插装阀
- 格式:doc
- 大小:1.07 MB
- 文档页数:82
插装阀的介绍与应用插装阀是一种常用的工业阀门,它具有简单结构、使用方便、可靠性高的特点,广泛应用于化工、石油、冶金、电力、制药等领域。
本文将介绍插装阀的基本原理、分类、特点以及应用。
一、插装阀的基本原理插装阀是通过转动阀体内的螺杆或推杆来控制介质的流动,从而实现开启、关闭和调节流量的目的。
其基本原理如下:1.开启状态:当螺杆或推杆旋转时,阀体内的螺纹将提升,使阀芯上升,导流孔打开,从而实现介质的通路打开。
2.关闭状态:当螺杆或推杆旋转反向时,阀芯下降,导流孔关闭,从而实现介质的通路断开。
二、插装阀的分类插装阀可根据结构形式进行分类。
常见的分类包括:1.阀体结构:插装阀可分为单座式和双座式两种。
单座式插装阀是指阀芯与阀座呈一对一的形式,适用于小流量、高压力的场合。
双座式插装阀是指阀芯与阀座呈一对多的形式,适用于大流量、低压力的场合。
2.螺纹形式:插装阀的螺纹形式有内螺纹和外螺纹两种。
内螺纹插装阀适用于流量较大的场合,外螺纹插装阀适用于流量较小的场合。
三、插装阀的特点1.结构简单:插装阀的结构简单、体积小、重量轻,占用空间小,方便安装和维护。
2.切断性能好:插装阀的阀芯和阀座都是可更换的,切断性能好,阀座关闭承受的压力小,密封可靠。
3.流量调节性能好:插装阀在流量调节方面具有较好的性能,可灵活调节介质的流量和压力。
4.使用寿命长:插装阀的阀芯和阀座采用耐磨材料制成,具有较长的使用寿命。
5.适应性强:插装阀适用于各种介质,包括液体、气体和蒸汽等。
四、插装阀的应用插装阀广泛应用于以下领域:1.化工行业:插装阀可用于化工厂的生产过程中,如控制液体的流量、压力和温度等,保证工艺的稳定和工厂的安全运行。
2.石油行业:插装阀可用于石油加工过程中的介质流动控制,例如原油输送管道、油罐出口的控制等。
3.冶金行业:插装阀可用于冶炼过程中的流程控制,如高炉煤气排放控制、氧气流量调节等。
4.电力行业:插装阀可用于火电厂和核电厂的热水系统、蒸汽系统等介质的流动控制和调节。
插装阀设计注意的一些问题1,两通插装阀特点:高压,大流量,响应快,液阻小,泄露小,抗污染强,一阀多用,便于集成易于优化。
2,油口:A为正向(底面),B为侧向,C为控制,A,B,C分别表示三个工作腔,有效工作面积为A A,AB,AC,压力表示为PA,PB,PC。
3,控制方式:A,内控简单,不用外加控制油即可自锁,但是C腔控制压力随A或B的压力而变化,当然其大小不可能超过主阀的工作压力,这样就不能保证主阀上下形成有效的压力差,阀芯关闭速度较慢,甚至影响阀的关闭。
B,外控取自插装阀的外部,优点是控制压力可以高于阀的工作腔压力,控制压力稳定,使主阀芯上下形成压差,阀关闭快而严,但是主阀没有自锁能力,容易受主油路压力变化影响造成阀反向开启,而且还需要单设的外部控制油源。
C,内外控制,兼有上面的优缺点。
4,两通插装阀的流动方向:可以从A口流向B口,也可以从B流向A,看压力高低而定,表面上两者没什么区别,但性能上有很大的不同,具体如下。
A,通油能力和开启压力不同:A腔与C腔的有效面积称为插装阀的面积比,对于方向控制插件一般面积比有:1:1, 1:1.05, 1:1.1, 1:1.16, 1:2(力士乐标法的不同,取的是B腔与C腔的面积比,但换算过来差不多),如ATOS的SCLI-*插芯。
当面积比较大如1:1和1:1.05及1:1.1时,A腔具有较大的工作面积,显然A到B的流动流通能力大,液阻小,阀的开启压力也小,而B到A流动,B的工作腔面积小,流通能力小,开启压力高,可见这种大面积比的插装阀适宜从A到B的流动,而不适宜于B到A 的流动,把这种插芯称为A型插件,把小面积比如1:1.16及1:1.2称为B型插件,B型插件的B腔有效面积大,从B向A流动时开启压力低,所以B型插件适宜从A到B和B到A的双向流动。
A型和B型插件相比,从A到B的流动时,A型插件的通流量一般要大于B型插件流量,大约大15~20%。
对于B型插件作流量及方向阀使用时,起尾部可带缓冲头,这种结构的阀芯行程比不带缓冲头的阀芯行程长,通过的流量要小,大约小15%左右。
插装阀的介绍与应用插装阀是一种常见的控制阀门,它通常被用于调节流体的流量和压力。
插装阀的设计结构简单,安装方便,具有较高的密封性和可靠性,因此在工业生产中得到了广泛的应用。
本文将对插装阀的基本原理、结构特点以及应用领域进行介绍。
一、插装阀的基本原理。
插装阀是一种通过调节阀芯位置来控制流体流量和压力的阀门。
其工作原理基于流体力学的基本原理,通过改变阀芯的位置,从而改变流体通过阀门的截面积,从而实现对流体流量和压力的调节。
插装阀的阀芯通常由阀芯杆和阀芯头组成,阀芯杆通过手柄或电动装置来控制阀芯的位置。
当阀芯向上移动时,阀门打开,流体可以通过阀门;当阀芯向下移动时,阀门关闭,流体无法通过阀门。
通过调节阀芯的位置,可以实现对流体流量和压力的精确控制。
二、插装阀的结构特点。
1. 简单结构,插装阀的结构相对简单,通常由阀体、阀芯、阀座、密封圈等基本部件组成。
这种简单的结构使得插装阀具有较高的可靠性和易维护性。
2. 安装方便,插装阀通常采用螺纹连接或法兰连接,安装和拆卸都比较方便。
这种特点使得插装阀在现场维护和更换时更加便利。
3. 良好的密封性,插装阀的阀座和阀芯之间采用金属对金属的密封结构,具有较好的密封性能,可以有效防止流体泄漏。
4. 高温高压性能,插装阀通常采用耐高温、耐腐蚀的材料制成,可以适应高温高压的工作环境,具有较好的耐用性。
5. 多种控制方式,插装阀可以通过手动、气动、电动等多种方式进行控制,可以满足不同工况下的控制要求。
三、插装阀的应用领域。
1. 化工行业,插装阀在化工生产中得到了广泛的应用,用于控制各种介质的流量和压力,如酸碱溶液、气体、液体等。
2. 石油化工行业,在炼油、天然气开采、输送等领域,插装阀被用于控制管道中的介质流动和压力,保证生产过程的安全和稳定。
3. 食品行业,在食品加工生产中,插装阀被用于控制各种液体、气体的流动,保证生产过程的卫生和安全。
4. 制药行业,在制药生产中,插装阀被用于控制各种药液的流动和压力,保证生产过程的精确和稳定。
