里。
初中数学有理数的乘法和除法运算的解题应用题是什么
以下是一些有理数乘法和除法运算的解题应用题:
题目1:购物计算
小明去商店购买了一件原价为$60的商品,商店打折后的折扣为$1/4。
求小明购买该商品实际支付的金额。
题目2:公交车行程
小王乘坐公交车从家到学校的路程是4.5公里,车票价格为每公里$2.5。
小王还有一张余额为$30的公交卡,求他乘坐公交车所需支付的费用。
题目3:食材比例
在一道菜的配料中,需要用到1/2千克的面粉和1/4千克的糖。
如果小明想做4倍于原配方的菜,请问他需要用多少千克的面粉和糖?
题目4:体重计算
小华的体重为45千克,医生建议她每天的饮食热量摄入量应为体重的1/20。
请问小华每天应摄入多少千卡的热量?
题目5:运动距离
小明每天慢跑5/6小时,他每小时慢跑的距离是3.5千米。
请问小明每天慢跑的总距离是多少千米?
题目6:工作时间计算
小张和小李一起完成一项工作,小张每天工作6/7小时,小李每天工作4/5小时。
请问他们两人一起完成这项工作需要多少天?
以上是一些有理数乘法和除法运算的解题应用题。
学生可以根据题目的要求和具体情况,运用有理数乘法和除法运算的知识,解决实际问题。
在解题过程中,需要注意运算顺序、正负数的运算规律和分数的化简。
通过解决实际问题,学生可以提高应用数学知识解决实际问题的能力,并加深对有理数乘法和除法运算的理解。
有理数运算应用题1、妈妈买回3千克菜花,她付出5元,找回了0.5元,每千克菜花多少元?2、五一班图书有故事书50本,是艺术类书的2倍还多4本,艺术类的书有多少本?3、一块三角形地,面积是280平方米,底是80米,高是多少米?4、一块梯形的面积是450平方米,高30米,上底是15米,下底是多少米?5、山坡上有羊80只,其中白羊是黑羊的4倍,山坡上黑羊、白羊各多少只?6、商店里卖出两筐柑橘,第一筐重26千克,第二筐重29千克,第二筐比第一筐多卖了9元钱,平均每千克柑橘多少元?7、一块梯形麦田,面积是540平方米,高18米,上底是20米,下底是多少米?8、甲乙两车从相距750千米的两地同时开出,相向而行,5小时相遇,甲车每小时行80千米,乙车每小时行多少千米?9、两辆汽车同时从同地开出,行驶4.5小时后,甲车落在乙车的后面13.5千米,已知甲车每小时行35千米,乙车每小时行多少千米?10、加工一批零件,甲乙合作5小时完成,甲独做9形式完成。
已知甲每小时比乙多加工2个零件,这批零件共有多少个?11、体育场买来16个篮球和12个足球,共付出760元。
已知篮球与足球的单价比是5:6,体育场买篮球和足球各付出多少元12、某商店购进一批皮凉鞋,每双售出价比购进价多15%。
如果全部卖出,则可获利120元;如果只卖80双,则差64元才够成本。
皮凉鞋的购进价每双多少元?13、张师傅要利用两张铁皮(见下图)做一个圆柱体,选用其中一张剪出两个底面,然后用另一张做侧面。
要求做成的圆柱的体积尽可能大,那么张师傅做成的这个圆柱体的表面积是多少?体积是多少?(不考虑接缝,pi;取⒊14)14、甲从东城走向西城,每时走5千米,乙从西城走向东城,每时走4千米,如果乙比甲早1时出发,那么两人恰好在两城中间地方相遇,问东西两城的距离是多少千米?15、某经营公司有两个仓库储存彩电,甲乙两仓库储存之比为7∶3,如果从甲仓库调出30台到乙仓库,那么甲、乙两仓库之比为3∶2,问这两个仓库原来储存电视机共多少台?16、一列快车由甲城开到乙城需要10时,一列慢车从乙城开到甲城需要15时,两车同时从两城相对开出,相遇时快车比慢车多行120 千米,两城相距多少千米?17、拖拉机5台24天耕地12000亩,问18天耕完54000亩,需增加拖拉机多少台?18、一块边长84米的正方形蕉园,蕉树的株距是2米,行距是8米,如果每棵蕉树收蕉果65千克,每千克0.45元,这个蕉园一年可收入多少元?19、东风牌货车的运输率是拖拉机的2.5倍,大型集装车的运输率是东风牌货车的3倍,现有一堆货物,用东风车运,要6小时,如果改用拖拉机运一半,再用大型集装车运另一半,一共要用多少小时?20、甲乙两人卖鸡蛋,甲的鸡蛋比乙多10个,可是全部卖出后的收入都是15元,如果甲的鸡蛋按乙的价格出售可卖18元,那么甲、乙各有多少个鸡蛋?实数的性质实数的故事专题推荐:北京精锐教育初中一对一辅导专题。
