垂径定理及其推论
- 格式:pptx
- 大小:1.95 MB
- 文档页数:31
第十讲 垂径定理及其推论一、知识要点回顾:1、圆是_____对称图形,_______________是它的对称轴。
2、垂径定理: 文字叙述是:垂直于弦的直径_______,并且_______________________________。
符号语言:∵CD 是⊙O_____,AB 是⊙O______,且CD__AB 于M∴____=_____,_____=______,_____=______。
3、垂径定理的推论: 。
符号语言: ∵ ∴二、例题讲析:用垂径定理解决问题例1、已知:⊙O 中,弦AB 的长为8cm ,圆心O 到AB 的距离为3cm ,求:⊙O 的半径。
例2:如图,过点B 、C 的⊙O 的圆心在等腰三角形的内部,∠BAC =90°,OA =1,BC =6,求⊙O 的半径。
例3:如图,CD 是⊙O 的直径,AB ⊥CD 于点E , DE=8cm,CE=2cm. 求弦AB 的长.例4:如图,某地有一圆弧开拱桥,桥下水面宽为7.2米,拱顶高出水面2.4米。
现有一艘宽3米、船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?三、巩固练习B ACD O M _B _A _O _垂径定理的推论中的条件要特别注意。
B A E D O CC BD OA 1.判断对错:( )1、垂直于弦的直径平分这条弦。
( )2、平分弦的直径垂直于这条弦。
( )3、平分弦的直线必垂直弦。
( )4、弦的垂直平分线经过圆心。
( )5、平分弧的直径平分这条弧所对的弦。
( )6、在圆中,如果一条直线经过圆心且平分弦,必平分此弦所对的弧。
()7、分别过弦的三等分点作弦的垂线,将弦所对的两条弧分别三等分。
( )8、垂直于弦的直线必经过圆心。
2、已知如右图:AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,则BC =____,AC =____ ;CE=______ 3、 已知:AB 为⊙O 的弦,⊙O 的直径为26cm, 圆心O 到AB 的距离 为5cm, 求弦AB 的长。
三垂径定理一、垂径定理的内容1. 定理表述- 垂直于弦的直径平分弦且平分这条弦所对的两条弧。
- 用几何语言表示:- 已知圆O,直径CD⊥弦AB于点E,则AE = BE,widehat{AD}=widehat{BD},widehat{AC}=widehat{BC}。
2. 定理的证明(以人教版教材思路为例)- 连接OA,OB。
- 因为OA = OB(同圆半径相等),OE⊥ AB,根据等腰三角形三线合一的性质,可得AE=BE。
- 再根据圆的对称性,可得widehat{AD}=widehat{BD},widehat{AC}=widehat{BC}。
3. 相关概念理解- 弦:连接圆上任意两点的线段。
如在圆O中,AB就是一条弦。
- 直径:经过圆心的弦。
例如CD是圆O的直径。
- 弧:圆上任意两点间的部分。
圆O中的widehat{AD}、widehat{BD}、widehat{AC}、widehat{BC}等都是弧。
二、垂径定理的推论1. 推论内容- 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
- 用几何语言表示:- 已知圆O,直径CD平分弦AB(AB不是直径)于点E,则CD⊥ AB,widehat{AD}=widehat{BD},widehat{AC}=widehat{BC}。
2. 推论的证明- 连接OA,OB。
- 因为OA = OB,AE = BE,所以 OAB是等腰三角形,根据等腰三角形三线合一的性质,可得OE⊥ AB,即CD⊥ AB。
- 再根据圆的对称性,可得widehat{AD}=widehat{BD},widehat{AC}=widehat{BC}。
- 这里要注意弦不能是直径,因为任意一条直径都可以平分另一条直径,但不一定垂直。
三、垂径定理及其推论的应用1. 计算类应用- 例1:已知圆O的半径为5,弦AB = 8,求圆心O到弦AB的距离。
- 解:设圆心O到弦AB的距离为d。
- 连接OA,因为OA = 5,AB = 8,根据垂径定理,OE⊥ AB时AE=(1)/(2)AB = 4。
圆的垂径定理及其推论知识点与练习(1)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧。
若直径AB ⊥弦CD 于点E ,则CE=DE ,⌒ AC=⌒ AD ;⌒ BC=⌒ BD (2)推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
若CE=DE ,AB 是直径,则⌒ AC=⌒AD ;⌒ BC=⌒ BD②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
若AB ⊥CD ,CE=DE ,则CD 是直径,⌒ AC=⌒ AD ;⌒ BC=⌒ BD③平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
若⌒ AC=⌒ AD ,AB 是直径,则AB ⊥CD ,CE=DE ,⌒ BC=⌒BD ④圆的两条平行弦所夹的弧相等。