插装阀主要组合与功能2.1 插装方向控制阀插装阀可以组合成各式方向控制阀。
1作单向阀如图5a和5b,将x腔和A或B腔连通,即成为单向阀。
连接方法不同,其导通方式也不同。
若在控制盖板上如图5c连接一个二位三通液动换向阀,即可组成液控单向阀。
图52.作二位二通阀如图6a和6c连接二位三通阀,即可组成二位二通电液阀。
3.作二位三通阀如图7连接二位四通阀,即可组成二位三通电液换向阀。
4.作二位四通阀如图8连接二位四通阀,即可组成二位四通电液换向阀。
5.作三位四通阀O型换向阀如图9连接三位四通阀换向阀和单向阀,即可组成三位四通阀中位为O型电液换向阀。
6.作多机能四通阀如图10连接换向阀,利用对电磁换向阀的控制实现多机能功能。
先导阀控制状态下的机能如表1。
电磁铁的带电状态用符号“+”表示;断电状态用“-”表示。
表1 先导阀控制的滑阀机能1YA 2YA 3YA 4YA 中位机能1YA 2YA 3YA 4YA 中位机能+++++-+-+++-+--+++-+-+++++---++-+-++-+-+--++--+-+------+-+------2.2 插装压力控制阀对插装阀的x腔进行压力控制,便可构成压力控制阀。
1.作溢流阀或顺序阀如图11a,在压力型插装阀芯的控制盖板上连接先导调压阀(溢流阀),当出油口接油箱,此阀起溢流阀作用;当出油口接另一工作油路,则为顺序阀。
2.作卸荷阀如图11b连接二位二通换向阀,当电磁铁通电时,出口接油箱,则构成卸荷阀。
3.作减压阀采用插装阀芯和溢流阀如图11c连接,则构成减压阀。
液压油从P1流入P2流出,出口油液通过阀芯上的中心阻尼孔、盖板和先导阀接通。
当减压阀出口的压力较小,不足以顶开先导阀芯时,主阀芯上的阻尼孔只起通油作用,使主阀芯上、下两腔的液压力相等,而上腔又有一个小弹簧作用,必使主阀芯处在下端极限位置,减压阀芯大开,不起减压作用;当压力增大到先导阀的开启压力时,先导阀打开,泄漏油液单独流回油箱,实行外泄。
第四章液压控制元件—插装阀文章目录[隐藏]∙第四章液压控制元件—插装阀∙ 4.5插装阀∙ 4.5.1插装阀的结构∙ 4.5.2插装阀的动作原理∙ 4.5.3插装阀用作方向控制阀∙ 4.5.4插装阀用作方向、流量控制阀∙ 4.5.5插装阀用作压力控制阀第四章液压控制元件—插装阀4.5插装阀液压插装阀是由插装式基本单元(以下简称插件体)和带有弓|导油路的阀盖所组成。
按回路目的,配不同的插件体及阀盖来进行方向、流量或压力的控制。
插装阀是安装在预先开好阀穴的油路板上(manifold blocks)而构成我们所需要的液压回路,如图4-54所示,因此可使液压系统小形化。
插装阀是七十年代初才出现的-种新型液压元件,为一多功能、标准化、通用化程度相当高的液压元件,适用于钢铁设备、塑胶成型机以及船舶等机械中。
插装阀的特点是:1)插装阀盖的配合,可具有方向、流量及压力控制功能。
2)件体为锥形阀结构,因而内部泄漏极少,不存在液压下紧现象,并没有如滑轴(spool)的重叠现象,反应性良好,可进行高速切换。
3)最适于压力损失小的高压大流量系统。
4)插装阀直接组装在油路板上,因而少了由于配管弓|起的外部泄漏、振动、噪音等事故,系统可靠性增加。
5)安装空间缩小,是液压系统小形化。
同时和以往方式相比,可降低液压系统的制造成本。
图4-54插装阀构成的液压回路外观图4-54插装阀构成的液压回路外观4.5.1插装阀的结构由插装阀所组装成的液压回路,通常含有下列基本元件:1.油路板图4-55插装阀油路板亦有人称为集成块,这是方块钢体-上挖有阀孔,用以承装插装阀,如图4-55所示。
图4-56油路板上主要阀孔和控制通道图4-56为常见油路板上主要阀孔和控制通道,X Y为控制压油油路,F为承装插件体的阀孔,A口B口是配合插件体的压油工作油路。
2.插件体插件体(cartnidges)主要由锥形阀(poppet)、弹簧套管(sleeve)及若干个密封垫圈所构成,如图4-55所示。
工程机械插装阀加工方案一、概述插装阀是工程机械中常用的液压元件,其作用是在液压系统中实现流体的控制和调节。
插装阀的加工是一项复杂的工艺过程,需要严格的工艺流程和专业的加工设备。
本文将针对插装阀的加工过程,从材料选取、加工工艺、工艺设备等方面进行详细的介绍。
二、材料选取1. 钢材插装阀通常采用优质碳素结构钢或合金结构钢,其具有良好的机械性能和耐磨性。
常用的材料有20#钢、45#钢、40Cr等。
2. 铝合金部分插装阀需要采用铝合金材料,具有良好的强度和重量比,常用的材料有6061铝合金、7075铝合金等。
选材标准:1. 合格证明。
2. 物化验报告。
3. 机械性能测试报告。
4. 金相组织分析报告。
三、加工工艺1. 钢材加工工艺(1)钢材切割利用数控切割机对钢材进行切割,保证尺寸精度和表面光洁度。
(2)钻孔加工钻孔是插装阀加工的重要工艺环节,通过数控钻床对孔位进行精确加工。
(3)铣削加工利用数控铣床对插装阀的外形进行精确加工,保证尺寸精度和表面质量。
(4)研磨加工对插装阀的关键零件进行精密研磨,提高表面光洁度和尺寸精度。
2. 铝合金加工工艺铝合金加工包括切割、铣削、钻孔、研磨等工艺过程,与钢材加工过程类似。
需要注意的是,铝合金的加工需要采取合适的切削参数和冷却润滑剂,以确保表面质量和尺寸精度。
3. 焊接工艺部分插装阀需要完成零部件的焊接工艺,需要具备较高的焊接技术和设备,确保焊接接头的强度和密封性。
四、工艺设备1. 数控切割机用于对钢材和铝合金进行切割,提供高精度、高效率的切割服务。
2. 数控钻床用于钢材和铝合金的孔加工,提供高精度、高稳定性的孔加工服务。
3. 数控铣床用于对插装阀的外形进行精确加工,提供高精度、高效率的铣削服务。
4. 精密研磨机用于对插装阀的关键零件进行精密研磨,提供高表面质量、高尺寸精度的研磨服务。
5. 焊接设备用于对插装阀的零部件进行焊接工艺,提供高强度、高密封性的焊接服务。
五、质量检测1. 尺寸检测通过三坐标测量机对插装阀的各个尺寸进行精确检测,确保产品的尺寸精度。
插装阀在液压系统中的应用插装阀是另一类液压控制阀的统称。
其基本核心元件是一种液控型、单控制口的装于油路主级中的两通液阻单元(故又称二通插装阀)。
将一个或若干个插入元件进行不同的组合,并配以相应的先导控制级,可以组成插装阀的各种控制功能单元。