知识点三:有理数的应用有理数的加减典型例题例 1、某巡警骑摩托车在一条东西大道上巡逻,某天他从岗亭出发,夜晚逗留在 A 处,规定向东方向为正,当日行驶纪录以下:(单位:千米)+10,-9,+7,-15,+6, -14, +4,-2(1)A 在岗亭何方距岗亭多远(2)若摩托车行驶 1 千米耗油升,这天共耗油多少升有理数的乘除例 2、某地探空气球的气象观察资料表示,高度每增添 1 千米,气温大概降低 6℃。
若该地地面温度为 13℃,高空某处温度为- 47℃,求此处的高度是多少千米有理数的乘方例 3、一个池塘的水浮莲,每日都在生长,且每日的面积是前一天的两倍,假如 16 天能把整个池塘遮满,那么水浮莲长到遮住半个池塘需要多少天变式训练变式 1、在“十·一”黄金周时期,杭州市景色区在 7 天假期中每日旅行的人数变化以下表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期 1 日 2 日 3 日 4 日 5 日 6 日7 日人数化位:万人(1)判断七天内旅客人数最多的是哪天最少的是哪天它相差多少万人(2)若 9 月 30 日的旅客人数 2 万人,求 7 天的旅客人数是多少万人变式 2、一天,甲乙两人利用温差丈量山岳的高度,甲在山顶测得温度是-1oC,乙此时在山脚测得温度是 5oC,已知该地域每增添100 米,气温大概降低,这个山岳的高度大概是多少米式 3、把一个木棍第一次折成两,第二次同折两就获得四,⋯⋯,挨次行下去,当折十次,将获得多少木棍(做)1、出租司机小李某天下午的运全部是在西走向的江路上行的,假如定向正,向西,他天下午行里程(位:千米)以下: +15、-2、+5、-1、+10、-3、-2、+12、+4、 -5、+6(1)小李下午出地0,他将最后一名乘客送抵目的地,小李距下午出的出地有多(2)若汽耗油量升 / 千米,天下午小李共耗油多少升(3)若小李家距离出地址的西35 千米,送完最后一名乘客,小李要行多少千米才能到家知识点四:阶梯收费问题典型例题:例 1、学校组织同学到博物馆观光,小明因事没有和同学同时出发,于是准备在学校门口搭乘出租车赶去与同学们会集,出租车的收费标准是:起步价为6 元,3 千米后每千米收元,不足 1 千米的按 1 千米计算。
有理数计算题初一应用题
1、已知水结成冰的温度是0℃,酒精冻结的温度是–117℃。
现有一杯酒精的温度为12℃,放在一个制冷装置里、每分钟温度可降低1.6℃,要使这杯酒精冻结,需要几分钟?(精确到0.1分钟)
2、某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,问他九月份的收入为多少元?
3、某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:与标准质量的差值
(单位:) -5 -2 0 1 3 6
袋数1 4 3 4 5 3
这批样品的质量比标准总质量质量多还是少?多或少几克?若每袋标准质量为450克,则抽样检测的总质量是多少?
4、出租车司机小王某天下午营运都是在东西走向的大道上进行的,如果规定向东为正,向西为负,那么这天下午行车里程(单位:千米)如下:-2,+5,-1,+10,-15,-3
(1)将最后一位乘客送到目的地时,小王距下午出车时的出发点多远?此地在下午出车时的出发点的东边还是西边?
(2)若汽车的耗油量为m升/千米,这天下午小王开车共耗油多少升?
5、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自A地出发到收工时所走的路线(单位:千米)为+10,-3,+4,-2,-8,+13,-2,+12,+7,+5.
(1)、问收工时距A地多远?
(2)、若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?。
七年级上册有理数应用题
一、有理数加减法应用题
1. 题目
某冷库的温度是零下10℃,下降 -3℃后又下降5℃,两次变化后冷库的温度是多少?
