midas桁架分析实例
- 格式:doc
- 大小:1.52 MB
- 文档页数:19
例题平面网架的分析设计2 例题. 平面网架的分析设计概要此例题将介绍利用midas Gen做平面网架的分析设计过程,以及查看结果的方法。
此例题的步骤如下:1.简介2.设定操作环境及定义材料和截面3.建立网架的一个锥体4.形成平面网架5.生成柱6.定义边界条件7.加荷载8.输入反应谱分析数据9.将荷载转换为质量10.运行分析11.荷载组合12.查看振型形状及各振型所对应的周期13.查看反力、位移及内力14.一般设计参数15.钢构件截面验算16.查看钢构件设计结果简图17.查询及材料统计例题 平面网架的分析设计31.简介本例题介绍使用midas Gen 进行平面网架结构的分析和设计的方法。
基本数据如下:上弦:P140×4.5 下弦: P102×3.5 腹杆:P50×2.5 柱: HW200×204×12/12 钢材: Q235 柱高: 5m设防烈度:8º(0.20g ) 场地:Ⅱ类图 1 平面图 图 2 立面图例题平面网架的分析设计4图3 标准视图2.设定操作环境及定义材料和截面在建立模型之前先设定环境及定义材料和截面1.主菜单选择文件>新项目2.主菜单选择文件>保存:输入文件名“平板网架”并保存3.主菜单选择工具>设置>单位系:长度 m, 力 kN例题 平面网架的分析设计5图4 定义单位体系4.主菜单选择 特性>材料>材料特性值添加:定义Q235钢材材料号:1 名称:Q235 设计类型:钢材 规范:GB03(S) 数据库:Q235 材料类型:各向同性 点击确认按钮注:也可以通过程序右下角随时更改单位图5 定义材料注:也可以通过程序左侧树形菜单“模型>材料和截面特性>材料”来定义材料。
同样,其他操作也可通过左侧树形菜单实现。
例题平面网架的分析设计6 5.主菜单选择特性>截面>截面特性值添加:定义上弦、下弦和腹杆、柱截面尺寸上弦:P140×4.5下弦: P102×3.5腹杆:P50×2.5柱: HW200×204×12/12图6定义截面注:快捷键可通过主菜单“工具>用户自定义>自定义>键盘”实现。
例题张弦结构分析M I D A S/G e n1例题2 例题10. 张弦结构分析概要此例题将介绍利用MIDAS/Gen做张弦结构分析的整个过程,以及查看分析结果的方法。
该例题的建模部分可以参见MIDAS/Gen语音资料的弧形网架建模动画,这里不再做介绍。
通过该例题希望用户能够了解做张弦结构分析的一般步骤和过程,重点是让用户了解在MIDAS/Gen中施加和调整索单元张拉力的方法、几何非线性分析的设置及如何对带有索单元的结构进行弹性反应谱分析。
张弦结构概述张弦结构是将上弦刚性受压构件通过撑杆与下弦拉索组合在一起形成自平衡的受力体系,是一种大跨度预应力空间结构体系。
张弦结构上弦刚性构件可以是实腹式梁,也可以是格构式桁架,据此对不同的张弦结构可称作张弦梁或张弦桁架。
本例题中介绍的模型使用张弦桁架。
张弦结构的特点张弦结构在保证充分发挥索的抗拉性能的同时,由于引进了具有抗压和抗弯能力的桁架或梁而使体系的刚度和稳定性大为增强。
对张弦结构中索施加一定的预拉力,这既可使索具有适当的初始绷紧度,也可对索与桁架或梁之间的受力比例进行必要调整;既充分发挥了索的抗拉能力,又调整了桁架或梁的内力分布(使桁架或梁中的内力分布趋于均匀)张弦结构的形态定义张弦结构像悬索结构等柔性结构一样,根据张弦结构的加工,施工及受力特点,通常将其结构形态定义为零状态、初始态和荷载态三种。
(1):零状态零状态是拉索张拉的前状态,实际上是指构件的加工和放样状态,通常也称结构放样态。