若CD ∥FG ,CD 、FG 为弦,则⌒FC=⌒ GD 特别提示:①垂径定理及其推论可概括为:过圆心垂直于弦直径 平分弦 知二推三平分弦所对的优弧平分弦所对的劣弧②垂径定理可改写为:如果一条直线垂直于一条弦,并且过圆心,那么这条直线平分弦并且平分弦所对的两条弧.其中有四个条件:直线垂于于弦,直线平分弦,直线过圆心,直线平分弦所对的弧.它的三个推论可看作“如果四个条件中有两个成立,那么另外两个也成立”.(3)垂径定理及推论的应用:它是证明圆内线段相等、角相等、垂直关系及利用勾股定理计算有关线段的长度提供了依据,也为圆中的计算、证明和作图提供了依据、思路和方法。
①垂径定理中的垂径可以是直径、半径或过圆心的直线、线段,其本质是“过圆心”;②在圆的有关计算中常用圆心到弦垂线段、弦的一半、半径构造出垂径定理的条件和直角三角形,从而应用勾股定理解决问题;例:如图,在⊙O 中,弦AB 所对的劣弧为圆的, 31圆的半径为2cm ,求AB 的长。
解:如图,连接OB ,过点O 作OD ⊥AB 交AB 于点C ,由题意得,∵⌒ AB= ×360º=120º31∴∠AOB=120º,∴∠AOC=60º,在Rt △AOC 中,∵∠AOC=60º,OA=2,∴OC =OA=1,∴AB=2AC=2=22122OC AO 3故AB 的长为23练习一、选择题1、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是( )A 、CM=DMB 、∠ACB=∠ADBC 、AD=2BD D 、∠BCD=∠BDCGA A(1题图) (2题图) (3题)2、圆弧形蔬菜大棚的剖面如图所示,AB=8m ,∠CAD=30°,则大棚高度CD 约为( )A 、2.0mB 、2.3mC 、4.6mD 、6.9m3、如图,在⊙O 中,AB 、AC 是互相垂直的两条弦,OD ⊥AB 于D ,OE ⊥AC 于E ,且AB=8cm ,AC=6cm ,那么⊙O 的半径OA 长为( )A 、4cmB 、5cmC 、6cmD 、8cm4、半径为2cm 的圆中,有一条长为2cm 的弦,则圆心到这条弦的距离为( )A 、1cmB 、 cmC 、 cmD 、2cm5、如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于E ,则下列结论中不一定成立的是( )A 、∠COE=∠DOEB 、CE=DEC 、OE=BED 、⌒ BC=⌒ BD(题5)(题6)6、如图所示,在⊙O 中,OD ⊥AB 于P ,AP=4cm ,PD=2cm ,则OP 的长等于( )A 、9cmB 、6cmC 、3cmD 、1cm 二、填空题1、如图1中有 对全等的直角三角形;有 个等腰三角形;有 条相等的弧。
三.垂径定理及其推论
1.阅读教材P 81~P 82上面的文字,完成下面的内容:
(1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.
用几何语言表示:
如图,∵在⊙O 中,CD 是直径,AB 是弦,CD ⊥AB 于点E.
∴EA =EB ,AD ︵=BD ︵,AC ︵=BC ︵.
(2)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 用几何语言表示:
如图,∵在⊙O 中,CD 是直径,若AE =EB.
∴CD ⊥AB ,AD ︵=BD ︵,AC ︵=BC ︵.
范例:如图是某风景区的一个圆拱形门,路面AB 宽为2米,净高5米,求圆拱形门所在圆的半径是多少米?
解:连接OA
∵CD ⊥AB ,且CD 过圆心O ,
∴AD =12
AB =1米,∠CD A =90° 在Rt △OAD 中,设⊙O 的半径为R ,则
OA =OC =R ,OD =5-R.
由勾股定理,得:OA 2=AD 2+OD 2,即
R 2=(5-R)2+12,解得R =2.6.
故圆拱形门所在圆的半径为2.6米.
变例:如图,D 、E 分别为弧AB ︵、AC ︵的中点,DE 交AB 、AC 于M 、N.求证:AM =
AN.
证明:连接OD 、OE 分别交AB 、AC 于点F 、G.
∵D 、E 分别为弧AB ︵、AC ︵的中点,
∴∠DFM=∠EGN=90°.
∵OD=OE,
∴∠D=∠E.
∴∠DMB=∠ENC.
而∠DMB=∠1,∠ENC=∠2,于是∠1=∠2,故AM=AN.。
28.1.2垂径定理及推论的教学设计活动一:画一个圆,并把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?结论:活动二:在刚才的⊙O内画一条弦AB和一条直径CD,使CD⊥AB,垂足为E,你能发现图中有那些相等的线段和弧?为什么?相等的线段:相等的弧:垂径定理:1、图形语言2、文字语言:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
3、几何语言:∵ABCD于E ,AB是⊙O的直径CE=DE,AC=AB,BC=BD练习1、判断下列图是否是表示垂径定理的图形。
()()()※垂径定理的几个基本图形定理中垂直于弦的直径,可以是直径、半径、也可以是过圆心的直线或线段。
2、请画图说明垂径定理的条件和结论。
条件结论AB为直径 AB平分弦CD点A平分弧CAD点B平分弧CD①过圆心③平分弦②垂直于弦④平分弦所对的优弧⑤平分弦所对的优弧推论:知其二可推其三①②③④⑤注意:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.活动三:例题与练习例1:如图,圆的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.8变式1:在⊙O中,已知AB等于8,圆心O到弦AB的距离OM的长为3,求圆的直径。
变式2:在⊙O中,已知直径为10,弦AB等于8,求圆心O到弦AB的距离OM的长。
