算法之回溯法实现
- 格式:docx
- 大小:313.76 KB
- 文档页数:50
算法设计与分析——批处理作业调度(回溯法)之前讲过⼀个相似的问题流⽔作业调度问题,那⼀道题最开始⽤动态规划,推到最后得到了⼀个Johnson法则,变成了⼀个排序问题,有兴趣的可以看⼀下本篇博客主要参考⾃⼀、问题描述给定n个作业的集合{J1,J2,…,Jn}。
每个作业必须先由机器1处理,然后由机器2处理。
作业Ji需要机器j的处理时间为t ji。
对于⼀个确定的作业调度,设Fji是作业i在机器j上完成处理的时间。
所有作业在机器2上完成处理的时间和称为该作业调度的完成时间和。
批处理作业调度问题要求对于给定的n个作业,制定最佳作业调度⽅案,使其完成时间和达到最⼩。
例:设n=3,考虑以下实例:看到这⾥可能会对这些完成时间和是怎么计算出来的会有疑问,这⾥我拿123和312的⽅案来说明⼀下。
对于调度⽅案(1,2,3)作业1在机器1上完成的时间是2,在机器2上完成的时间是3作业2在机器1上完成的时间是5,在机器2上完成的时间是6作业3在机器1上完成的时间是7,在机器2上完成的时间是10所以,作业调度的完成时间和= 3 + 6 + 10这⾥我们可以思考⼀下作业i在机器2上完成的时间应该怎么去求?作业i在机器1上完成的时间是连续的,所以是直接累加就可以。
但对于机器2就会产⽣两种情况,这两种情况其实就是上图的两种情况,对于(1,2,3)的调度⽅案,在求作业2在机器2上完成的时间时,由于作业2在机器1上还没有完成,这就需要先等待机器1处理完;⽽对于(3,1,2)的调度⽅案,在求作业2在机器2上完成的时间时,作业2在机器1早已完成,⽆需等待,直接在作业1被机器1处理之后就能接着被处理。
综上,我们可以得到如下表达式if(F2[i-1] > F1[i])F2[i] = F2[i-1] + t[2][i]elseF2[i] = F1[i] + t[2][i]⼆、算法设计类Flowshop的数据成员记录解空间的结点信息,M输⼊作业时间,bestf记录当前最⼩完成时间和,数组bestx记录相应的当前最佳作业调度。
回溯算法详解
回溯算法是一种经典问题求解方法,通常被应用于在候选解的搜索空间中,通过深度优先搜索的方式找到所有可行解的问题。
回溯算法的本质是对一棵树的深度优先遍历,因此也被称为树形搜索算法。
回溯算法的基本思想是逐步构建候选解,并试图将其扩展为一个完整的解。
当无法继续扩展解时,则回溯到上一步并尝试其他的扩展,直到找到所有可行的解为止。
在回溯算法中,通常会维护一个状态向量,用于记录当前已经构建的解的情况。
通常情况下,状态向量的长度等于问题的规模。
在搜索过程中,我们尝试在状态向量中改变一个或多个元素,并检查修改后的状态是否合法。
如果合法,则继续搜索;如果不合法,则放弃当前修改并回溯到上一步。
在实际应用中,回溯算法通常用来解决以下类型的问题:
1. 组合问题:从n个元素中选取k个元素的所有组合;
2. 排列问题:从n个元素中选择k个元素,并按照一定顺序排列的所有可能;
3. 子集问题:从n个元素中选择所有可能的子集;
4. 棋盘问题:在一个给定的n x n棋盘上放置n个皇后,并满足彼此之间不会互相攻击的要求。
回溯算法的时间复杂度取决于候选解的规模以及搜索空间中的剪枝效果。
在最坏情况下,回溯算法的时间复杂度与候选解的数量成指数级增长,因此通常会使用剪枝算法来尽可能减少搜索空间的规模,从而提高算法的效率。
总之,回溯算法是一种非常有用的问题求解方法,在实际应用中被广泛使用。
同时,由于其时间复杂度较高,对于大规模的问题,需要慎重考虑是否使用回溯算法以及如何优化算法。
回溯算法的步骤介绍回溯算法是一种常用于解决组合优化问题的算法。