当索张拉完毕后,结构上弦构件的形状将发生偏离,从而不能满足建筑的要求,因此,张弦结构上弦构件的加工放样要考虑这种索张拉后带来的变形影响,这是张弦结构要进行零状态定义的原因。
(2):初始态初始态是拉索张拉完毕后,结构安装就位的形态,通常也称预应力态。
初始态是建筑施工图中所明确的结构外形。
(3):荷载态荷载态是外荷载作用在初始态结构上发生变形后的平衡状态。
张弦桁架在MIDAS中的计算此例题的分类及各自的步骤如下:一、在工程中已知索单元初拉力的情况下,加其它荷载进行分析,求索单元的拉力变化及结构的变形。
MIDASCIVIL钢桁梁桥建模及分析第三章 MIDAS/CIVIL钢桁梁桥建模及分析 3.1概述易学易用能够迅速、准确地完成类似结构的分析和设计是MIDAS的独到之处。
MIDAS/Civil是针对土木结构特别是分析预应力箱型桥梁、悬索桥、斜拉桥等特殊的桥梁结构形式同时可以做非线性边界分析、水化热分析、材料非线性分析、静力弹塑性分析、动力弹塑性分析。
本教程手把手教你如何使用MIDAS/Civil 以64m下承式铁路简支钢桁梁桥为例详细介绍设定操作环境、建立模型、定制分析选项和查找计算结果的完整过程旨在引导初学者快速熟悉和掌握MIDAS/Civil的基本操作和使用注意事项。
本教程使用软件版本为2006该教程在尽可能多的地方给出了菜单和工具栏两种操作为了适应不同习惯的读者方式为了使读者快速全面地掌握MIDAS的实际操作本教程对同样的操作功能在不同的地方给出了尽可能多的实现方法如对不同选择方式的操作。
本教程中64m下承式铁路简支钢桁梁桥共8个节间节间长度8m 主桁高11m 基本尺寸如图3. 1所示。
图3. 1 64m下承式铁路简支钢桁梁桥结构的基本尺寸 3.2 设定操作环境3.2.1 启动MIDAS/Civil安装完成后双击桌面上或相应目录中的MIDAS/Civil的图标打开程序启动界面如图3.2所示分为主菜单、图标菜单、树形菜单、工具条、主窗口、信息窗口、状态条等部分。
图3.2 MIDAS/Civil的启动界面 3.2.2 创建新项目通过选择主菜单的文件?新项目(或者点击工具条按钮)创建新项目之后选择文件?保存菜单(或者)设置路径保存项目。
3.2.3 定制工具条图3.3 定制菜单对话框选择主菜单的工具?用户定制?用户定制…调出如图3.3所示定制工具条对话框在Toolbars选项卡下通过勾选复选框可以定制符合自己风格的工具条该教程采用默认选项点击按钮关闭对话框。
3.2.4 设置单位体系(1) 在主菜单中选择工具?单位体系打开单位体系设置对话框如图XN.4所示。
用MIDAS来做稳定分析的处理方法(笔记整理)对一个网壳或空间桁架这样的整体结构而言,稳定会涉及三类问题:A.整个结构的稳定性B.构成结构的单个杆件的稳定性C.单个杆件里的局部稳定(如其中的板件的稳定)A整个结构的稳定性:1. 在数学处理上是求特征值问题的特征值屈曲,又叫平衡分叉失稳或者分支点失稳特征:结构达到某种荷载时,除结构原来的平衡状态存在外,还可能出现第二个平衡态2:极值点失稳特征:失稳时,变形迅速增大,而不会出现新的变形形式,即平衡状态不发生质变,结构失稳时相应的荷载称为极限荷载。
3:跳跃失稳,性质和极值点失稳类似,可以归入第二类。
B构成结构的单个杆件的稳定性通过设计的时候可以验算秆件的稳定性,尽管这里面存在一个计算长度的选取问题而显得不完善,但总是安全的。
C 单个杆件里的局部稳定(如其中的板件的稳定)在MIDAS里面,我想已不能在整体结构的范围内解决了,但是单个秆件的局部稳定可以利用板单元(对于实体现在还没有办法做屈曲分析)来模拟单个构件,然后分析出整体稳定屈曲系数。