例1图例2图例2:如图,已知:⊙O 中, AB为弦,D为 AB 中点, OC交AB 于D ,AB = 6cm ,CD = 1cm. 求⊙O 的半径OA.变式1:已知:⊙O中,AB为弦,C为弧AB中点,OC交AB 于D ,AB = 6cm ,CD = 1cm. 求⊙O的半径OA.变式2:已知:⊙O中,AB为弦,D为AB中点,OC交AB于D ,AB=6cm ,⊙O的半径OA为5,求CD的长。
变式3:已知:⊙O中,AB为弦,D为AB中点,OC交AB 于D ,CD =1cm ,⊙O的半径OA为5,求AB的长。
专题2.2 垂径定理及其推论【十大题型】【苏科版】【题型1 由垂径定理及其推论判断正误】 (1)【题型2 根据垂径定理与勾股定理综合求值】 (3)【题型3 根据垂径定理与全等三角形综合求值】 (8)【题型4 在坐标系中利用垂径定理求值或坐标】 (14)【题型5 利用垂径定理求平行弦问题】 (19)【题型6 利用垂径定理求同心圆问题】 (23)【题型7 垂径定理的实际应用】 (27)【题型8 垂径定理在格点中的运用】 (33)【题型9 利用垂径定理求整点】 (37)【题型10 利用垂径定理求最值或取值范围】 (41)【知识点1垂径定理及其推论】(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【题型1由垂径定理及其推论判断正误】【例1】(2023春·九年级单元测试)如图,CD是⊙O的直径,弦AB⊥CD于点E,连接BC、BD,下列结论中不一定正确的是()A.AE=BE B.AD=BD C.OE=DE D.AC=BC【答案】C【分析】根据垂径定理判断即可;【详解】∵直径CD垂直于弦AB于点E,则由垂径定理可得,AE=BE,AD=BD,AC=BC,故选项A,B,D 正确;OE=DE无法得出,故C错误.故选C.【点睛】本题主要考查了垂径定理的应用,准确分析判断是解题的关键.【变式1-1】(2023春·北京海淀·九年级人大附中校考阶段练习)在学习了《圆》这一章节之后,甲、乙两位同学分别整理了一个命题:甲:相等的弦所对的圆心角相等;乙:平分弦的直径垂直于这条弦.下面对这两个命题的判断,正确的是A.甲对乙错B.甲错乙对C.甲乙都对D.甲乙都错【答案】D【分析】根据在同圆或等圆中, 如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等, 则另外两组量也相等,可判断甲命题;由垂径定理可得判断乙命题.【详解】(1)在同圆或等圆中, 相等的弦所对的弧对应相等,故甲命题错误; (2)平分弦的直径垂直于不是直径的弦; 故乙命题项错误;故选D.【点睛】本题主要考查同圆或等圆中,弧、弦、圆心角的关系及垂径定理.【变式1-2】(2023春·全国·九年级专题练习)下列命题正确的是()A.垂直于弦的直径平分弦所对的两条弧B.弦的垂直平分线经过圆心C.平分弦的直径垂直于弦D.平分弦所对的两条弧的直线垂直于弦【答案】ABD【分析】根据垂径定理及其推论进行判断即可.【详解】A、垂直于弦的直径平分弦所对的两条弧,正确;B、弦的垂直平分线经过圆心,正确;C、平分弦(不是直径)的直径垂直于弦,故错误;D、平分弦所对的两条弧的直线垂直于弦,正确;故选ABD.【点睛】本题考查了垂径定理:熟练掌握垂径定理及其推论是解决问题的关键.【变式1-3】(2023·福建三明·泰安模拟)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论正确的是( )A .DE=BEB .BC =BD C .△BOC 是等边三角形D .四边形ODBC 是菱形【答案】B【详解】试题分析:∵AB ⊥CD ,AB 过O ,∴DE=CE ,BC =BD ,根据已知不能推出DE=BE ,△BOC 是等边三角形,四边形ODBC 是菱形.故选B .【考点】垂径定理.【题型2 根据垂径定理与勾股定理综合求值】【例2】(2023·贵州遵义·统考三模)在半径为r 的圆中,弦BC 垂直平分OA ,若BC =6,则r 的值是( )A B .C .D 【答案】C【分析】设BC 、OA 交于D ,根据题意和垂径定理得到OD =12r ,BD =3,∠ODB =90°,在Rt △OBD 由勾股定理得到r 2=32+,解方程即可得到答案.【详解】解:设BC 、OA 交于D ,∵弦BC 垂直平分OA ,BC =6,∴OD =12OA =12r ,BD =12BC =3,∠ODB =90°,在Rt△OBD中,由勾股定理得OB2=OD2+BD2,∴r2=32+,解得r=故选C.【点睛】本题主要考查了勾股定理和垂径定理,利用方程的思想求解是解题的关键.【变式2-1】(2023春·浙江·九年级统考阶段练习)如图,已知⊙O的半径为5,弦AB=8,点E在AB上运动,连结OE,过点E作EF⊥OE交⊙O于点F,当EF最大时,OE+EF的值为.【答案】7【分析】当OE⊥AB,EF最大,即点F与点B重合,过O作OE⊥AB于E,连接OB,根据垂径定理得到BE=4,根据勾股定理得到【详解】解:当OE⊥AB,EF最大,即点F与点B重合,过O作OE⊥AB于E,连接OB,∵AB=8,∴BE=4,∵OB=5,∴,∴OE+EF=OE+OB=7,故答案为7.【点睛】本题考查了垂径定理,勾股定理,正确的作出辅助线是解题的关键.【变式2-2】(2023·湖北孝感·校联考一模)如图,△ABC内接于⊙O,OC⊥OB,OD⊥AB于D交AC于E 点,已知⊙O的半径为1,则AE2+CE2的值为()A.1B.2C.3D.4【答案】B【分析】连接BE,根据垂径定理得到AD=DB,得到EA=EB,∠EAO=∠EBO=∠ACO,根据勾股定理计算即可.