比如方向控制功能单元、压力控制单元、流量控制单元、复合控制功能单元。
插装阀具有以下特点:内阻小,适宜大流量工作;阀口多数采用锥面密封,因而泄漏小,对于乳化液等低粘度的工作介质也适宜,结构简单、工作可靠、标准化程度高;对于大流量、高压力、较复杂的液压系统可以显著的减小尺寸和重量。
其结构如下图:图1 二通插装阀结构它是由插入元件、控制盖板、通道块三大部分组成。
插入元件有阀芯、阀套、弹簧和密封件组成;控制盖板上根据插装阀的不同控制功能,安装有相应的先导控制级元件;通道块既是嵌入插入元件及安装控制盖板的基础阀体,又是主油路和控制油路的连通体。
其中A、B 为主油路通口,C为控制油路通口。
A、B、C油口的压力和作用面积分别为PA、PB、PC和A1、A2、A3,A3=A1+A2,Fs为弹簧作用力。
图2为实心胎硫化机组液压系统中主油缸部分的液压原理图(部分系统原理图,非完整原理图)。
图2 实心胎硫化机组液压系统中主油缸部分的液压原理图由图可知,此系统全部采用插装阀来控制,要求起到不同液压阀的作用。
根据机械本身的特点以及主要技术参数:要求油缸上行速度达到20mm/s,下行速度达到25mm/s ,缸径/杆径Φ600mm/Φ540mm ,由公式流量Q=A*V可得到油缸进油腔所需流量为339L/min ,所需流量较大;再者主机系统对于机械运动动作灵敏性要求较高,液压系统密封性要求较严,综合考虑,因而选用插装阀作为油路控制元件。
二通插装阀构成各种组合阀1插装阀构成压力控制阀根据插装阀的工作原理当PAA1+PBA2>PCA3+FS时,阀芯开启,油路A、B 接通。
如图2,插装阀C14,当电磁阀YV9得电时,C14的C口直接通油箱,其C口压力为零。
插装阀的特点及应用插装阀的特点二通插装阀是插装阀基本组件,插到特别设计加工的阀体内,配以盖板、先导阀组成的一种多功能的复合阀。
因每个插装阀基本组件有且只有两个油口,故被称为二通插装阀。
特点:1、阀芯为锥阀,密封性能好,且动作灵敏;2、通流能力大,抗污染;3、一阀多用,易组成各式系统,结构紧凑。
特别对大流量及非矿物油介质的场合,优点更为突出。
插装阀的分类插装阀基本组件由阀芯、阀套、弹簧和密封圈组成。
根据用途不同分为方向阀组件、压力阀组件和流量阀组件。
同一通径的三种组件安装尺寸相同,但阀芯的结构形式和阀套座直径不同。
三种组件均有两个主油口A 和B、一个控制口x 。
插装阀结构原理插装阀主要由锥阀芯1、阀套2和弹簧3等元件组成,如图9-4(a)所示的结构简图。
控制口C控制主油路油口A和B的启闭,通过主阀阀芯的启闭,可对主油路的通断起控制作用。
使用不同的先导阀可构成压力控制、方向控制或流量控制,也可组成复合控制。
从结构简图可知,它有两个管道连接口A,B和一个控制口C,锥阀上腔连接先导控制阀,与控制油路相通。
从工作原理上看,它相当于液控单向阀,当控制油口C与油箱相接时,锥阀打开,A,B两油口相通,故利用先导控制阀使C口卸压或加压,就可实现锥阀的启闭。
锥阀与小流量电磁阀组合可构成方向阀,如图9-4(h)所示为锥阀式方向阀。
锥阀与各种先导压力阀组合起来可构成各种压力控制阀,如图9-4(c)所示为锥阀式压力阀。
若B口为回油口,该阀起溢流阀作用。
若B口是接通系统的一条支路,该阀就起顺序阀的作用。
由此可见,一个锥阀相应地配上电磁阀和先导压力阀或采取调速措施,就可以在系统中起到换向阀、压力阀或节流阀的作用。
插装阀的应用单向阀将方向阀组件的控制口通过阀块和盖板上的通道与油口A或B直接沟通,可组成单向阀。
二通阀由一个二位三通电磁滑阀控制方向阀组件控制腔的通油方式,可组成二位二通阀。
三通阀由两个方向阀组件并联而成,对外形成一个压力油口、一个工作油口和一个回油口。
螺纹插装阀原理
螺纹插装阀是一种常见的控制阀,其原理如下:
1. 工作原理
螺纹插装阀是由阀体、阀芯和泄压孔组成的,阀体上有进口孔和出口孔,阀芯为T形,可以控制流体的通断和方向。
当阀门处于关闭状态时,阀芯被压紧,压力从进口孔进入阀体,但被阻碍了,无法进入出口孔。
此时,泄压孔会将压力释放出去,使得压力逐渐降低。
当阀门处于开启状态时,阀芯被拉开,使得进口孔和出口孔连通,流体可以通过阀门流过去。
同时,泄压孔会关闭,使得压力不再释放。
2. 适用范围
螺纹插装阀适用于液压系统中的低压控制,最大工作压力一般不超过35MPa。
同时,该类型阀门结构简单、安装方便,密
封性好,寿命长。
3. 注意事项
在安装螺纹插装阀时,需要注意以下事项:
- 阀门的进口和出口孔应该与管道连通,防止漏水。
- 在调节阀门的开度时,应该遵循先慢后快的原则,逐步将阀门打开或关闭,以避免影响系统的稳定性。
- 阀门的密封圈应该定期检查、更换,保证阀门的密封性。
插装阀阀口过流面积计算
插装阀过流面积的计算与阀芯的开度有关,当阀芯开度在零与最大行程之间变化时,其过流面积应当分段计算。
具体的计算过程如下:
1. 当阀芯开度为0≤h≤0.5时,阀芯与阀杯间的几何关系如下图所示,根据阀杯阀芯的结构尺寸,可求得过流面积。
2. 当阀芯开度为0.5<h≤1时,阀芯阀杯间的几何关系如下图所示,过流面积A的计算公式为。
3. 当阀芯开度为1<h≤5.69时,阀芯阀杯间的几何关系如下图所示,过流面积A的计算公式为。
4. 当阀芯开度为
5.69<h≤
6.63时,阀芯阀杯间的几何关系如下图所示,过流面积A 的计算公式为。
5. 当阀芯开度为
6.63<h≤10时,阀芯阀杯间的几何关系如下图所示,过流面积A的计算公式为。
综上所述,阀芯开度在0≤h≤10变化时,过流面积A的计算公式如下:
其中,A表示过流面积,mm²;h表示阀芯开度,mm。
插装阀概述二通插装阀是插装阀基本组件(阀芯、阀套、弹簧和密封圈)插到特别设计加工的阀体内,配以盖板、先导阀组成的一种多功能的复合阀。
因每个插装阀基本组件有且只有两个油口,故被称为二通插装阀,早期又称为逻辑阀。
二通插装阀的特点二通插装阀具有下列特点:流通能力大,压力损失小,适用于大流量液压系统。
主阀芯行程短,动作灵敏,响应快,冲击小。
抗油污能力强,对油液过滤精度无严格要求。
结构简单,维修方便,故障少,寿命长。
插件具有一阀多能的特性,便于组成各种液压回路,工作稳定可靠。