它将问题转化为一个搜索树,并使用深度优先搜索的方式遍历整个搜索空间,通过剪枝操作来减少不必要的搜索。
思想回溯算法的思想是不断地试错和回溯。
它通过尝试每一种可能的解决方案,并在发现这条路不可能得到正确解时进行回溯,回退到上一步继续尝试其他的方案。
回溯算法适用于十分灵活的问题,因为它并不局限于特定的解决策略,而是通过搜索整个解空间来找到问题的解。
步骤回溯算法的步骤可以总结为以下几个部分:1. 定义问题的解空间首先需要明确问题的解空间是什么。
解空间是所有可能的解的集合,可以用一个树形结构来表示。
2. 确定搜索的起点确定搜索的起点,通常是空解或者是一个可以快速得到解的初始解。
3. 确定搜索的终点确定搜索的终点,即找到一个满足问题要求的解,或者搜索到整个解空间。
4. 递归地搜索解空间递归地搜索解空间,从起点开始不断地向下搜索,直到找到一个满足条件的解,或者搜索到整个解空间。
5. 对每一个可能的解进行评估对每一个可能的解进行评估,判断是否满足问题的要求。
6. 进行剪枝操作在搜索过程中,如果发现当前的解已经不可能得到满足要求的解,可以进行剪枝操作,直接放弃当前解在解空间的搜索,回溯到上一步继续搜索其他的解。
7. 回溯操作如果当前解满足了问题的要求,可以将其加入到结果集中。
然后进行回溯操作,回退到上一步继续搜索其他的解。
8. 返回解集最后返回所有满足问题要求的解。
实例分析为了更好地理解回溯算法的步骤,我们用一个实例来进行分析。
问题:给定一个数组,求所有可能的子集。
解空间:解空间是所有可能的子集的集合。
起点:空集。
终点:找到所有可能的子集。
步骤: 1. 确定问题的解空间:所有可能的子集的集合,可以用一个树形结构来表示,根节点是空集。
2. 确定搜索的起点:空集。
3. 确定搜索的终点:找到所有可能的子集。
4. 递归地搜索解空间:从起点开始向下搜索,每次可选的操作是向集合添加一个新元素或不添加。
简述回溯法
回溯法是一种解决问题的思路和方法,它通常用于在有限的选择中
搜索问题的解。
这种方法通过不断回溯,重复尝试不同的解决方案,
直到找到正确的解答,或者发现问题无解。
回溯法通常用于解决NP问题,如旅行商问题、八皇后问题等。
它的基
本思路是从初始状态开始搜索,逐步深入,直到找到解答或者无解为止。
在搜索的过程中,如果发现当前的搜索方向行不通,就会回溯到
上一个状态,尝试其他可行的方案,直到找到正确的路径。
回溯法的具体实现可以用递归来实现。
在搜索的过程中,我们需要记
录当前的状态和步骤,并根据状态的变化不断更新。
如果发现当前的
状态无法满足要求,就返回上一个状态,继续尝试其他的方案。
这种
方法可以帮助我们避免遗漏解法,同时也能够高效地找到最优解。
在实际应用中,回溯法通常分为两类:深度优先搜索和广度优先搜索。
深度优先搜索从初始状态开始,按照某种规定的搜索方向进行搜索,
直到找到一个终止状态或者遍历完所有状态。
广度优先搜索则是从初
始状态开始,逐层扩展搜索范围,直到找到一个解答或者遍历完所有
状态。
总之,回溯法是一种非常有效的求解方法,可以解决很多复杂的问题。
它的优点在于能够避免遗漏解法,同时也能够高效地找到最优解。
在
实际应用中,我们可以根据问题的具体特点来选择合适的搜索算法,并在实现过程中注意优化和剪枝,以提高搜索效率。
回溯法的几种算法框架回溯法是一种经典的求解问题的算法框架,通常用于解决组合优化、搜索和排列问题。
下面将介绍回溯法的几种常见算法框架。
1. 全排列问题:全排列问题是指对给定的一组数字或字符,求出所有可能的排列方式。
回溯法可以通过递归的方式实现。
首先选择一个初始位置,然后从剩余的数字中选择下一个位置,依次类推,直到所有位置都被填满。
当所有位置都填满时,得到一个排列。