【详解】解:连接BE,如图,∵OD⊥AB,∴AD=DB,∴EA=EB,∠EAO=∠EBO=∠ACO,∵∠ECB+∠EBC=∠ECO+45°+∠EBC=∠OBE+45°+∠EBC=90°,∴∠BEC=90°,在直角△BEC中,BE2+CE2=BC2,∵OC⊥OB,且OC=OB=OA∴BC2=2OA2=2,∴BE2+CE2=2,即AE2+CE2=2.故选:B.【变式2-3】(2023春·江苏泰州·九年级校考阶段练习)如图,在⊙O中,AB是直径,P为AB上一点,过点P作弦MN,∠NPB=45°.(1)若AP=2,BP=6,求MN的长;(2)若MP=3,NP=5,求AB的长;(3)当P在AB上运动时(∠NPB=45°不变)请求出其范围.【答案】(1)2)3)不变,值为12【分析】(1)作OH⊥MN于H,连接ON,先计算出OA=4,OP=2,在Rt△POH中,由于∠OPH=45°,则Rt△OHN中,利用勾股定理计算出OH⊥MN得到HM=HN,所以(2)作OH⊥MN于H,连接ON,先计算出HM=HN=4,PH=1,在Rt△POH中,由∠OPH=45°得到OH=1,再在Rt△OHN中利用勾股定理可计算出(3) 作OH⊥MN于H,连接ON,根据垂定理得HM=HN,设圆的半径为R,在Rt△OHN中,利用勾股定理得到OH2+NH2=ON2=R2,在Rt△POH中,由∠OPH=45°得OH=PH,则PH2+NH2=R2,然后变形PM2+PN2可得到2(PH2+NH2),所以PM2+PN2的值为2R2,又AB=2R,代入计算即可求出答案.【详解】解:(1)作OH⊥MN于H,连接ON,∵AP=2,BP=6,∴AB=8,∴OA=4,OP=2,在Rt△POH中,∵∠OPH=45°,∴在Rt△OHN中,∵ON=4,∴∵OH⊥MN,∴HM=HN,∴(2)作OH⊥MN于H,连接ON,则HM=HN,∵MP=3,NP=5,∴MN=8,∴HM=HN=4,∴PH=1,在Rt△POH中,∵∠OPH=45°,∴OH=1,在Rt△OHN中,∵HN=4,OH=1,∴∴(3的值不发生变化,为定值1,2作OH⊥MN于H,连接ON,则HM=HN,设圆的半径为R,在Rt△OHN中,OH2+NH2=ON2=R2,在Rt△POH中,∵∠OPH=45°,∴OH=PH,∴PH2+NH2=R2,∵PM2+PN2=(HM-PH)2+(NH+PH)2=(NH-PH)2+(NH+PH)2=2(PH2+NH2)=2R2.又AB2=4R2,=2R2 4R2=1 2的值不发生变化,为定值12.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.【题型3根据垂径定理与全等三角形综合求值】【例3】(2023春·江苏·九年级专题练习)如图,⊙O的弦AB垂直于CD,点E为垂足,连接OE.若AE=1,AB=CD=6,则OE的值是( )A.B.C.D.【答案】A【分析】如图所示,过O点作OH⊥AB于H点,OF⊥CD于F点,连接OB、OC,根据垂径定理可求出EH的值,再证Rt△OBH≌Rt△OCF(HL),可得OH=OF,根据正方形的判定可得四边形OHEF为正方形,由此即可求解.【详解】解:如图所示,过O点作OH⊥AB于H点,OF⊥CD于F点,连接OB、OC,∴根据垂径定理得,DF =CF =12CD =12×6=3,AH =BH =12AB =12×6=3,∵AE =1,∴EH =AH−AE =3−1=2,在Rt △OBH 和Rt △OCF 中,OB =OC BH =CF ,∴Rt △OBH≌Rt △OCF(HL),∴OH =OF ,∵CD ⊥AB ,∴∠HEF =90°,∵∠OHE =∠OFE =90°,∴四边形OHEF 为正方形,OE 是正方形的对角线,∴OE ==故选:A .【点睛】本题考查圆与三角形的综合,掌握圆的基础值,垂径定理,全等三角形的判定和性质,正方形的判定和性质等知识的综合运用是解题的关键.【变式3-1】(2023春·全国·九年级专题练习)如图,AB 为圆O 直径,F 点在圆上,E 点为AF 中点,连接EO ,作CO ⊥EO 交圆O 于点C ,作CD ⊥AB 于点D ,已知直径为10,OE =4,求OD 的长度.【答案】3【分析】根据垂径定理的逆定理得到OE ⊥AF ,由CO ⊥EO ,得到OC ∥AF ,即可得到∠OAE =∠COD ,然后通过证得△AEO ≌△ODC ,证得CD =OE =4,然后根据勾股定理即可求得OD .【详解】解:∵E 点为AF 中点,∴OE ⊥AF ,∵CO ⊥EO ,∴OC ∥AF ,∴∠OAE =∠COD ,∵CD ⊥AB ,∴∠AEO =∠ODC ,在△AEO 和△ODC 中,∠OAE =∠COD ∠AEO =∠ODC OA =OC,∴△AEO ≌△ODC (AAS ),∴CD =OE =4,∵OC =5,∴OD3.【点睛】本题考查垂径定理的逆定理、平行线的判定与性质、全等三角形的判定与性质、勾股定理,熟练掌握垂径定理和全等三角形的判定与性质是解答的关键【变式3-2】(2023·上海·统考中考真题)已知:在圆O 内,弦AD 与弦BC 交于点G,AD =CB,M,N 分别是CB 和AD 的中点,联结MN,OG .(1)求证:OG ⊥MN ;(2)联结AC,AM,CN ,当CN//OG 时,求证:四边形ACNM 为矩形.