和A是同样的道理,这里充分体现了结构即构件,构件即结构的道理A整个结构的稳定性:分析方法:1:线性屈曲分析(对象:桁架,粱,板)在一定变形状态下的结构的静力平衡方程式可以写成下列形式:(1):结构的弹性刚度矩阵:结构的几何刚度矩阵:结构的整体位移向量:结构的外力向量结构的几何刚度矩阵可通过将各个单元的几何刚度矩阵相加而得,各个单元的几何刚度矩阵由以下方法求得。
几何刚度矩阵表示结构在变形状态下的刚度变化,与施加的荷载有直接的关系。
任意构件受到压力时,刚度有减小的倾向;反之,受到拉力时,刚度有增大的倾向。
大家所熟知的欧拉公式,对于一个杆单元,当所受压力超过N=3.1415^2*E*I/L^2时,杆的弯曲刚度就消失了,同样的道理不仅适用单根压杆,也适用与整个框架体系通过特征值分析求得的解有特征值和特征向量,特征值就是临界荷载,特征向量是对应于临界荷载的屈曲模态。
概要此例题将详细介绍利用MIDAS/Gen做平面网架的设计分析过程,以及查看分析结果的方法。
此例题的步骤如下:1.简要2.设定操作环境及定义材料和截面3.建立网架的一个锥体4.形成平面网架5.生成柱6.定义边界条件7.加载8.输入反应谱分析数据9.将荷载转换为质量10.运行分析11.荷载组合12.振型形状及各振型所对应的周期13.查看位移、反力及内力14.一般设计参数15.钢构件截面验算16.查看钢构件设计结果简图3117.查询及材料统计读万卷书行万里路1.简要本例题介绍使用MIDAS/Gen进行平面网架结构的分析和设计的方法。
例题模型为单层平面网架。
基本数据如下:➢上弦:P139.8×3.6➢下弦: P101.6×3.2➢腹杆:P48.6×2.8➢柱:HW200×204×12/12➢钢管:Q235➢层高:5m➢设防烈度:8º(0.20g)场地:Ⅱ类31图1.平面图图2. 立面图图3. 标准视图2. 设定操作环境及定义材料和截面在建立模型之前先设定环境及定义材料和截面1.主菜单选择文件>新项目2.主菜单选择文件>保存: 输入文件名并保存3.主菜单选择工具>单位体系: 长度m, 力kN读万卷书行万里路注:也可以通过程序右下角随时更改单位。
图4. 定义单位体系4.主菜单选择模型>材料和截面特性>材料:添加:定义Q235钢材材料号:1 名称:Q235 设计类型:钢材规范:GB03(S)数据库:Q235 材料类型:各向同性31点击确认按钮图5。
定义材料5.主菜单选择模型>材料和截面特性>截面:添加:定义上弦、下弦和腹杆、柱截面尺寸读万卷书行万里路31图6。
定义截面3. 建立网架的一个锥体1.主菜单选择 模型>单元>建立选择桁架单元,材料:Q235,截面:P 139.8×3.6点击俯视图和,设置节点捕捉栅格,(dx,dy)为(1,1)。
会展中心超大跨度钢桁架吊装施工过程仿真计算分析摘要:会展中心N1展馆屋面钢结构采用空间立体倒三角形钢桁架体系,跨度达到117米,屋盖钢结构造型成不规则曲线造型,利用通用有限元结构计算软件MIDAS对超大跨度桁架建立有限元计算模型,对整个屋盖钢结构施工过程进行仿真模拟计算,得到不同施工阶段屋盖桁架体系竖向挠度变形情况及施工完成后屋盖桁架体系应力情况,确保桁架安装的精确性以及整个吊装过程中的安全性和经济性,最终确保吊装完成后屋盖钢结构造型与设计造型拟合度最好,为同类大型场馆大跨度空间桁架结构体系施工提供参考。
关键词:钢桁架;吊装施工程;仿真计算随着钢结构技术的飞速发展,大跨度钢结构在我国应用越来越广泛,尤其是造型复杂、空间要求高的体育场馆、机场、剧院、展馆等公共建筑领域[1]。