随后继续回溯,在上一次选择的位置后面选择下一个数字,直到得到所有的排列。
2. 子集问题:子集问题是指对给定的一组数字或字符,求出所有可能的子集。
回溯法可以通过递归的方式实现。
从给定的集合中选择一个元素,可以选择将其添加到当前正在构建的子集中,也可以选择跳过。
递归地遍历所有可能的选择路径,直到得到所有的子集。
3. 组合问题:组合问题是指在给定的一组数字或字符中,取出若干个元素进行组合,求解出所有不重复的组合方式。
回溯法可以通过递归的方式实现。
从给定的集合中选择一个元素,将其添加到当前正在构建的组合中,然后以当前选择元素的下一个位置为起点,递归地构建后续的组合。
如果当前组合已经满足条件或者已经遍历完所有可能的位置,则回溯到上一次选择的位置,继续尝试其他可能的选择。
4. 搜索问题:搜索问题是指在给定的搜索空间中,找到满足特定条件的解。
回溯法可以通过递归的方式实现。
从初始状态开始,选择一个操作或移动方式,然后递归地探索所有可能的状态转移路径。
每次探索时,进行剪枝操作,排除一些不符合条件的状态。
当找到满足条件的解或搜索空间遍历完时,回溯到上一次选择的位置,继续探索其他可能的路径。
总结:回溯法是一种求解问题的经典算法框架,适用于组合优化、搜索和排列问题。
通过选择和回溯的方式,可以遍历所有可能的解空间,并找到满足特定条件的解。
在实际应用中,可以根据具体问题的特点,选择合适的算法框架和相应的优化策略,以提高算法的效率和准确性。
《算法设计与分析》实验报告实验三回溯法3.迷宫问题一天Luna在森林里探险的时候不小心走入了一个迷宫,迷宫可以看成是由n * n的格点组成,每个格点只有2种状态,. 和#,前者表示可以通行后者表示不能通行。
同时当Luna处在某个格点时,她只能移动到东南西北(或者说上下左右)四个方向之一的相邻格点上,Luna想要从点A走到点B(不能走出迷宫)。
如果起点或者终点有一个不能通行(为#),则看成无法办到。
[输入]第1行是测试数据的组数k,后面跟着k组输入。
每组测试数据的第1行是一个正整数n (1 <= n <= 100),表示迷宫的规模是n * n 的。
接下来是一个n * n的矩阵,矩阵中的元素为. 或者#。
再接下来一行是4个整数ha, la, hb, lb,描述A处在第ha行, 第la列,B处在第hb 行, 第lb列。
注意到ha, la, hb, lb全部是从0开始计数的。
1.八皇后问题1.1解题思路八皇后问题的解法,很简单的解法。
通过回溯实现枚举。
对于当前行,尝试是否可在当前列放置皇后,然后进入下一行的尝试,同时尝试完毕以后,要将当前行回复(回溯),来进行下一次尝试。
到达最后一行的时候,即递归结束条件,打印结果即可。
1.2程序运行情况1.3所有的皇后解见附录。
(毕竟92个解...)1.4程序源码(含注释)2. 24点问题2.1 解题思路这题虽然使用dfs很简单,但是有一点思维在里面。
我很惭愧,自己没有想出来怎么如意的独立AC此题。
遇到的最大的问题——如何插入括号?枚举插入、和运算符一同排列都不靠谱。
解决方法是:用同等的办法转化。
每一次从待组合的是数字中,任取两个数,随机用运算符计算完毕后,再放回去。
下一次计算,再次重复这个过程,可以等价为有括号的运算方式了。
遇到第二个问题——如何实现这种“任取两个数”的选择方式。
这里就直接体现出了我个人能力的不足。
居然没想到。
尝试使用STL的set,但是没成功。
第五组回溯算法(硬币分配问题)实训⼀硬币分法问题的回溯算法与实现⼀、设计⽬的1)掌握硬币分法问题的回溯算法;2)进⼀步掌握回溯算法的基本思想和算法设计⽅法;⼆、设计内容1.任务描述1)算法简介回溯算法也叫试探法,它是⼀种系统地搜索问题的解的⽅法。