【答案】(1)见解析;(2)见解析【分析】(1)连结OM,ON ,由M 、N 分别是CB 和AD 的中点,可得OM ⊥BC ,ON ⊥AD ,由AB =CD , 可得OM =ON ,可证RtΔEOP≌RtΔFOP (HL ),MG =NG ,∠MGO =∠NGO ,根据等腰三角形三线合一性质OG ⊥MN ;(2)设OG 交MN 于E ,由RtΔEOP≌RtΔFOP ,可得MG =NG ,可得∠CMN =∠ANM ,CM =12CB =12AD =AN ,可证△CMN≌△ANM 可得AM =CN ,由CN ∥OG ,可得∠AMN =∠CNM =90°,由∠AMN +∠CNM=180°可得AM ∥CN ,可证ACNM 是平行四边形,再由∠AMN =90°可证四边形ACNM 是矩形.【详解】证明:(1)连结OM,ON ,∵M 、N 分别是CB 和AD 的中点,∴OM ,ON 为弦心距,∴OM ⊥BC ,ON ⊥AD ,∴∠GMO =∠GNO =90°,在⊙O 中,AB =CD ,∴OM =ON ,在Rt △OMG 和Rt △ONG 中,OM =ON OG =OG ,∴RtΔGOM≌RtΔGON (HL ),∴MG =NG ,∠MGO =∠NGO ,∴OG ⊥MN ;(2)设OG 交MN 于E ,∵RtΔGOM≌RtΔGON (HL ),∴MG =NG ,∴∠GMN =∠GNM ,即∠CMN =∠ANM ,∵CM =12CB =12AD =AN ,在△CMN 和△ANM 中CM =AN ∠CMN =∠ANM MN =NM,∴△CMN≌△ANM,∴AM=CN,∠AMN=∠CNM,∵CN∥OG,∴∠CNM=∠GEM=90°,∴∠AMN=∠CNM=90°,∴∠AMN+∠CNM=90°+90°=180°,∴AM∥CN,∴ACNM是平行四边形,∵∠AMN=90°,∴四边形ACNM是矩形.【点睛】本题考查垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定,掌握垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定是解题关键.【变式3-3】(2023春·江西赣州·九年级统考期末)按要求作图(1)如图1,已知AB是⊙O的直径,四边形ACDE为平行四边形,请你用无刻度的直尺作出∠AOD的角平分线OP;(2)如图2,已知AB是⊙O的直径,点C是BD的中点,AB∥CD,请你用无刻度的直尺在射线DC上找一点P,使四边形ABPD是平行四边形.【答案】(1)见解析(2)见解析【分析】(1)连接AD,EC交于点F,作射线OF交⊙O于点P,OP即为所求;(2)连接DB,OC交于点E,作射线AE交DC于点P,四边形ABPD即为所求.【详解】(1)解:如图1,连接AD,EC交于点F,作射线OF交⊙O于点P,OP即为所求;∵四边形ACDE 为平行四边形,∴AF =DF ,∵OA =OD ,∴ OP 是∠AOD 的角平分线;(2)如图2,连接OD ,连接DB ,OC 交于点E ,作射线AE 交射线DC 于点P ,四边形ABPD 即为所求;∵点C 是BD 的中点,∴OC ⊥DB ,∵OD =OB ,∴DE =EB ,∵AB∥CD ,∴∠ABE =∠PDE ,在△ABE 与△PDE 中,∠ABE =∠PDE∠AEB =∠PED DE =BE,∴△ABE≌△PDE ,∴AB =DP,∵AB∥DP,∴四边形ABPD是平行四边形.【点睛】本题考查了平行四边形的性质与判定,垂径定理,三线合一,掌握以上知识是解题的关键.【题型4在坐标系中利用垂径定理求值或坐标】【例4】(2023春·九年级单元测试)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图像被⊙P截得的弦AB的长为a的值是( )A.4B.3+C.D.3+【答案】B【分析】作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,求出D点坐标为(3,3),可得△OCD为等腰直角三角形,从而△PED也为等腰直角三角形.根据垂径定理得AE=BE=Rt△PBE中,利用勾股定理求出PE=1,再求出PD的长即可求解.【详解】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴∠PDE =∠ODC =45°,∵PE ⊥AB ,∴△PED 为等腰直角三角形,AE =BE =12AB =12×=在Rt △PBE 中,PB =3,∴PE =1,∴PD =∴a =3故选B .【点睛】本题考查了一次函数的性质,勾股定理,等腰直角三角形的判定与性质,以及垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.正确作出辅助线是解答本题的关键.【变式4-1】(2023·全国·九年级专题练习)如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标是(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,求点C 的坐标.【答案】点C 的坐标为(1,3)【分析】连接CM ,作MN ⊥CD 于N ,CH ⊥OA 于H ,根据题意得CD =OB =8,CN =MH ,CH =MN ,根据垂径定理得出CN =DN = 12 CD =4.MO =MC =5, 在Rt △MNC 中,勾股定理得出MN =3,进而得出C 的纵坐标为3,又OH =OM−MH =5−4=1,即可求解.【详解】解:如图,连接CM ,作MN ⊥CD 于N ,CH ⊥OA 于H .∵四边形OCDB 为平行四边形,B 点的坐标是(8,0),∴CD =OB =8,CN =MH ,CH =MN .又∵MN⊥CD,CD=4.∴CN=DN=12∵点A的坐标是(10,0),∴OA=10,∴MO=MC=5.在Rt△MNC中,MN===3.∴CH=3.又OH=OM−MH=5−4=1.∴点C的坐标为(1,3).