解析
零下10℃记为 10℃。
下降 -3℃,这里的“下降 -3℃”实际是温度上升3℃,此时温度变为 -10+3 = -7℃。
然后又下降5℃,那么最终温度为 -7 5=-12℃。
2. 题目
小明在一条东西向的跑道上,先走了20米,又走了 -30米,此时他在原来位置的哪个方向,距离原来位置多少米?
解析
把向东走记为正方向。
先走了20米,即 +20米。
又走了 -30米,这里的“ -30米”表示向西走30米。
那么小明的位置变化为 +20+( -30)=20 30=-10米。
所以小明在原来位置的西方,距离原来位置10米。
二、有理数乘除法应用题
1. 题目
某商场去年亏损10万元,今年盈利12万元,若盈利记为正,亏损记为负,该商场这两年的盈亏情况如何表示?这两年总的盈亏是多少万元?
解析
去年亏损10万元,记为 -10万元。
今年盈利12万元,记为+12万元。
这两年总的盈亏情况为(-10)+12 = 2万元。
所以这两年总的是盈利2万元。
2. 题目
已知一个数的倒数是 -2,另一个数是公式,求这两个数的商。
解析
因为一个数的倒数是 -2,那么这个数是公式。
求公式与公式的商,即公式。
有理数的练习与应用题解析有理数是我们在数学学习过程中经常接触到的一个概念,它包括正整数、负整数和零。
有理数的练习和应用在数学教学中占据重要的地位,通过解析一些有理数的练习题,可以帮助学生更好地理解和掌握这一概念。
本文将重点对有理数的一些典型练习和应用题进行解析,帮助读者更好地理解有理数的概念。
1. 练习题一
【题目】计算:(-5) + 3 - (-7) - (-2)
【解析】首先按照加法和减法的法则进行运算。
(-5) + 3 = -2;-2 - (-7) = -2 + 7 = 5;5 - (-2) = 5 + 2 = 7。
故结果为7。
2. 练习题二
【题目】计算:(-3) × 4 ÷ (-2)
【解析】先进行乘法运算,(-3) × 4 = -12;再进行除法运算,-12 ÷(-2) = 6。
所以答案为6。
3. 应用题一
【题目】小明有5个苹果,小红有3个梨,如果用有理数表示,分别为5和3,计算小明和小红共有多少个水果。
【解析】小明有5个苹果,小红有3个梨,所以共有5 + 3 = 8个水果。
4. 应用题二
【题目】某地气温为-3摄氏度,第二天气温上升了5摄氏度,求第二天的气温是多少。
【解析】气温上升了5摄氏度,-3 + 5 = 2,所以第二天的气温为2摄氏度。
通过以上的练习和应用题解析,相信读者对有理数的概念有了更加清晰的认识。
有理数的运算是数学学习中基础而重要的一部分,希望通过不断地练习和应用,能够更好地掌握这一知识点,为以后的数学学习打下坚实的基础。
感谢阅读本文,希望对您有所帮助。
有理数加减法应用题一、有理数加减法应用题(一)温度相关1. 某天早晨的气温是5℃,中午上升了8℃,中午的气温是多少摄氏度?解析:5 + 8 = 3(℃),中午的气温是3℃。
2. 某天的最高气温是10℃,最低气温是3℃,这一天的温差是多少?解析:10 (3) = 10 + 3 = 13(℃),这一天的温差是13℃。
(二)盈利亏损3. 某商店上月盈利 2500 元,本月亏损 500 元,该商店两个月总的盈利或亏损情况如何?解析:2500 + (500) = 2000(元),两个月总的盈利 2000 元。
4. 某公司第一季度盈利 15 万元,第二季度亏损 8 万元,第三季度亏损 3 万元,该公司前三季度总的盈利情况如何?解析:15 + (8) + (3) = 15 8 3 = 4(万元),前三季度总的盈利 4 万元。
(三)海拔高度5. 甲地海拔为 100 米,乙地比甲地高 50 米,乙地的海拔是多少米?解析:100 + 50 = 50(米),乙地的海拔是 50 米。
6. 某山峰比海平面高 1536 米,记作 +1536 米,某盆地比海平面低 100 米,记作 100 米,山峰比盆地高多少米?解析:1536 (100) = 1536 + 100 = 1636(米),山峰比盆地高1636 米。
(四)行程问题7. 小明从家出发,先走了 3 千米,又后退了 2 千米,此时小明离家多远?解析:3 + (2) = 1(千米),此时小明离家 1 千米。
8. 一辆汽车从 A 地出发,先向东行驶 15 千米,再向西行驶 25 千米,此时汽车在 A 地的什么方向,距离 A 地多远?解析:15 + (25) = 10(千米),此时汽车在 A 地的西方,距离A 地 10 千米。
(五)库存变化9. 仓库里原有货物 50 吨,运出 18 吨,又运进 12 吨,现在仓库里有货物多少吨?解析:50 18 + 12 = 44(吨),现在仓库里有货物 44 吨。
知识点三:有理数的应用
有理数的加减
典型例题
例1、某巡警骑摩托车在一条东西大道上巡逻,某天他从岗亭出发,晚上停留在A处, 规定向东方向为正,当天行驶纪录如下:(单位:千米)
+10,-9,+7,-15,+6,-14,+4,-2
(1)A在岗亭何方?距岗亭多远?
