乌江梯级水库联合优化调度方案研究
- 格式:pdf
- 大小:299.68 KB
- 文档页数:4
洪渡河流域梯级水电站水库短期优化调度研究洪渡河流域位于贵州省东北部,是乌江水系左岸的一级支流,全流域集水面积3739km2,干流主河道全长205km。
整个流域受中亚热带湿润季风气候影响,水汽来源丰富,降水量较大,坝址以上流域多年平均降雨量1201mm,降水年际变化不大,多年平均年降水量在1150~1210 mm之间;但年内分配极不均匀,降水量主要集中在4~10月。
国家电投集团黔北水电厂管辖的沙坝、石垭子、高生三座水电站自上而下位于洪渡河中游,形成梯级水库群。
沙坝水电站是洪渡河流域已建成第五级电站,该电站位于洪渡河中游,坝址以上集水面积为1396km2;石垭子水电站是洪渡河流域已建成第六级电站,坝址位于洪渡河中下游,坝址以上集水面积为2589km2;高生水电站是洪渡河规划的第七级梯级电站,其水库正常蓄水位接石垭子水电站厂房尾水位,坝址控制集水面积为3126km2。
江滨水文站为洪渡河干流控制站,控制流域面积2564 km2,位于石垭子坝址上游7.5km,是一个国家基本水文站,资料具有较高的可靠性。
开展水库群的优化调度工作,不仅能发挥水库群之间的库容补偿、水文补偿的作用,获得比单库优化调度更显著的经济效益,而且对于确保电网的安全稳定运行有着重要的现实意义。
洪渡河流域中下游河段将形成以沙坝电站为龙头的梯级水电站,其中已建成的沙坝、石垭子电站具有不完全年调节性能,在建的高生电站具有日调节性能,联合开展中长期或者短期优化调度研究,从整体上对流域的水电站进行优化调度,实现最大的发电效益。
2 梯级水电站短期优化调度分析2.1 梯级水电站短期优化调度分析重要性短期调度分常规与优化调度。
常规调度所利用的信息有限,理论上不够严密,所确定的运行调度策略和相应决策只是可行解或满意解,难以寻求最优调度策略,难以处理多目标、多维变量等复杂问题。
而优化调度是基于系统科学和优化算法,通过某种调度准则和目标函数,建立相应的数学模型,应用优化算法对所建模型进行求解,计算结果认为是最优调度策略。
梯级水库群短期优化调度研究的开题报告一、研究背景近年来,随着水资源紧缺和经济社会持续发展的要求,水库调度越来越重要。
而梯级水库群作为一种常见水利工程形式,存在调度效率低、泄洪难度大等问题。
因此,对于梯级水库群的优化调度进行研究,可以提高水资源利用效率和水能利用率,实现水资源精细管理和优化配置。
本文旨在对梯级水库群短期优化调度进行研究,为实现水资源可持续利用提供一定理论和实践指导。
二、研究内容和目标本文拟从梯级水库群调度的基本原理和技术手段、梯级水库群调度的现状和问题、梯级水库群短期优化调度方法等方面入手,结合实际的水库调度数据和现状,建立数学模型,采用数学优化方法,系统研究梯级水库群的短期优化调度策略,以提高水资源利用效率和水能利用率为目标。
具体研究内容如下:1. 梳理梯级水库群的调度基本原理和技术手段。
主要包括梯级水库群调度的目标、原则、指标体系和基本方法,深入理解梯级水库群的工作原理,为后续研究打下基础。
2. 分析梯级水库群调度的现状和问题。
通过对已有文献和资料的分析,深入探讨梯级水库群调度现状和问题,为优化调度提供参考。
3. 构建梯级水库群短期优化调度模型。
结合现有模型和实际数据,根据对梯级水库群的特点进行综合分析,构建具有实际应用价值的梯级水库群短期优化调度模型。
4. 探究梯级水库群短期优化调度策略。