【点睛】本题考查了平行四边形的性质,坐标与图形,垂径定理,勾股定理,掌握垂径定理是解题的关键.【变式4-2】(2023·江苏南京·九年级专题练习)如图,在平面直角坐标系中,一个圆与两坐标轴分别交于A、B、C、D四点.已知A(6,0),B(﹣2,0),C(0,3),则点D的坐标为.【答案】(0,−4)【详解】设圆心为P,过点P作PE⊥AB于点E,PF⊥CD于点F,先根据垂径定理可得EA=EB=4,FC=FD,进而可求出OE=2,再设P(2,m),即可利用勾股定理表示出PC2,PA2,最后利用PA=PA列方程即可求出m值,进而可得点D坐标.【解答】解:设圆心为P,过点P作PE⊥AB于点E,PF⊥CD于点F,则EA=EB=AB=4,FC=FD,2∴OE =EB ﹣OB =4﹣2=2,∴E (2,0),设P (2,m ),则F (0,m ),连接PC 、PA ,在Rt △CPF 中,PC 2=(3﹣m )2+22,在Rt △APE 中,PA 2=m 2+42,∵PA =PC ,∴(3﹣m )2+22=m 2+42,∴m =±12(舍正),∴F (0,−12),∴CF =DF =3−(−12)=72,∴OD =OF +DF =12+72=4,∴D (0,﹣4),故答案为:(0,﹣4).【点睛】本题考查垂径定理,涉及到平面直角坐标系,勾股定理等,解题关键是利用半径相等列方程.【变式4-3】(2023春·湖北鄂州·九年级校联考期末)如图,在平面直角坐标系中,⊙O 经过点(0,10),直线y =kx +2k−4与⊙O 交于B 、C 两点,则弦BC 的最小值是( )A.B.C.D.以上都不对【答案】C【分析】易知直线y=kx+2k−4过定点D(−2,−4),运用勾股定理可求出OD,由⊙O经过点(0,10),可求出半径OB=10,由于过圆内定点D的所有弦中,与OD垂直的弦最短,因此只需运用垂径定理及勾股定理就可解决问题.【详解】解:对于直线y=kx+2k−4,当x=−2时,y=−4,故直线y=kx+2k−4恒经过点(−2,−4),记为点D.由于过圆内定点D的所有弦中,与OD垂直的弦最短,即当OD⊥BC时,BC最短,连接OB,如图所示,∵D(−2,−4),∴OD==∵⊙O经过点(0,10),∴OB=10,∴BD∵OB⊥BC,∴BC=2BD=∴弦BC的最小值是故选:C.【点睛】本题主要考查了直线上点的坐标特征、垂径定理、勾股定理等知识,发现直线恒经过点(−2,−4)以及运用“过圆内定点D的所有弦中,与OD垂直的弦最短”这个经验是解决该题的关键.【题型5利用垂径定理求平行弦问题】【例5】(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.【答案】2或14【分析】由于弦AB与CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB与CD在圆心同侧;②弦AB 与CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB与CD在圆心同侧时,如图①,过点O作OF⊥AB,垂足为F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∵AB=12,CD=16,∴CE=8,AF=6,∵OA=OC=10,∴由勾股定理得:EO=6,OF=8,∴EF=OF−OE=2;②当弦AB与CD在圆心异侧时,如图,过点O作OE⊥CD于点E,反向延长OE交AB于点F,连接OA,OC,同理EO==6,OF=8,EF=OF+OE=14,所以AB与CD之间的距离是2或14.故答案为:2或14.【点睛】本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.【变式5-1】(2023春·浙江杭州·九年级校考阶段练习)如图,矩形ABCD与圆心在AB上的☉O交于点G,B,F,E,GB =5,EF =4,那么AD = .【答案】32【分析】连接OF,过点O作OH⊥EF,垂足为H,根据垂径定理,在△OHF中,勾股定理计算.【详解】如图,连接OF,过点O作OH⊥EF,垂足为H,EF=2,则EH=FH=12∵GB=5,∴OF =OB =52,在△OHF 中,勾股定理,得OH =32,∵四边形ABCD 是矩形,∴四边形OADH 也是矩形,∴AD =OH =32,故答案为:32.【点睛】本题考查了垂径定理、勾股定理,熟练掌握两个定理是解题的关键.【变式5-2】(2023春·九年级课时练习)如图,AB ,CD 是半径为15的⊙O 的两条弦,AB =24,CD =18,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上任意一点,则PA +PC 的最小值为 .【答案】【分析】由于A 、B 两点关于MN 对称,因而PA +PC =PB +PC ,即当B 、C 、P 在一条直线上时,PA +PC 的值最小,即BC 的值就是PA +PC 的最小值.【详解】解:连接BC ,OB ,OC ,作CH 垂直于AB 于H .∵AB =24,CD =18,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,∴BE =12AB =12,CF =12CD =9,∴OE =9,OF =12,∴CH =OE +OF =9+12=21,BH =BE +EH =BE +CF =12+9=21,在Rt △BCH 中,根据勾股定理得:BC即PA +PC 的最小值为故答案为:【点睛】本题考查垂径定理以及最短路径问题,灵活根据垂径定理确定最短路径是解题关键.