为保证空间大跨度钢结构在施工过程中的精确性及不规则造型要求以及施工安全性要求,需要对结构体系进行吊装过程和整个施工过程的模拟仿真计算。
每榀桁架吊装及桁架之间联系杆填杆施工过程中可能会引起杆件的力学性能发生变化,包括各组成杆件的强度、刚度、稳定性等。
由于桁架跨度非常大,需要对每榀桁架的吊装进行跟踪仿真计算模拟,关注每个桁架在吊装过程中变形挠度的变化及安装完成后应力的最终状态,根据计算结果及时调整施工方法,找出最薄弱的施工环节并给予加强,确保结构体系的安全性和后续安装的准确性。
本文结合济南济阳新旧动能转换起步区会展中心N1展馆项目屋盖钢桁架的安装工程实例,采用结构计算软件MIDAS对整个屋盖钢结构桁架体系进行模拟计算分析,得到桁架安装过程屋盖钢桁架体系的竖向挠度变形情况及安装完成后应力分布情况,为同类大型场馆大跨度空间桁架结构体系施工提供参考。
一、工程概况N1展馆建筑结构共两层,结构体系为框架结构,屋盖结构采用空间立体倒三角形桁架体系,整体结构图见图1。
主桁架共11榀,最大跨度达到117米,桁架上下主弦杆高度为6米,桁架上弦宽度为4米,腹杆间距为7.5米,按受拉方向布置,桁架整体造型见图2。
midas钢结构优化分析及设计例题3 钢框架结构分析及优化设计M I D A S/G e n1例题钢框架结构分析及优化设计2 例题2. 钢框架结构分析及优化设计概要本例题通过某六层带斜撑的钢框架结构来介绍MIDAS/Gen的优化设计功能。
MIDAS/Gen提供了强度优化和位移优化两种优化⽅法。
强度优化是指在满⾜在相应规范要求的强度下,求出最⼩构件截⾯,即以结构重量为⽬标函数的优化功能。
位移优化是针对钢框架结构,在强度优化设计前提下,增加了以侧向位移为约束条件的⾃动设计功能。
本⽂主要讲述强度优化设计功能。
此例题的步骤如下:1.简要2.建⽴及分析模型3.设置设计条件4.钢构件截⾯验算及设计5.钢结构优化设计例题钢框架结构分析及优化设计1.简要本例题介绍MIDAS/Gen的优化设计功能。
例题模型为带斜撑的六层钢框架结构。
(该例题数据仅供参考)基本数据如下:轴⽹尺⼨:见图1柱: HW 200x204x12/12主梁:HM 244x175x7/11次梁:HN 200x100x5.5/8⽀撑:HN 125x60x6/8钢材: Q235层⾼:⼀层 4.5m⼆~六层 3.0m设防烈度:8o(0.20g)场地: II类设计地震分组:1组地⾯粗糙度;A基本风压:0.35KN/m2;荷载条件:1-5层楼⾯,恒荷载 4.0KN/m2,活荷载2.0KN/m2;6层屋⾯,恒荷载 5.0KN/m2,活荷载1.0KN/m2;1-5层最外圈主梁上线荷载4.0KN/m;6层最外圈主梁上线荷载1.0KN/m;分析计算考虑双向风荷载,⽤反应谱分析法来计算双向地震作⽤3例题钢框架结构分析及优化设计4图1. 分析模型图2. 结构平⾯图例题钢框架结构分析及优化设计5图3. ①,③轴线⽴⾯图图4. ①,④轴线⽴⾯图图5. ○B ,○C 轴线⽴⾯图图6. ○A ,○D 轴线⽴⾯图例题钢框架结构分析及优化设计6 2.建⽴及分析模型建⽴模型并进⾏分析运算。
2. 桁架分析
概述
通过下面的例题,比较部1次超静定桁架和、外部1次超静定桁架两种结构在制作误差产
生的荷载和集中力作用时结构的效应。
内部1次超静
制作误差5mm
内、外部1次超静定
制作误差5mm
图2.1 分析模型
➢材料
钢材类型: Grade3
➢截面
数据: 箱形截面300×300×12 mm
➢荷载
1. 节点集中荷载: 50 tonf