插件具有通用化、标准化、系列化程度很高的零件,可以组成集成化系统。
二通插装阀的组成二通插装阀由插装元件、控制盖板、先导控制元件和插装块体四部分组成。
图是二通插装阀的典型结构。
图二通插装阀的典型结构控制盖板用以固定插装件,安装先导控制阀,内装棱阀、溢流阀等。
控制盖板内有控制油通道,配有一个或多个阻尼螺塞。
通常盖板有五个控制油孔:、、、和中心孔(见图)。
由于盖板是按通用性来设计的,具体运用到某个控制油路上有的孔可能被堵住不用。
为防止将盖板装错,盖板上的定位孔,起标定盖板方位的作用。
另外,拆卸盖板之前就必须看清、记牢盖板的安装方法。
图盖板控制油孔先导控制元件称作先导阀,是小通径的电磁换向阀。
块体是嵌入插装元件,安装控制盖板和其它控制阀、沟通主油路与控制油路的基础阀体。
插装元件由阀芯、阀套、弹簧以及密封件组成(图)。
每只插件有两个连接主油路的通口,阀芯的正面称为口。
阀芯环侧面的称作口。
阀芯开启,口和口沟通。
阀芯闭合,口和口之间中断。
因而插装阀的功能等同于位通阀。
故称二通插装阀,简称插装阀。
图插装元件根据用途不同分为方向阀组件、压力阀组件和流量阀组件。
同一通径的三种组件安装尺寸相同,但阀芯的结构形式和阀套座直径不同。
三种组件均有两个主油口和、一个控制口,如图所示。
)方向阀组件)压力阀组件)流量阀组件阀套密封件阀芯弹簧盖板阻尼孔阀芯行程调节杆图插装阀基本组件插装阀主要组合与功能插装方向控制阀插装阀可以组合成各式方向控制阀。
插装阀的用途插装阀是一种常见的流体控制设备,广泛应用于工业生产、建筑、自动化控制等领域。
它具有结构简单、操作方便、使用可靠等特点,适用于各种介质的控制和调节。
插装阀的主要用途有以下几个方面:1. 流量控制:插装阀可以通过控制介质的流通来实现对流量的调节。
它可以根据需要调整阀门的开度,从而控制介质通过管道的速度和流量。
在工业生产中,插装阀常用于调节液体和气体的流量,以满足不同工艺要求。
2. 压力控制:插装阀可通过调节阀门的开启度,改变系统内介质的流动阻力,从而实现对压力的调节。
通过合理调整插装阀的开度,可以保持系统内介质的稳定压力,防止压力波动对设备和管道造成损坏。
3. 温度控制:插装阀可通过控制介质的流量来实现对温度的调节。
在一些工艺中,为了保持系统内介质的温度恒定,可以通过调整插装阀的开度来控制冷却或加热介质的流量,从而调节系统的温度。
4. 流向控制:插装阀可以通过改变阀门的开闭状态,实现对介质的流向控制。
通过插装阀的安装位置和充分利用介质的流体特性,可以有效地控制介质的流向,防止逆流或混流现象的发生。
5. 自动化控制:插装阀可以与传感器、执行器、控制器等自动控制设备配合使用,实现自动化控制。
通过对插装阀的开闭、调节等操作,可以实现对系统的自动化控制,提高生产效率和质量。
6. 设备保护:插装阀在工业生产过程中,常用于控制流体介质的流通和封闭。
通过合理选择插装阀的类型和性能,可以保护设备和管道免受过流、过压、过温等因素的影响,延长设备的使用寿命。
7. 安全保护:插装阀在一些特殊应用场合中,还可以用于实现对系统的安全保护。
通过对插装阀的开闭和调节,可以及时控制系统的工作状态,避免事故的发生,确保人员和设备的安全。
总之,插装阀在工业控制和流体传输中起着重要的作用。
它可以实现对流量、压力、温度、流向等参数的控制,满足不同工艺要求,保护设备和管道,提高生产效率和质量,确保安全生产。
1 插装阀概述二通插装阀是插装阀基本组件阀芯、阀套、弹簧和密封圈插到特别设计加工的阀体内,配以盖板、先导阀组成的一种多功能的复合阀;因每个插装阀基本组件有且只有两个油口,故被称为二通插装阀,早期又称为逻辑阀;二通插装阀的特点二通插装阀具有下列特点:流通能力大,压力损失小,适用于大流量液压系统;主阀芯行程短,动作灵敏,响应快,冲击小;抗油污能力强,对油液过滤精度无严格要求;结构简单,维修方便,故障少,寿命长;插件具有一阀多能的特性,便于组成各种液压回路,工作稳定可靠;插件具有通用化、标准化、系列化程度很高的零件,可以组成集成化系统;二通插装阀的组成二通插装阀由插装元件、控制盖板、先导控制元件和插装块体四部分组成;图1是二通插装阀的典型结构;图1 二通插装阀的典型结构控制盖板用以固定插装件,安装先导控制阀,内装棱阀、溢流阀等;控制盖板内有控制油通道,配有一个或多个阻尼螺塞;通常盖板有五个控制油孔:X、Y、Z1、Z2和中心孔a见图2;由于盖板是按通用性来设计的,具体运用到某个控制油路上有的孔可能被堵住不用;为防止将盖板装错,盖板上的定位孔,起标定盖板方位的作用;另外,拆卸盖板之前就必须看清、记牢盖板的安装方法;图2 盖板控制油孔先导控制元件称作先导阀,是小通径的电磁换向阀;块体是嵌入插装元件,安装控制盖板和其它控制阀、沟通主油路与控制油路的基础阀体;插装元件由阀芯、阀套、弹簧以及密封件组成图3;每只插件有两个连接主油路的通口,阀芯的正面称为A口;阀芯环侧面的称作B口;阀芯开启,A口和B口沟通;阀芯闭合,A口和B口之间中断;因而插装阀的功能等同于2位2通阀;故称二通插装阀,简称插装阀;图3 插装元件根据用途不同分为方向阀组件、压力阀组件和流量阀组件;同一通径的三种组件安装尺寸相同,但阀芯的结构形式和阀套座直径不同;三种组件均有两个主油口A和B、一个控制口x,如图4所示;a方向阀组件 b压力阀组件 c流量阀组件1-阀套 2-密封件 3-阀芯 4-弹簧 5-盖板 6-阻尼孔 7-阀芯行程调节杆图3-89 插装阀基本组件2 插装阀主要组合与功能插装方向控制阀插装阀可以组合成各式方向控制阀;1作单向阀如图5a和5b,将x腔和A或B腔连通,即成为单向阀;连接方法不同,其导通方式也不同;若在控制盖板上如图5c连接一个二位三通液动换向阀,即可组成液控单向阀;图52.作二位二通阀如图6a和6c连接二位三通阀,即可组成二位二通电液阀;3.作二位三通阀如图7连接二位四通阀,即可组成二位三通电液换向阀;4.作二位四通阀如图8连接二位四通阀,即可组成二位四通电液换向阀;5.作三位四通阀O型换向阀如图9连接三位四通阀换向阀和单向阀,即可组成三位四通阀中位为O型电液换向阀;6.