【变式5-3】(2023·全国·九年级专题练习)如图,A,B,C,D在⊙O上,AB//CD经过圆心O的线段EF⊥AB 于点F,与CD交于点E,已知⊙O半径为5.(1)若AB=6,CD=8,求EF的长;(2)若CD=EF=BF,求弦AB的长;【答案】(1)7;(2)8AB=3,再由勾股定理求出OF的长,同理求出OE的【分析】(1)连接AO和DO,由垂径定理得AF=12长,即可求出EF的长;(2)连接BO和DO,先由垂径定理和勾股定理求出OE的长,设EF=BF=x,在Rt△OBF中,利用勾股定理列式求出x的值,得到BF的长,即可求出AB的长.【详解】解:(1)连接AO和DO,∵EF⊥AB,且EF过圆心,AB=3,∴AF=12∵AO=5,∴OF=4,∵AB//CD,∴EF⊥CD,CD=4,同理DE=12OE=3,∴EF=OF+OE=4+3=7;(2)如图,连接BO和DO,∵CD=∴DE=∴OE=1,设EF=BF=x,则OF=x−1,在Rt△OBF中,OF2+BF2=BO2,(x−1)2+x2=25,解得x1=4,x2=−3(舍去),∴BF=4,∴AB=2BF=8.【点睛】本题考查垂径定理,解题的关键是熟练掌握垂径定理,并能够结合勾股定理进行运用求解.【题型6利用垂径定理求同心圆问题】【例6】(2023春·湖北孝感·九年级校联考阶段练习)如图,两个圆都是以O为圆心.(1)求证:AC=BD;(2)若AB=10,BD=2,小圆的半径为5,求大圆的半径R的值.【答案】(1)见解析;(2【分析】(1)作OE⊥AB,由垂径定理得AE=BE,CE=DE,即可得到AC=BD;(2)连接OB,OD,由AB=10,则BE=5,由勾股定理,得OE2=OD2−DE2,OE2=OB2−BE2,DE=BE−BD=5−2=3,即可求出大圆半径.【详解】解:(1)如图:作OE⊥AB于E,由垂径定理,得:AE=BE,CE=DE,∴BE−DE=AE−CE,即AC=BD;(2)如图,连接OD,OB,∵AB=10,∴BE=AE=5,DE=5-2=3,在Rt△OBE和Rt△ODE中,由勾股定理,得:OE2=OD2−DE2,OE2=OB2−BE2,∴OD2−DE2=OB2−BE2,即52−32=OB2−52,解得:OB∴【点睛】本题考查了垂径定理,以及勾股定理,熟练掌握垂径定理和勾股定理进行计算是解题的关键.【变式6-1】(2023春·浙江台州·九年级统考期末)如图,一人口的弧形台阶,从上往下看是一组同心圆被一条直线所截得的一组圆弧.已知每个台阶宽度为32cm(即相邻两弧半径相差32cm),测得AB=200cm,AC=BD=40cm,则弧AB所在的圆的半径为cm【答案】134【分析】由于所有的环形是同心圆,画出同心圆圆心,设弧AB所在的圆的半径为r,利用勾股定理列出方程即可解答.【详解】解:设弧AB所在的圆的半径为r,如图.作OE⊥AB于E,连接OA,OC,则OA=r,OC=r+32,∵OE⊥AB,∴AE=EB=100cm,在RT△OAE中OE2=OA2−AE2=r2−1002,在RT△OCE中,OE2=OC2−CE2=(r+32)2−1402,则r2−1002=(r+32)2−1402解得:r=134.故答案为:134.【点睛】本题考查垂径定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.【变式6-2】(2023春·九年级课时练习)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水面AB的宽度是( )cm.A.6B.C.D.【答案】C【分析】作OD ⊥AB 于C ,交小圆于D ,可得CD=2,AC=BC ,由AO 、BO 为半径,则OA=OD=4;然后运用勾股定理即可求得AC 的长,即可求得AB 的长.【详解】解:作OD ⊥AB 于C ,交小圆于D ,则CD=2,AC=BC ,∵OA=OD=4,CD=2,∴OC=2,∴∴AB=2AC=故答案为C.【点睛】本题考查的是垂径定理的应用及勾股定理,作出辅助线、构造出直角三角形是解答本题的关键.【变式6-3】(2023·浙江杭州·九年级)如图,两个同心圆的半径分别为2和4,矩形ABCD 的边AB 和CD 分别是两圆的弦,则矩形ABCD 面积的最大值是 .【答案】16【分析】过点O 作OP ⊥AB 于P 并反向延长交CD 于N ,作OM ⊥AD 于点M ,连接OA 、OD ,根据面积之间的关系得出S △AOD =12S 矩形APND =14S 矩形ABCD ,从而得出S 矩形ABCD 最大时,S △AOD 也最大,过点D 作AO 边上的高h ,根据垂线段最短可得h≤OD ,利用三角形的面积公式即可求出S △AOD 的最大值,从而求出结论.【详解】解:过点O 作OP ⊥AB 于P 并反向延长交CD 于N ,作OM ⊥AD 于点M ,连接OA 、OD∴AO=2,OD=4,四边形APND 和四边形PBCN 为矩形,PN ⊥CD ,∴OM=AP根据垂径定理可得:点P 和点N 分别为AB 和CD 的中点,∴S 矩形APND =12S 矩形ABCD∵△AOD 的高OM 等于矩形APND 的宽,△AOD 的底为矩形APND 的长∴S △AOD =12S 矩形APND =14S 矩形ABCD∴S 矩形ABCD 最大时,S △AOD 也最大过点D 作AO 边上的高h ,根据垂线段最短可得h≤OD (当且仅当OD ⊥OA 时,取等号)∴S △AOD =12AO·h≤12AO·OD=12×2×4=4故S △AOD 的最大值为4∴S 矩形ABCD 的最大值为4÷14=16故答案为:16.【点睛】此题考查的是垂径定理、各图形面积的关系和三角形面积的最值问题,掌握垂径定理、利用边的关系推导面积关系和垂线段最短是解决此题的关键.