回溯算法的基本思想是:从⼀条路往前⾛,能进则进,不能进则退回来,换⼀条路再试。
⼋皇后问题就是回溯算法的典型,第⼀步按照顺序放⼀个皇后,然后第⼆步符合要求放第2个皇后,如果没有符合位置符合要求,那么就要改变第⼀个皇后的位置,重新放第2个皇后的位置,直到找到符合条件的位置就可以了回溯在迷宫搜索中使⽤很常见,就是这条路⾛不通,然后返回前⼀个路⼝,继续下⼀条路。
回溯算法说⽩了就是穷举法。
不过回溯算法使⽤剪枝函数,剪去⼀些不可能到达最终状态(即答案状态)的节点,从⽽减少状态空间树节点的⽣成。
回溯法是⼀个既带有系统性⼜带有跳跃性的的搜索算法。
它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。
算法搜索⾄解空间树的任⼀结点时,总是先判断该结点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该结点为根的⼦树的系统搜索,逐层向其祖先结点回溯。
否则,进⼊该⼦树,继续按深度优先的策略进⾏搜索。
回溯法在⽤来求问题的所有解时,要回溯到根,且根结点的所有⼦树都已被搜索遍才结束。
⽽回溯法在⽤来求问题的任⼀解时,只要搜索到问题的⼀个解就可以结束。
这种以深度优先的⽅式系统地搜索问题的解的算法称为回溯法,它适⽤于解⼀些组合数较⼤的问题。
2)硬币分法问题简介假设有5种硬币:50美分,25美分,10美分,5美分和1美分。
我们给⼀定数量的资⾦,要求这些硬币作出变化。
例如,如果我们有11美分,那么我们可以给出⼀个10美分的硬币和⼀个1美分硬币,或者2个 5美分的硬币和⼀个1美分硬币,或者⼀个5美分硬币和6个 1美分的硬币,或11个1美分硬币。
因此,有四个使上述11美分硬币的变化⽅式。
回溯算法-算法介绍回溯法1、有许多问题,当需要找出它的解集或者要求回答什么解是满⾜某些约束条件的最佳解时,往往要使⽤回溯法。
2、回溯法的基本做法是搜索,或是⼀种组织得井井有条的,能避免不必要搜索的穷举式搜索法。
这种⽅法适⽤于解⼀些组合数相当⼤的问题。
3、回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。
算法搜索⾄解空间树的任意⼀点时,先判断该结点是否包含问题的解。
如果肯定不包含(剪枝过程),则跳过对该结点为根的⼦树的搜索,逐层向其祖先结点回溯;否则,进⼊该⼦树,继续按深度优先策略搜索。
问题的解空间问题的解向量:回溯法希望⼀个问题的解能够表⽰成⼀个n元式(x1,x2,…,xn)的形式。
显约束:对分量xi的取值限定。
隐约束:为满⾜问题的解⽽对不同分量之间施加的约束。
解空间:对于问题的⼀个实例,解向量满⾜显式约束条件的所有多元组,构成了该实例的⼀个解空间。
注意:同⼀个问题可以有多种表⽰,有些表⽰⽅法更简单,所需表⽰的状态空间更⼩(存储量少,搜索⽅法简单)。
下⾯是n=3时的0-1背包问题⽤完全⼆叉树表⽰的解空间:⽣成问题状态的基本⽅法扩展结点:⼀个正在产⽣⼉⼦的结点称为扩展结点活结点:⼀个⾃⾝已⽣成但其⼉⼦还没有全部⽣成的节点称做活结点死结点:⼀个所有⼉⼦已经产⽣的结点称做死结点深度优先的问题状态⽣成法:如果对⼀个扩展结点R,⼀旦产⽣了它的⼀个⼉⼦C,就把C当做新的扩展结点。
在完成对⼦树C(以C为根的⼦树)的穷尽搜索之后,将R重新变成扩展结点,继续⽣成R的下⼀个⼉⼦(如果存在)宽度优先的问题状态⽣成法:在⼀个扩展结点变成死结点之前,它⼀直是扩展结点回溯法:为了避免⽣成那些不可能产⽣最佳解的问题状态,要不断地利⽤限界函数(bounding function)来处死(剪枝)那些实际上不可能产⽣所需解的活结点,以减少问题的计算量。