作多机能四通阀如图10连接换向阀,利用对电磁换向阀的控制实现多机能功能;先导阀控制状态下的机能如表1;电磁铁的带电状态用符号“+”表示;断电状态用“-”表示;表1 先导阀控制的滑阀机能1YA 2YA 3YA 4YA 中位机能1YA 2YA 3YA 4YA 中位机能+++++-+-+++-+--+++-+-+++++---++-+-++-+-+--++--+-+------+-+------插装压力控制阀对插装阀的x腔进行压力控制,便可构成压力控制阀;1.作溢流阀或顺序阀如图11a,在压力型插装阀芯的控制盖板上连接先导调压阀溢流阀,当出油口接油箱,此阀起溢流阀作用;当出油口接另一工作油路,则为顺序阀;2.作卸荷阀如图11b连接二位二通换向阀,当电磁铁通电时,出口接油箱,则构成卸荷阀;3.作减压阀采用插装阀芯和溢流阀如图11c连接,则构成减压阀;液压油从P1流入P2流出,出口油液通过阀芯上的中心阻尼孔、盖板和先导阀接通;当减压阀出口的压力较小,不足以顶开先导阀芯时,主阀芯上的阻尼孔只起通油作用,使主阀芯上、下两腔的液压力相等,而上腔又有一个小弹簧作用,必使主阀芯处在下端极限位置,减压阀芯大开,不起减压作用;当压力增大到先导阀的开启压力时,先导阀打开,泄漏油液单独流回油箱,实行外泄;减压阀在调定压力下正常工作时,由于出口压力与先导阀溢流压力和主阀芯弹簧力的平衡作用,维持节流降压口为某定值;当出口压力增大,由于阻尼孔液流阻力的作用产生压力降,主阀芯所受的力不平衡,使阀芯上移,减小节流降压口,使节流降压作用增强;反之,出口的压力减小时,阀芯下移,增大节流降压口,使节流降压作用减弱,控制出口的压力维持在调定值;插装流量控制阀插装流量阀同样有节流阀和调速阀等型式;1.作节流阀在方向控制插装阀的盖板上安装阀芯行程调节器,调节阀芯和阀体间节流口的开度便可控制阀口的通流面积,起节流阀的作用,如图12a;实际应用时,起节流阀作用的插装阀芯一般采用滑阀结构,并在阀芯上开节流沟槽;2.作调速阀插装式节流阀同样具有随负载变化流量不稳定的问题;如果采取措施保证节流阀的进、出口压力差恒定,则可实现调速阀功能;如图12b连接的减压阀和节流阀就起到这样的作用;3 插装阀设计使用注意事项1插装阀在工作中,由于复位弹簧力较小,因此阀的状态主要决定于作用在A、B、X三腔的油液压力,而p A、p B由系统或负载决定;若采用外控即控制油来自工作系统之外的其他油源,则p x是可控的;若采用内控即控制油来自工作系统本身,则p x也将受到负载压力的影响;所以负载压力的变化及各种冲击压力的影响,对内控控制压力的干扰是难免的;因此,在进行插装阀系统设计时必须经过仔细分析计算,清楚了解整个工作循环中每个支路压力变化的情况,尤其注意分析动作转换过程冲击压力的干扰,特别是内控方式;须重视梭阀和单向阀的运用,否则将造成局部误动作或整个系统的瘫痪;2如果若干个插装阀共用一个回油或泄油管路,为了避免管路压力冲击引起意外的阀芯移位,应设置单独的回油或泄油管路;3应注意面积比、开启压力、开启速度及密封性对阀的工作影响;4由于插装阀回路均是由一个个独立的控制液阻组合而成,所以它们的动作一致性不可能像传统液压阀那样可靠;为此,应合理设计先导油路,并通过使用梭阀或单向阀等元件的技术措施,以避免出现瞬间路通而导致系统出现工作失常甚至瘫痪现象;5阀块又称集成块或通道块,它是安装插装元件、控制盖板及与外部管道连接的基础阀体;阀块中有插装元件的安装孔也称插入孔及主油路孔道和控制油路孔道,有安装控制盖板的加工平面、安装外部管道的加工平面及阀块的安装平面等;二通插装阀的安装连接尺寸及要求应符合国家标准GB2877;阀块可选用插装阀制造厂商的标准件,也可根据需要自行设计;4 插装阀集成液压系统的油路标示与识图插装阀构成的液压系统油路比一般系统要复杂,通过油路标示可较好地展示油路走向;液压系统相关资料某3150kN液压机插装阀系统如图13所示;系统包括五个插装阀集成块;由F1、F2组成进油调压回路,F1为单向阀,用以防止系统中的油液向泵倒流,F2的先导溢流阀2用来调整系统压力,先导溢流阀1用于限制系统最高压力,缓冲阀3与电磁换向阀4配合,用于液压泵卸载、升压缓冲;由F3、F4组成上缸上腔油液三通回路,先导溢流阀6为上缸上腔安全阀,缓冲阀7与电磁换向阀8配合,用于上缸上腔泄压缓冲;由F5、F6组成上缸下腔油液三通回路,先导溢流阀11用于调整上缸下腔平衡压力,先导溢流阀10为上缸下腔安全阀;由F7、F8组成下缸上腔油液三通回路,先导溢流阀15为下缸上腔安全阀,单向阀14用于下缸作液压垫时,活塞浮动下行时上腔补油;由F9、F10组成下缸下腔油液三通回路,先导溢流阀18下缸下腔安全阀;另外,进油主阀F3、F5、F7、F、9的控制油路上都有一个压力选择梭阀,用于保证锥阀关闭可靠,防止反压使之开启;图13 3150kN液压机插装阀集成系统系统实现上缸加压、下缸顶出自动工作循环的工作原理如下;1启动按启动按钮,电磁铁全部处于失电状态,三位电磁阀4处于中位;插装阀F2控制腔经阀3、阀4与油箱连通,主阀开启;泵输出油液经阀F2流回油箱,泵空载启动;2上缸快速下行电磁铁1Y、3Y、6Y得电,插装阀F2关闭,F3、F6开启,泵向系统供油,输出油经阀Fl、F3进入上缸上腔;上缸下腔油液经阀F6快速排回油箱;于是液压机上滑块在自重作用下加速下行,上缸上腔产生负压,通过充液阀21从上部油箱充液;3上缸减速下行当滑块下降至一定位置触动行程开关2s后,电磁铁6Y 失电,7Y得电,插装阀F6控制腔与先导溢流阀11接通,阀F6在阀1 1的调定压力下溢流,上缸下腔产生一定背压;上缸上腔压力相应增高,充液阀21关闭;上缸上腔进油仅为泵的流量,滑块减速;4上缸工作行程当上缸减速下行接近工件时,上缸上腔压力由压制负载决定,上缸上腔压力升高,变量泵输出流量自动减小;当压力升达先导溢流阀2调定压力时,泵的流量全部经阀F2溢流,滑块停止运动;5保压当上缸上腔压力达到所要求的工作压力后,电接点压力表发信号,使电磁铁1Y、3Y、7Y全部失电,阀F3、F6关闭;上缸上腔闭锁,实现保压;同时阀F2开启,泵卸载;6泄压上缸上腔保压一段时间后,时间继电器发信号,使电磁铁4Y得电,阀F4控制腔通过缓冲阀7及电磁换向阀8与油箱相通,由于缓冲阀7的作用,阀F4缓慢开启,从而实现上缸上腔无冲击泄压;7上缸回程上缸上腔压力降至一定值后,电接点压力表发信号,使电磁铁2Y、5Y、4Y、12Y得电,插装阀砣关闭,阀F5、F4开启,充液阀21开启,压力油经阀F1、阀F5进入上缸下腔,上缸上腔油液经充液阀21和阀F4分别至上部油箱和主油箱;上缸实现回程;8上缸停止当上缸回程到达上端点,行程开关1S发信号,使全部电磁铁失电,阀F2开启,泵卸载;阀F5将上缸下腔封闭,上滑块停止运动;9下缸顶出及退回令电磁铁2Y、9Y、10Y得电,插装阀F9、F8开启,压力油经阀F1、F9进入下缸下腔,下缸上腔油液经阀F8排回油箱,实现顶出;令电磁铁9Y、10Y失电,2Y、8Y、11Y得电,插装阀F7、F10开启,压力油经阀F1、F7进入下缸上腔,下腔油液经阀F10排回油箱,实现退回;表2为其电磁铁动作顺序表;表2 