(2)若摩托车行驶1千米耗油0.5升,这一天共耗油多少升?
有理数的乘除
例2、某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6C。
若该
地地面温度为13C,高空某处温度为—47C,求此处的高度是多少千米?
有理数的乘方
例3、一个池塘的水浮莲,每天都在生长,且每天的面积是前一天的两倍,如果16天能把整个池塘遮满,那么水浮莲长到遮住半个池塘需要多少天?
变式训练
变式1、在“十•一”黄金周期间,杭州市风景区在7天假期中每天旅游的人数变化如下表
(正数表示比前一天多的人数,负数表示比前一天少的人数):
(1)请判断七天内游客人数最多的是哪天?最少的是哪天?它们相差多少万人?
(2)若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人?
变式2、一天,甲乙两人利用温差测量山峰的高度,甲在山顶测得温度是-1oC,乙此时在山脚测得温度
是5oC,已知该地区每增加100米,气温大约降低0.6cC,这个山峰的高度大约是多少米?
变式3、把一个木棍第一次折成两节,第二次同时折这两节就得到四节,,依次这
样进行下去,当折十次时,将得到多少节木棍?
(选做)
1、出租车司机小李某天下午的营运全是在东西走向的长江路上进行的,如果规定向东
为正,向西为负,他这天下午行车里程(单位:千米)如下:+15、-2、+5、-1、+10、-3、-2、+12、+4、-5、+6
(1)小李下午出发地记为0,他将最后一名乘客送抵目的地时,小李距下午出车时的出发地有多远?
(2)若汽车耗油量为0.41升/千米,这天下午小李共耗油多少升?
(3)若小李家距离出车地点的西边35千米处,送完最后一名乘客,小李还要行驶多少千米才能到家?
知识点四:阶梯收费问题
典型例题:
例1、学校组织同学到博物馆参观,小明因事没有和同学同时出发,于是准备在学校门口搭乘出租车赶去与同学们会合,出租车的收费标准是:起步价为6元,3千米后每千米收
1.2元,不足1千米的按1千米计算。
请你回答下列问题:
(1)小明乘车1.8千米,应付费 _________ 。
(2)小明乘车3.8千米,应付费 __________ 。
(3)小明身上仅有10元钱,乘出租车到距学校7千米远的博物馆的车费够不够?请说明理
由。
例2、某地规定,居民生活用电的费用按以下方法计算:每月用电量不超过50度时,每度
电的价格为0.53元;超过50度时,不超过部分仍为0.53元计算,超出部分每度电的价格为
0.56元,小明家八月份用电170度,应付电费多少元?
变式训练
变式1、根据下面的两种移动电话收费方式表,解答下列问题:
(1)一个月内在本地通话200分钟和350分钟,方式一、方式二各需交费多少元?
(2)问本地通话时间多少分钟时,两种计费方式收费一样多。
(3)怎样选择计费方式更省钱?
课后作业
1 、下表为国外几个城市与北京的时差(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):
(1)北京6月11日23时是巴黎的什么时间?
(2)北京6月11日23时是悉尼的什么时间?
(3)小莹的爸爸于6月11日23时从北京乘飞机,经过16小时的航行到达纽约,到达纽约时北京时间是多少?纽约时间是多少?
2、10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,
称重的记录如下:+2,+1,0,-1,-1.5,-2,+1, -1,-1,-0.5 •这10箱苹果的总质量是多少千克?
3、在一次游戏结束时,5个队的得分如下(答对得正分,答错得负分),A队:—50分;
B 队:150,C队:一300; D队:0 ; E 队:100
(1)把这些队的得分按低分到高分排序;
(2)画一条数轴,将每个队的得分标在数轴上,同时将代表该队的字母也标上;
(3)从数轴上看,A队与B队的距离是多少?A队与C队的距离是多少?C队与D队的距离是多少?。