具有限界函数的深度优先⽣成法称为回溯法。
(回溯法 = 穷举 + 剪枝)回溯法的基本思想(1)针对所给问题,定义问题的解空间;(2)确定易于搜索的解空间结构;(3)以深度优先⽅式搜索解空间,并在搜索过程中⽤剪枝函数避免⽆效搜索。
0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。
物品i 的重量是w i ,其价值为v i ,背包的容量为C 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。
不能将物品装入背包多次,也不能只装入部分的物品。
三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。
2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。
3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。
关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。
回溯法方法简介回溯法(backtracking)是一种常用于解决组合优化问题和搜索问题的算法。
它通过逐步建立解决方案的过程,并在某一步发现不满足条件时回溯到前一步,尝试其他可能的选择,直至找到满足条件的解决方案或者确定无解。
回溯法的思想类似于穷举搜索,但通过一些剪枝等优化策略,可以提高搜索效率。
回溯法是许多经典算法问题的核心思想,如八皇后问题、0-1背包问题、图的着色问题等。
回溯法的过程通常包括五个步骤:1. 选择解空间;2. 约束条件;3. 判断当前解是否满足约束条件;4. 如果满足条件则记录当前解,否则回溯到前一步;5. 继续遍历其他分支,直至找到最终解或确定无解。
回溯法通常使用递归的方式来实现,其中递归函数包括参数表示当前搜索深度、当前解决方案、约束条件等信息。
在递归函数中,根据约束条件和当前解决方案,判断是否需要继续搜索或者回溯。
通过不断调用递归函数,可以逐步构建解空间,并寻找满足条件的解决方案。
回溯法的优点在于可以找到问题的所有解(或满足条件的解),适用于许多组合优化问题和搜索问题。
回溯法的搜索过程中可以使用剪枝等策略来提高效率,避免不必要的搜索。
回溯法的缺点在于可能需要遍历整个解空间,并且在某些情况下可能会导致比较大的时间复杂度。
回溯法在实际应用中有许多经典问题的解决方案。
八皇后问题是回溯法的典型案例。
八皇后问题是一个经典的棋盘游戏问题,要求在8×8的国际象棋棋盘上放置8个皇后,使得彼此之间不能相互攻击。
通过回溯法逐步尝试不同的布局,可以找到所有满足条件的解决方案。
同样,回溯法在解决0-1背包问题、图的着色问题、旅行推销员问题等组合优化问题中也有广泛的应用。
除了组合优化问题,回溯法也常用于搜索问题的解决。
在图的遍历中,可以使用回溯法来寻找从起点到终点的路径。
在人工智能领域,回溯法也常用于解决逻辑推理、规划等问题。
通过对搜索空间进行回溯和剪枝,可以高效地找到问题的解决方案。
回溯法是一种重要的算法思想,适用于解决组合优化问题和搜索问题。
。 -可编辑修改- 实验4 回溯法实现
一、实验目标: 1.熟悉回溯法应用场景及实现的基本方法步骤; 2.学会回溯法的实现方法和分析方法: 二、实验内容 1. 旅行售货员问题: 当结点数为4,权重矩阵为0110239429340660,求最优路径及开销。 2. 0-1背包问题:
对于n=5,C=10,vi={6,3,5,4,6},wi={2,2,6,5,4},计算xi及最优价值V。 分别利用动态规划、回溯法和分支限界法解决此问题,比较并分析这三种算法实现!