3150KN液压机插装阀系统电磁铁动作顺序表2 液压系统油路标示插装式液压系统有一定的特殊性,识图与油路分析往往有困难;在此,根据上述资料,标示部分动作的油路,主进油路用粗实线与实箭头标示,主回油路用粗实线与虚箭头标示;控制油进油路用细虚线与实箭头标示,控制油回油路用细虚线与虚箭头标示;电磁铁得电用“+”标示;图14所示为主缸快速下行时的油路,图15所示为主缸回程时的油路;其他动作的油路可参照这两图标示;图14主缸快速下行油路图15主缸回程油路此压力机液压系统经油路标示后,油路走向、阀与缸的运动状态变得简明清晰,对维修人员安装调试、故障分析很有帮助;5 插装阀的安装与拆卸根据安装方式的不同,插装阀可以分为二通插装阀和螺纹插装阀;二通插装阀的安装方式是采用螺钉压入或敲击滑入阀块的插孔里,只有开和关两种状态,也叫作逻辑阀,它的最小通径为16mm,最大通径为160mm,常用通径为16mm、25mm、32mm、40mm、50mm、63mm、80mm、100mm、125mm、160mm,最高工作压力为42MPa,最大流量为25000L/min,适合于高压大流量的液压系统;螺纹插装阀的安装方式是采用螺纹直接旋入阀块的插孔里,所以又叫旋入式插装阀,它的最小通径为3mm,最大通径为32mm,常用通径为4mm、8mm、10mm、12mm、16mm、20mm,最高压力可达63MPa,最大流量达760L/min,适合于中高压中小流量的液压系统;目前,插装阀已广泛应用于工程机械中,在制造和维修工程机械的液压系统时离不开插装阀的安装,掌握其正确的安装方法才能确保液压系统的正常运行;插装阀的安装1二通插装阀的安装二通插装阀一般来说由插装组件、先导控制阀、控制盖板和集成阀块等组成,其典型结构如图16所示;插装组件1由阀芯、阀套、弹簧和固定密封组件等组成,可以是锥阀式结构,也可以是滑阀式结构,它的主要功能是控制主油路的通断、压力的高低和流量的大小;先导控制阀2是安装在控制盖板上或集成阀块上对插装组件1动作进行控制的小通径控制阀,主要包含DN6和DN10的电磁滑阀、电磁球阀、比例阀、可调阻尼器、缓冲器以及液控先导阀等,当主插件通径较大时,为了改善其动态特性,也可以用较小通径的插装件进行两级控制;控制盖板3是由盖板体、节流螺塞、先导控制元件及其他附件组成,主要功能是固定插装组件1,安装先导控制阀2和沟通阀块内的控制油路;控制盖板可以分为方向控制盖板压力控制盖板和流量控制盖板 3大类,当具有 2种以上功能时,称为复合控制盖板;集成阀块 4用来安装插装组件、控制盖板和其它控制阀,沟通主要油路;二通插装阀安装孔的连接尺寸标准为ISO7368,这个标准基本上是按德国DIN24342:1979标准制定的,我国国家标准GB 2877--1981等效采用了DIN24342:1979;1.插装组件 2.先导控制阀 3.控制盖板 4.集成阀块阀芯阀套弹簧固定密封组件图16 二通插装阀的典型结构图二通插装阀的结构形式多种多样,如图17所示;主要有 REXROTH型结构a、PARKER型结构 b、VICKERS型结构 c 3种,这3种结构各有优缺点;图17 插装阀的结构形式在安装二通插装阀之前应该进行以下工作:1 检查插孔的尺寸,如内径、各台阶的的深度、倒角等;2 检查插孔的粗糙度,必须清除倒角处和交口处的棱角和毛刺,以免损伤插装组件的密封圈;3 用专用的检具检查插孔的同心度;4 检查各元件的型号及各密封圈,必要时进行拆洗、更换并进行性能测试;5 清洁阀块各元件;安装二通插装阀时,应先在插孔内和插装组件的外圈特别是密封圈处涂上润滑脂或机油,再把插装组件放入插孔内,用橡皮锤敲入或用盖板螺钉压入插孔内,用内六角螺钉把控制盖板固定,最后安装先导控制阀;内六角螺钉的拧紧力矩见表3;安装二通插装阀时应该注意以下几点:1 安装插装组件时注意不要漏装弹簧,密封圈和挡圈不要在装配的过程中被切坏;2 安装控制盖板时一定要注意对齐油口或定位销的位置,固定螺钉必须采用高强度螺钉级或级;3 如遇到插装组件的弹簧特别硬时,应先用长螺钉安装盖板,等压到合适的位置时再换用短螺钉安装;表3 控制盖板用固定螺钉的拧紧力矩表2 螺纹插装阀的安装螺纹插装阀的安装方式是将螺绞直接旋入阀块的插孔里,安装拆卸简单快捷;螺绞插装阀典型结构图如图18所示,由阀套、阀芯、阀体、密封件、控制部件弹簧座、弹簧、调节螺杆、磁性体、电磁线圈、弹垫等等组成;螺纹插装阀有二通、三通、四通等型式;方向阀有单向阀、液控单向阀、梭阀、液动换向阀、手动换向阀、电磁滑阀、电磁球阀等;压力阀有溢流阀、减压阀、顺序阀、平衡阀、压差溢流阀、负载敏感阀等;流量阀有节流阀、调速阀、分流集流阀、优先阀等;1阀套 2.阀芯 3.阀体 4.密封件 5.