2. 制作误差: 5 mm →预力荷载(141.75 tonf)
P = Kδ = EA/L x δ = 2.1 x 107 x 0.0135 / 10 x 0.005 = 141.75 tonf
设定基本环境
打开新文件以‘桁架分析.mgb’为名存档。
设定长度单位为‘m’, 力单位为‘tonf’。
文件/ 新文件
文件/ 保存( 桁架分析)
工具/ 单位体系
长度> m; 力> tonf↵
图2.2 设定单位体系
设定结构类型为X-Z 平面。
模型/ 结构类型
结构类型> X-Z 平面↵
定义材料以及截面
构成桁架结构的材料选择Grade3(中国标准),截面以用户定义的方式输入。
模型/ 特性/ 材料
设计类型> 钢材
规> GB(S); 数据库> Grade3↵
模型/ 特性/ 截面
数据库/用户
截面号( 1 ); 形状> 箱形截面;
名称(300x300x12 ); 用户(如图2.4输入数据)↵
图2.3 定义材料图2.4 定义截面
建立节点和单元
首先建立形成下弦构件的节点。
正面捕捉点(关) 捕捉轴线(关)
捕捉节点(开) 捕捉单元(开) 自动对齐(开)
模型/ 节点/ 建立节点
坐标系(x , y, z ) ( 0, 0, 0 )
图2.5 建立节点
用扩展单元功能建立桁架下弦。
单元类型为桁架单元。
模型/ 单元/ 扩展单元
全选
扩展类型> 节点 线单元
单元属性> 单元类型> 桁架单元
材料>1: Grade3; 截面>1: 300x300x12; Beta 角( 0 )一般类型> 复制和移动; 复制和移动> 等距离
dx, dy, dz ( 6, 0, 0 ); 复制次数( 3 )
图2.6 建立下弦
X Z
参考在线用户手册的“单元类型”的
“框架单元”部分
复制下弦建立桁架上弦。
模型/ 单元/ 复制和移动单元
单元号(开)
单选(单元: 2 )
形式> 复制; 移动和复制> 等距离
dx, dy, dz ( 0, 0, 8 ); 复制次数( 1 )
图2.7 建立上弦
输入倾斜杆和竖向杆件。
模型/ 单元/ 建立单元
单元号(关), 节点号(开)
单元类型>桁架单元
材料>1: Grade3; 截面>1: 300x300x12
交叉分割> 单元(关)
节点连接(1, 5) (5, 2) (2, 6) (5, 3) (6, 3) (6, 4)
图2.8 输入斜杆以及竖向杆件
输入边界条件
3维空间里节点有6个自由度(Dx, Dy, Dz, Rx, Ry, Rz)。
但结构类型为 X-Z 平面,所以只剩3个自由度 (Dx, Dz, Ry)。
铰支座约束自由度Dx, Dz, 滚动支座约束自由度Dz 。
模型 / 边界条件 / 一般支承
单选 ( 节点 : 1 )
选择 > 添加; 支承条件类型 > Dx, Dz (开) ↵
单选 ( 节点 : 4 ) ; 支承条件类型 > Dz (开) ↵
图 2.9 输入支撑条件
关于支座条件的详细事项参照在线帮助手册的 “自由度约束条件”部分
输入荷载
定义荷载工况
荷载/ 静力荷载工况
名称( 节点荷载) ; 类型> 用户定义的荷载(USER)
名称( 制作误差) ; 类型> 用户定义的荷载(USER)
图2.10 输入荷载工况
输入节点荷载
在节点2输入集中荷载50 tonf。
荷载/ 节点荷载s
单选( 节点: 2 )
荷载工况名称> 节点荷载; 选择> 添加
节点荷载> FZ ( -50 )
图2.11 输入节点荷载
输入制作误差
长度小了 5 mm 的构件在实际施工时会产生拉力。
为了把这个反映在模型当中,把制作误差换算为初拉力荷载输入到对应的杆件中。