三、实验过程 1.源代码 旅行售货员问题(回溯法): #include 。 -可编辑修改- using namespace std;
class travel //回溯 { friend int TSP(int **, int[], int, int); private: void Backtrack(int i); int n, //顶点数 *x, *bestx; int **a, cc, bestc, NoEdge; }; void Swap(int a, int b) 。 -可编辑修改- {
int temp; temp = a; a = b; b = temp; return; } void travel::Backtrack(int i) { if (i == n) { if (a[x[n - 1]][x[n]] != NoEdge && a[x[n]][1] != NoEdge && (cc + a[x[n - 1]][x[n]] + a[x[n]][1]) < bestc || bestc == NoEdge) { for (int j = 1; j <= n; j++) bestx[j] = x[j]; 。 -可编辑修改- bestc = cc + a[x[n - 1]][x[n]] + a[x[n]][1];
} } else { for (int j = i; j <= n; j++) { if (a[x[i - 1]][j] != NoEdge && a[x[n]][1] != NoEdge && (cc + a[x[i - 1]][x[j]] < bestc || bestc == NoEdge)) { swap(x[i], x[j]); cc += a[x[i - 1]][x[i]]; Backtrack(i + 1); cc -= a[x[i - 1]][x[i]]; swap(x[i], x[j]); 。 -可编辑修改- }
} } } int TSP(int** a,int v[], int n, int NoEdge) { travel Y; Y.x = new int[n + 1]; for (int i = 1; i <= n; i++) Y.x[i] = i; Y.a = a; Y.n = n; Y.bestc = NoEdge; Y.bestx = v; Y.cc = 0; 。 -可编辑修改- Y.NoEdge = NoEdge;
Y.Backtrack(2); delete[] Y.x; return Y.bestc; } int main() { int const max = 10000; cout << "请输入节点数:" << endl; int n; cin >> n; int *v = new int[n];//保存路径 int NoEdge = 0; int **p = new int*[max]; for (int i = 0; i < n+1; i++)//生成二维数组 。 -可编辑修改- p[i] = new int[n+1];
cout << "请依次输入各城市之间的路程:" << endl; for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) cin >> p[i+1][j+1]; cout << "最短路径长度:" << TSP(p, v, 4, 1000) << endl; cout << "路径为:"; for (int i = 1; i < 5; i++) cout << v[i] <<' '; cout << endl; return 0; } 运行截图: 。
-可编辑修改- 旅行售货员问题(分支限界法): #include using namespace std; #define MAX_CITY_NUMBER 10 //城市最大数目 #define MAX_COST 1000 //两个城市之间费用的最大值 int City_Graph[MAX_CITY_NUMBER][MAX_CITY_NUMBER];//表示城市间边权重的数组
int City_Size; //表示实际输入的城市数目 int Best_Cost; //最小费用 int Best_Cost_Path[MAX_CITY_NUMBER]; //结点 。 -可编辑修改- typedef struct Node {
int lcost; //优先级 int cc; //当前费用 int rcost; //剩余所有结点的最小出边费用的和 int s; //当前结点的深度,也就是它在解数组中的索引位置 int x[MAX_CITY_NUMBER]; //当前结点对应的路径 struct Node* pNext; //指向下一个结点 }Node; //堆 typedef struct MiniHeap { Node* pHead; //堆的头 }MiniHeap; //初始化 void InitMiniHeap(MiniHeap* pMiniHeap) { pMiniHeap->pHead = new Node; 。 -可编辑修改- pMiniHeap->pHead->pNext = NULL;
} //入堆 void put(MiniHeap* pMiniHeap, Node node) { Node* next; Node* pre; Node* pinnode = new Node; //将传进来的结点信息copy一份保存 //这样在函数外部对node的修改就不会影响到堆了
pinnode->cc = node.cc; pinnode->lcost = node.lcost; pinnode->pNext = node.pNext; pinnode->rcost = node.rcost; pinnode->s = node.s; pinnode->pNext = NULL; for (int k = 0; k。 -可编辑修改- pinnode->x[k] = node.x[k];
} pre = pMiniHeap->pHead; next = pMiniHeap->pHead->pNext; if (next == NULL) { pMiniHeap->pHead->pNext = pinnode; } else { while (next != NULL) { if ((next->lcost) >(pinnode->lcost)) { //发现一个优先级大的,则置于其前面
pinnode->pNext = pre->pNext; pre->pNext = pinnode; break; //跳出 } pre = next; 。 -可编辑修改- next = next->pNext;
} pre->pNext = pinnode; //放在末尾 } } //出堆 Node* RemoveMiniHeap(MiniHeap* pMiniHeap) { Node* pnode = NULL; if (pMiniHeap->pHead->pNext != NULL) { pnode = pMiniHeap->pHead->pNext; pMiniHeap->pHead->pNext = pMiniHeap->pHead->pNext->pNext; } return pnode; } //分支限界法找最优解 。 -可编辑修改- void Traveler() {
int i, j; int temp_x[MAX_CITY_NUMBER]; Node* pNode = NULL; int miniSum; //所有结点最小出边的费用和 int miniOut[MAX_CITY_NUMBER]; //保存每个结点的最小出边的索引 MiniHeap* heap = new MiniHeap; //分配堆 InitMiniHeap(heap); //初始化堆
miniSum = 0; for (i = 0; iminiOut[i] = MAX_COST; //初始化时每一个结点都不可达 for (j = 0; jif (City_Graph[i][j]>0 && City_Graph[i][j]