控制部件图18 螺纹插装阀的典型结构图安装螺纹插装阀之前应进行的工作与安装二通插装阀相同;安装螺纹插装阀时,应先在插孔内和螺纹插装阀的阀套外圈特别是密封圈处,涂上润滑脂或机油,再把螺纹插装阀放人插孔内,用力矩扳手或开口扳手旋人插孔内,常用通径螺纹插装阀所需的拧紧力矩见表4;表4 常用通径螺纹插装阀所需的拧紧力矩表安装螺纹插装阀时应该注意以下几点:1安装螺纹插装阀应注意密封圈和挡圈不要在装配的过程中被切坏;2由于螺纹插装阀组所装的螺纹插装阀较为密集,应该按一个方向依序进行安装;3在安装电磁阀时,如安装空间不够,应该先将电磁铁卸下,待阀体安装完再把电磁铁装上 ;2 插装阀的拆卸1 二通插装阀的拆卸二通插装阀的拆卸要按照先导控制阀一控制盖板一插装组件的顺序进行,下面主要说明二通插装阀插装组件的拆卸方法;参照图16,二通插装阀的插装组件的拆卸顺序为固定密封组件→弹簧→阀芯→阀套,其具体步骤如下:1用拔销器拆卸固定密封组件中心有螺纹,有时在弹簧力的作用下固定密封组件会自行弹出;2取出弹簧;3取出阀芯,如阀芯被卡死时一定要借助工具进行拆卸,有的阀芯底部有工艺螺孔,可以用拔销器拆卸,如果阀芯底部没有工艺螺孔则需用图19所示的专用工具进行拆卸,将开口胀套和倒锥胀体伸人阀芯的内孔,旋转T形螺杆通过倒锥胀体使开口胀套胀开,把阀芯胀紧,再用冲击套管敲击 T形螺杆的上端将阀芯拔出;图19二通插装阀的插装组件阀芯的拆卸工具416~25mm通径的阀套可以用图20所示的简易工具拆卸;25mm通径以上的阀套可以用图21所示的工具拆卸,摆斜旋杆插入阀套内孔,当斜杆进入阀套的流道孔时上拉工具,斜杆被摆正,斜杆二端钩住阀套的流道孔,在扁担的二端用垫块垫平,用扳手旋转螺母便可以把阀套拉出;图20 二通插装阀的插装组件阀套的简易拆卸工具图21 二通插装阀的插装组件阀套的拆卸工具拆卸二通插装阀时应该注意以下几点:1先卸压、断电,再拆电线;2在拆卸控制盖板时,如果阀块上没有定位销孔的应该标记其原来的位置,以免出错;3在拆卸的过程中要注意不要划伤阀套内孔和阀块的插孔;2螺纹插装阀的拆卸螺纹插装阀的拆卸较为简单,只要用扳手旋出即可;在遇到需要解体螺纹插装阀时,要先把密封圈和挡圈拆下,再用合适的开口套图22所示套住螺纹插装阀的阀套1如图18所示,夹在三爪卡盘上旋开阀体3,推出阀芯 2;如遇到阀体无法旋开时,可以把阀放在柴油里加热至190℃左右后再拆卸;图7螺纹插装阀的拆卸工具拆卸螺纹插装阀时应该注意以下几点:1先卸压、断电,再拆电线;2在位置较为紧凑的情况下应按某一方向依序拆卸,有电磁铁的应先拆卸;3对需要解体的螺纹插装阀,装配时螺纹处要使用中强度可拆卸螺纹锁固剂,并使用合适的开口套在三爪卡盘上旋紧;7 二通插装阀常见故障分析图23所示为插装阀结构图,二通插装阀常见故障有下列现象:图23 二通插装阀结构图1 主阀芯不能关闭主阀芯关闭的条件是:Fs+Px·Ax > P A·A A + P B·A B式中:Fs弹簧力;P A、P B、Px一分别为A、B、x油口的液体压力;A A、A B、Ax一分别为上述各油口在阀芯上的有效作用面积;因此,主阀芯不能关闭的原因有:控制油腔X内的控制压力P值过低,使主阀芯不容易关闭;Fs弹簧力过小或弹簧断裂,使主阀芯不容易迅速复位;液阻R1或R2的小孔被堵塞,控制油未能进人控制油腔Ax,造成主阀芯关不死;先导阀有故障或控制盖板有异常,如控制信号误动作或泄漏等;主阀芯与阀套制造精度差,致使主阀芯卡住在开启状态的位置上;油液过脏,油污颗粒将阀芯卡住在开启状态的位置上;主阀芯锥面与阀座锥面密封不良,可以使主阀芯打开;液阻R1与R2匹配不适应,也会造成主阀芯开启;阀套与集成块体间密封圈老化失效,也会使主阀芯开启;2 主阀芯不能开启主阀芯开启的条件是:Fs+PxAx < P A A A+ P B A B因此,主阀芯不能开启的原因有:控制油腔Ax内的控制压力Px值过高,使主阀芯打不开;Fs弹簧力过大,使主阀芯打不开;油路口A或油路口B内油液压力P A或P B过低,使主阀芯打不开;液阻R2小孔被堵塞,使主阀芯控制油腔Ax 内油液不能排出,致使主阀芯打不开;先导阀有故障,如控制信号误动作等;主阀芯与阀套制造精度差,致使主阀芯卡住在关闭状态的位置上;油液过脏,油污颗粒将主阀芯卡住在关闭状态的位置上;3 主阀芯处于时开时闭不稳定原因是:控制油腔Ax内控制压力Px不稳定或PA、PB压力值的变化而造成,待查影响Px、P A、P B三者压力值变化的因素;液阻R1或R2的小孔有时通时堵的现象,待查油液清洁度;油液过脏,使主阀芯动作不灵敏,待查油液清洁度;控制油腔控制压力Px与油口A油腔压力P A匹配不适应或P B与Px值匹配不适应,待查造成Px、P A、P B三者压力值不协调的因素;先导控制阀有故障,待查原因;4 主阀芯阀口处密封不严原因是:主阀芯锥面磨损,造成阀芯锥面与阀座锥面密封不良,使压力达不到要求值;主阀芯圆柱面与锥面或阀套内孔与锥面不同心,造成阀芯锥面密封不良,使压力达不到要求值;油液过脏,其污染物粘在阀芯锥面或阀套座锥面上,造成密封不良;先导阀有故障,待查原因;二通插装阀故障原因可以从一个一个单元进行分析与排除;在此以二通插装溢流阀故障原因分析为例,按图24所示对二通插装溢流阀故障原因分析与排除,见表5;图24 工作原理图表5 二通插装溢流阀故障分析与排除现象原因排除方法系统无压力1.阻尼孔d1或d2被堵塞2.主阀芯卡住在开启位置上;3主阀芯复位弹簧断裂;4 先导阀故障:先导阀阀芯碎裂;调节弹簧断裂;先导阀阀座被压出;5.电磁铁未得电或电磁铁线圈烧坏;5.电磁换向阀阀芯卡住在卸荷位置清洗阻尼孔、查油质清洗阀、更换弹簧、检查油质检查、清洗、修复、更换检查电气线路、修理电磁铁或更换清洗、修复系统压力不稳定忽高忽低1.阻尼小孔d1或d2有时堵时通现象2.主阀芯锥面与阀座锥面配合不严3.先导阀阀芯锥面与阀座锥面接触不良4.先导阀调节弹簧弯曲5.主阀工作不灵敏清洗、检查油质清洗、修复或更换清洗、修复或更换更换清洗、检查油质系统压力1.阻尼小孔d2被堵塞2.先导阀调节弹簧过硬清洗阻尼塞、检查油质更换。
第一章插装阀的原理及组件
1-7 B型压力阀插入元件
双级调压电磁溢流阀
典型油路:三位四通Y型A口限压、背压,B口限压保护的双单向节流油路。
如图⒉56该油路换向功能见表⒉3。
表中:1一表示通电,0一表示断电。
如图⒉56,在P→B、A→T油路中,B腔压力由K3限定,限压功能在进油路上,A→T回油背压取决于K2,背压功能在回油路上。
|
在P→A、B→T油路中,A腔由K1
限压,限压功能仍在进油路上'B→T回
油路上主阀4是一般回油阀。
由以上分析可见:
①限压功能,一般是在回油阀上实施
先导控制,在进油路上体现。
②背压功能均在回油路上体现。
③在实际当中,一般常用回油节流,故只要在回油阀上安装行程调节器即可。
笫2章二通插装阀集成系统
2.1 二通插装阀液压系统的结构特点
通过前面的介绍可以看到,二通插装阀无论从结构原理上还是从控制机能上来看,与其它传统的液压控制阀相比都有很大的差别,因此插装阀液压系统与现在通用的滑阀系统相比,在结构形式上显然是不同的,其设计方法也不一样,它有3个主要特征:
1)作为系统的基本工作单元的二通插装阀具有两个重要特征:一个是组合化,二是多机能化。
它是由主级和先导级二部分组成的,作为直接控制工作油流的主级——插人元件的结构很简单,只有两个工作口,它的工作状态是由先导级控制的,只要配置不同的先导元件和改变连接形式,即可实现各种不同的方向、压力、流量控制功能,应用十分灵活方便。
所以,系统主级的结构设计比较简单,变化也不大,而先导级的结构设计却是比较复杂的,变化也大,是二通插装阀液压系统的关键所在。
2)作为系统的基本控制单元是以液压执行机构(液压缸或液压马达)的基本工作单元——单个工作腔作为控制对象的。
一个复杂的液压系统可以包含多个执行机构,而且要有许多复杂的动作和功能要求,但是如果从每个单个工作腔的工作情况来分析的话,无非是要求控制它的液流方向、压力和流量这三大参数。
所以,在二通插装阀系统中就以单个工作腔的复合控制作为设计的出发点。
将两个插装阀组合起来构成的土个三通回路作为基本控制单元,其中一个作为进油阀,另一个作为回油阀。
通过对它们的控制可实现各种不同的功能,例如:
进油阀开、回油阀关——进油加压;
进油阀关、回油阀开——卸压回油;
进油阀和回油阀全关——锁闭、保压、停止;
进油阀在一定压力下开启——顺序工作;
进油阀在一定压力下关闭一∵减压工作;
回油阀在一定压力下开启——溢流限压;
进油阀半开启——人口节流调速;
回油阀半开启——出口节流调速。
基于这个原理,只要在先导控制部分进行相应的变化,这个基本控制单元就可以实现一个单个工作腔的大部分控制要求,它具有很强的通用性。
所以,这个基本控制单元就成了二通插装阀基本回路的基础,一个二通插装阀控制系统主要就是由与执行机构的单个工作腔数目相当的基本控制单元所组成的。
3)二通插装阀液压系统总是以插装式连接,以集成化的形式出现,且不受压力和通径的限制。
2.2 二通插装阀集成块
2.2.1 集成块
二通插装阀集成块有三种形式。
1.专用集成块
专用集成块是针对某个特定的液压控制系统或特殊回路专门设计制造的。
从集成块的工作机能、结构形式、外形尺寸、流道布置、出管方向,一直到所包含的插装阀的品种、数量和通径大小都不是固定的,而是根据实际工作要求和条件设计确定的。
此外,一般还将系统中使用的插装阀和其他元件全部地或尽可能多地集中安装在一个整体的大阀体上。
这种形式的优点是可以充
分利用各种元件的功能,结构紧凑、体积小、密封性好。
但是它的缺点是专用性强,系统难以更改,要求设计水平高和工作量大。
也由于阀体孔系复杂而对加工条件要求高、生产周期长、批量小、费用高。
一般适合用于大功率的液压系统,以及回路比较复
杂和特殊的场合(见图⒌1)。
2.通用集成块
通用集成块是按照各种基本液压回路来设计制造的,它们具有固定的结构形式、外形尺寸、流道布置、外部连接尺寸,以至插装阀的数量和通径,只是在工作机能上有所不同。
人们可以根据具体工作要求从中选择和搭配,再用叠加等集成形式组成一个系统。
所以,这种形式的好处是通用化程度高,适用面广,系统容易变换,设计工作量小和技术水平要求低,便于推广应用。
由于一般每个通用集成块只包含2个或4个插件,所以阀体小、孔道简单、加工方便、生产周期短、批量大、费用低。
它的缺点是系统设计受到通用块
的一定限制,元件能力不能全部发挥,体积重量略大,由于安装连接面多增加了加工量和漏油的可能性。
这种形式适合应用于一般的中小功率的系统,以及回路比较典型的场合(见图⒌2)。
3.通用一专用混合集成块
上面两种形式各有特点,在具体应用于某个系统时往往发现利弊相当,顾此失彼。
这时一个较好的解决办法便是采取由通用
集成块加专用集成块的混合形式,扬长避短,得到最佳的方案♂根据情况可以采取以专用集成块为主体辅以若干块通用集成块的形式,或者在通用集成块的塞础上加个别的专用块(见图⒊3)。
5.2.2 通用集成块
1.三通集成块
通用集成块的基本结构是按照基本控制单元的设想而制定的,它带有两个插装阀,组成一个三通回路,所以三通集成块是通用集成块最基本的形式。
三通集成块的结构形式主要取决于对两个插人元件的布置,对应于三通阀的4种连接形式相应就有4种不同的结构形式。
根据第2章中对于连接形式的分析比较,三通集成块一般均采取A型和匝型,因此也就决定了它的阀体结构形式(见图⒌4)。
图⒌4 三通集成块阀体结构型式
在I型结构中,两个插人元件垂直布置,它们的距离较近,先导回路的连接比
较方便,路程短,并且进油阀处也可安装压力阀插人元件,所以这种结构比较通用,在通用集成块中用得最为普遍。
匝型结构中,两个插人元件对向同轴布置,结构最为紧凑,但两阉距离较远,先导回路的连接比较麻烦,路程较长。
两种阀体均以上下平面作为安装连接面,采取多层叠加的形式进行安装。
它们都带有两个上下贯通的P和T孔,因而组成的集成块具有共同的进出油口。
考虑到差动油缸进出流量的差别,进出油孔的直径是不相同的,一般回油孔T 的直径比进油孔P的直径放大一档,即按GBZ877-81标准中|D:的最大值选取。
进出油阀的通径可以是相同的,也可以是变径的,后者的回油阀通径比进油阀的大一档。
集成块上均备有压力检测口。
2.四通集成块
实际上,执行机构往往是双作用的,具有两个工作腔,这两个工作腔的工作要求是互相紧密关联的,可以作为一个整体来对待,传统的控制回路就是以四通回路为基础的。
鉴于这个特点,为了在一些惰况下能简化结构,减小外形尺寸和重量,提高经济性,开发了四通的通用集成块。
四通集成块只是两个三通块的组合,根据第2章中对其连接形式的分析,一般均采取由同样两个I型或两个皿型的组合形式。
阀体的结构形式有下面几种(见图5`5)。
①组合式四通阀体,由两块三通阀体组合而成,只是在原来的阀体上再按需要增加一些上下沟通的控制通道。
②分层式四通阀体,与组合式阀体形状相同,只是阀体是整块的。
③平面式四通阀体,4个插人元件可在一个平面上,插在一个整块阀体中。
组合式和分层式通用性较好,可以与三通集成块直接叠装,控制流道布置较方便,但高度尺寸大,体积重量也较大。
平面式的结构较紧凑,体积和重量较小,高度降低,但平面安装尺寸增大。
2.3 常用基本回路
一个液压系统无论它有多么复杂,总是由这样或那样一些基本回路有机地组。