针对水库的运行特性和水情变化状况,设计梯级水库群短期优化调度策略,如合理调节进水流量、控制泄洪流量、制定蓄水方案等方面提高梯级水库群的运行效率。
5. 验证和优化模型。
通过实际数据的验证,评估模型优化效果。
三、研究方法和技术路线本文采用理论分析和实证研究相结合的方法,主要采用数学方法和优化技术等工程技术手段:1. 研究主要采用定量分析方法,建立数学模型,通过数学方法以及有效的算法优化水库调度方案。
2. 研究数据来源主要来自国家枢纽工程水文水资源监测资料、周边气象局气象监测、水库渗透曲线、工程施工建设规划等。
流域集中优化调度下的乌江渡水库调度管理摘要:随着国家“西电东送”宏伟计划的提出,乌江流域开发步伐加快,乌江公司深刻意识到,作为水电企业,必须依靠水电站群间的联合优化调控,才能实现节水增发电的目标,并以此推动水电厂管控模式的变革。
在这样的背景下,乌江公司提出了“以节能增效为目的、以优化调度为核心、以集中控制为手段”的流域梯级水电站群集中生产调度管理思路。
2000年3月,公司战略性地勾勒出乌江流域梯级水电站群联合优化调控系统建设的整体构想。
基于水库调度集中管理和电站远程集控技术条件的成熟,乌江公司于2006年5月1日正式宣布流域各梯级水库调度实行集中管理。
随着乌江公司对流域开发的变化,乌江渡水库调度管理也随之发生着转变。
从以往的调度的主导转变为辅助,做好水库调度基础工作,为公司实现梯级优化调度的整体构想不断向着积极的方向转变着。
关键词:优化调度;转变;梯级水库调度;集中管理概述水库调度及大坝安全管理的成功与否,直接影响着小到厂内的经济指标,大到国民经济的发展,相反,则将危及电站上下游广大人民生命财产的安全,带来非常严重的损失。
大坝安全管理及水库调度这绝不象所谓的“夏天以电定水,冬天以水定电”如此简单的两句话,要做好这项工作,涉及到天气、水情、水库特性等专门业务,是一项以实际情况为根本,以洪水调度理论为依据,以经验为参照的较为细致、复杂的技术工作。
在防洪与发电出现矛盾时,既要考虑企业的安全生产及经济性,同时还要兼顾着企业重大的社会责任。
不管单一水库的发电调度还是梯级的优化调度,无非是为了提高水能的利用,以此获得更大的经济效益。
因此,乌江渡发电厂水库调度管理的“转变”也是为了更好地发挥乌江渡发电厂的水能利用能力,以提高我厂的经济效益为目的转变。
在防汛工作方面“转变”更加体现在做好防汛每项基础工作,做好突发状况下的应急处理准备,积极参与梯级防洪调度工作,根据防汛遇到实际困难提出适时解决办法。
随着梯级调度深化进行思想的“转变”也随之开始,由以往的着眼于自身,转变为放眼于全流域。
梯级水电站短期联合优化调度分析摘要:随着节能减排与能源结构调整的不断深入,国内各个主要流域目前已经形成了一定规模的梯级水电站系统。
为发挥梯级水电站发电、防洪、灌溉、供水的经济效益,水电站联合优化调度运行至关重要,这将有利于降低水电站发电成本,还能为水电站的稳定运行提供科学参考依据,深入挖掘水轮发电机组在水电站中的发电潜力,以短期联合优化调度提高运行效率。
关键词:梯级水电站;短期运营;联合优化调度引言:水能水资源作为一种可再生、可循环利用的绿色能源,水电站的联合调度运行方式决定了水能资源的实际利用效果。
水电站在运行中肩负着水利系统与电网电力系统运行的双重功能,水轮机组在电网电力系统中存在负荷波动,有着电网调频与调峰任务特点,通过水力发电方式降低能耗,减少污染程度。
1.梯级水电站实施联合优化调度的重要意义梯级水库联合优化调度对保障水电系统稳定运行、提高资源利用效率、提升梯级整体效益有着至关重要的意义。