P = Kδ= EA/L x δ= (2.1 x 107 x 0.0135 / 10) x 0.005 = 141.75 tonf
荷载/预应力荷载/初拉力荷载
单选(单元: 8 )
荷载工况名称> 制作误差
选择> 添加; 初拉力荷载( 141.75 )↵
8
图2.12 输入初拉力荷载
复制单元
复制模型1来建立模型2. 为了同时复制输入在模型1的节点荷载、初拉力荷载和边界条件,利用复制节点属性和复制单元属性功能来完成。
模型/ 单元/ 复制和移动单元
全选
形式> 复制; 复制和移动> 等距离
dx, dy, dz ( 0, 0, -14 ); 复制次数( 1 )
复制节点属性(开),复制单元属性(开)
模型1
模型2
图2.13 复制单元
更改边界条件
为了把模型2改为外部1次超静定的结构,定义为滑动铰支座的节点的支撑条件修改为限
制X方向移动的铰接条件。
显示
边界条件>一般支承(开) ↵
模型/边界条件/ 一般支承
单选( 节点:10 )
选择> 添加
支承条件类型> Dx (开) ↵
图2.14 变更支座条件
运行结构分析
运行结构分析.
分析/ 运行分析
查看分析结果
反力
比较外部静定结构(模型1)和外部超静定(模型2)的外部节点荷载引起的反力。
可以看出模型2发生水平(X축)方向反力。
节点号(关)
显示
边界条件> 一般支承(关) ↵
结果/ 反力/ 反力
荷载工况/荷载组合> ST:节点荷载; 反力> FXYZ
显示类型> 数值(开),图例(开) ↵
数值
小数点以下位数( 3 ) ; 指数型(关) ; 适用于选择确认(开↵
模型1
模型2
图2.15 对节点荷载的反力
部初拉力荷载在外部静定的模型1的情况不产生反力,但模型2的情况的X方向的位移自由度被约束而会产生水平方向的反力(FX)。
结果/ 反力/ 反力/弯矩
荷载工况/荷载组合> ST:制作误差; 反力> FXYZ
显示类型> 数值(开),图例(开)
模型1
模型2
图2.16 初拉力荷载下的反力
查看变形图 查看节点荷载的引起的变形图。
DXZ=22DZ DX +. 结果 /位移/ 位移形状 消隐 (开) 荷载工况/荷载组合> ST:节点荷载 ; 成分> DXZ 显示类型 > 变形前 (开), 数值 (开), 图例 (开) 数值 小数点以下位数 ( 1 ) ; 指数型(开) ; 适用于选择确认时(开) ↵ 图 2.17 节点荷载引起的变形图 模型1 模型2
查看力
首先查看节点荷载产生的轴力(axial force)。
查看相同荷载作用下的模型1和模型2的力之差。
结果/ 力/ 桁架单元力
荷载工况/荷载组合> ST:节点荷载; 选择力> 受拉
显示类型> 变形(开), 数值(开),图例(开)
数值
小数点以下位数( 1 ) ; 指数型(关) ; 显示角度(关)
适用于选择确认时(关) ↵
数值的输出位置> 最大值↵
选择内力选择“受
拉”则只输出受拉构件
的轴力, 选择“受压”则
只输出受压构件轴力,
选择“全部”则输出全部
构件的轴力。
图2.18 节点荷载产生的轴力
在初拉力荷载下模型1的支座处不产生反力, 所以连接在支座处的构件不产生轴力。
结果/ 力/ 桁架单元力
荷载工况/荷载组合> ST:制作误差
选择力> 全部
显示类型> 变形(开), 数值(开), 图例(开)
数值的输出位置> 最大值
模型1
模型2
图2.19 初拉力荷载下的轴力
习题
1.比较下面结构物产生的压力以及拉力情况。
(材料和截面与例题相同)
2.求下面结构在节点荷载和制作误差作用下的各个构件的轴力。
(材料和截面与例题相
同)
制作误差。