联合优化调度过程中,以日作为时间尺度的优化调度方式确定了调度战略在每天的执行方式,水电站日内运行过程中建立基于多种复杂因素的短期调度模型,应用多种优化算法建造模型并求解,目前已成为梯级水电站运行的重要手段。
梯级水电站优化调度模型本身是一个高维且非线性问题,整个模型求解的过程十分复杂。
不仅如此,水流流达时间的存在会让优化调度涉及到短期梯级水电站间跨时段水量平衡与水量耦合问题。
目前用于计算短期优化调度模型的方法主要有两种,一种是基于传统动态规划的逐步优化算法,这类方法收敛速度比较慢,计算效果会对初始可行解存在较大的依赖性,计算需要较长的时间。
另一种是基于遗传算法和粒子群算法的智能型算法,不仅能求解速度快,且运行效率高,但是计算期间容易出现结果不一致的问题。
通过水电的网上竞价方式,不同梯级水电站都会独立参与竞争,报价内容基本不对外公开,下游水电站无法评估发电能力。
比如上游水电站竞价成功,下游水电站未成功,当下游水位已经贴近储水位的时候,此时就会出现弃水的现象,这样做无形中违反了水资源高效利用的原则。
洮河流域梯级电站水库群的联合调度模型实施梯级水库的集中联合调度,主要目的在于提高了流域水能利用率,提高发电效率。
水库群的集中调度管理主要依靠“乌江流域卫星水情自动化系统”。
流域遭遇来水特枯年份,在上下游来水极不均衡情况下,不仅要实现流域各梯级电站的水库零弃水,而且还要完成集团公司下达的年度发电计划。
梯级电站水库特征水位表3.4.2水库的特征水位根据装机规模论证和水库回水特征,经调洪验算确定水库的特征水位为:水库校核洪水位2004.0m水库设计洪水位2002.00m水库正常蓄水位2002.00m水库汛期限制水位2001.00m(5~10月)水库发电死水位2000.0m3.4.3汛期库水位本电站水库为日调节,其发电出力主要受来水流量控制,汛期来水量一般大于电站额定引用流量,水库汛限水位2001.00m。
当中、小洪水流量Q <603m3/s时,水库水位 2002.00m。
当洪水流量二十年一遇(P=5%) 1680 m3/s >Q≥603 m3/s时,水库水位 2002.00m。
当洪水流量2360m3/s(设计洪水)>Q≥ (P=5%) 1680 m3/s时,水库设计洪水位2002.00m。
当洪水流量Q>设计洪水2360m3/s时,水库水位由2002.00m逐渐上升到最高洪水位2004.00m,在任何情况下,水库水位不得高于2004.00m。
3.4设计标准及水库水位3.4.1枢纽设计标准正常蓄水位1968.80m,相应库容780万m3;设计洪水标准为3.33%,设计洪水位1969.1m,相应洪峰流量2110m3/ s,相应库容1000万m3;校核洪水标准为0.5%,校核洪水位1970.5m,校核洪峰流量3230m3/s,相应库容1362万m3;最低发电水位1966m。
3.4.2汛期库水位根据来水量规定如下:流量为 20.00—632.00 m3/s时,水位1969.10—1968.50 m流量为 632.00—1000.00 m3/s时,水位1968.50—1967.50 m流量为1000.00—1500.00 m3/s时,水位1966.00—1967.00 m流量为1500.00—2000.00 m3/s时,水位1965.00—1966.00 m流量为2000.00—2500.00 m3/s时,水位1963.00—1965.00 m流量为2500 m3/s以上时,水位不高于是1959.1 m,在任何情况下,库水位不得高于1970.50 m。