【题型7 垂径定理的实际应用】【例7】(2023·浙江温州·校联考二模)如图,是某隧道的入口,它的截面如图所示,是由APB 和直角∠ACB 围成,且点C 也在APB 所在的圆上,已知AC =4m ,隧道的最高点P 离路面BC 的距离DP =7m ,则该道路的路面宽BC = m ;在APB 上,离地面相同高度的两点E ,F 装有两排照明灯,若E 是AP 的中点,则这两排照明灯离地面的高度是m .【答案】【分析】先求得圆心的位置,根据垂径定理得到AM=CM=2,即可求得半径为5,根据勾股定理即可求得CD,进而求得BC,根据勾股定理求得PA,从而以及垂径定理求得PN,利用勾股定理求得ON,通过证得△EOK≅△OPN求得EK=ON,进一步即可求得EQ.【详解】作AC的垂直平分线OM,交PD于O,交AC于M,则O是圆心,连接OC,∴OD=MC=1AC=2,2∵PD=7,∴圆的半径为7−2=5,∴CD∴BC=2CD=连接PA、OE交于N,作AH⊥PD于H,EQ⊥BC于Q,∵PD=7,DH=AC=4,∴PH=7−4=3,∵AH=CD=∴PA==∵E是AP的中点,∴OE垂直平分PA,∴PN∴ON∵EQ∥PD,∴∠OEK=∠EOP,在△EOK和△OPN中,∠OEK=∠PON∠EKO=∠ONP=90°EO=PO,∴△EOK≅△OPN(AAS),∴EK=ON=∴EQ=EK+KQ+2,故答案为.【点睛】本题考查了垂径定理和勾股定理的应用,三角形全等的判定和性质,作出辅助线构建直角三角形是解题的关键.【变式7-1】(2023春·浙江嘉兴·九年级平湖市林埭中学校联考期中)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你用直尺和圆规补全这个输水管道的圆形截面(保留作图痕迹);(2)若这个输水管道有水部分的水面宽AB=8cm,水面最深地方的高度为2cm,求这个圆形截面的半径.【答案】(1)见解析(2)5cm【分析】(1)运用尺规作图的步骤和方法即可解答;(2)作OD⊥AB于D,并延长交⊙O于C,则D为AB的中点,则AD=4cm,设这个圆形截面的半径为x cm,在Rt△AOD中,运用勾股定理求出x即可.【详解】(1)如图所示;(2)作OD⊥AB于D,并延长交⊙O于C,则D为AB的中点,∵AB=8cm,AB=4cm.∴AD=12设这个圆形截面的半径为x cm,又∵CD=2cm,∴OD=(x−2)cm,在Rt△AOD中,∵OD2+AD2=OA2,即(x−2)2+42=x2,解得x=5cm.∴圆形截面的半径为5cm.【点睛】本题考查了垂经定理和勾股定理,根据题意画出图形和灵活应用勾股定理是解答本题的关键.【变式7-2】(2023春·河北邢台·九年级校联考期末)“筒车”是一种以水流作动力,取水灌田的工具.如图,“筒车”盛水筒的运行轨迹是以轴心O为圆心的圆,已知圆心O始终在水面上方.且当圆被水面截得的弦AB 为6米时,水面下盛水筒的最大深度为1米(即水面下方部分圆上一点距离水面的最大距离).(1)求该圆的半径;(2)若水面上涨导致圆被水面截得的弦AB从原来的6米变为8米时,则水面下盛水筒的最大深度为多少米?【答案】(1)5米(2)2米AB=3,DE=1,再由勾股定理【分析】(1)作OD⊥AB于点E,交⊙O于点D,由垂径定理可得AE=12即可求出圆的半径;AB=4米.在Rt△AOE中,由勾股定理可得,AE2+OE2=OA2,则OE=3米,(2)当AB=8米时,AE=12即可求出DE的长.【详解】(1)解:如图,作OD⊥AB于点E,交⊙O于点D.AB=3米,DE=1米.则AE=12设圆的半径为r米,在Rt△AOE中,AE2+OE2=OA2,∴32+(r−1)2=r2,解得r=5,∴该圆的半径为5米;AB=4米.(2)解:当AB=8米时,AE=12在Rt△AOE中,AE2+OE2=OA2,∴42+OE2=52,∴OE=3米,∴DE=5−3=2(米).答:水面下盛水筒的最大深度为2米.【点睛】本题考查垂径定理,熟练掌握垂径定理的定义并运用是解题的关键.【变式7-3】(2023·湖南·统考中考真题)问题情境:筒车是我国古代发明的一种水利灌溉工具,既经济又环保,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图①).假定在水流量稳定的情况下,筒车上的每一个盛水筒都按逆时针做匀速圆周运动,每旋转一周用时120秒.问题设置:把筒车抽象为一个半径为r的⊙O.如图②,OM始终垂直于水平面,设筒车半径为2米.当t=0时,某盛水筒恰好位于水面A处,此时∠AOM=30°,经过95秒后该盛水筒运动到点B处.(参考数据,≈1.414 1.732)问题解决:(1)求该盛水筒从A处逆时针旋转到B处时,∠BOM的度数;(2)求该盛水筒旋转至B处时,它到水面的距离.(结果精确到0.1米)【答案】(1)∠BOM=45°;(2)该盛水筒旋转至B处时,它到水面的距离为0.3米.【分析】(1)先求得该盛水筒的运动速度,再利用周角的定义即可求解;(2)作BC⊥OM于点C,在Rt△OAD中,利用含30度角的直角三角形的性质以及勾股定理求得OD的长,在Rt△OBC中,利用勾股定理求得OC的长,据此即可求解.【详解】(1)解:∵旋转一周用时120秒,=3°,∴每秒旋转360°120当经过95秒后该盛水筒运动到点B处时,∠AOB=360°−3°×95=75°,∵∠AOM=30°,∴∠BOM=75°−30°=45°;(2)解:作BC⊥OM于点C,设OM与水平面交于点D,则OD⊥AD,在Rt△OAD中,∠AOD=30°,OA=2,OA=1,OD=∴AD=12在Rt△OBC中,∠BOC=45°,OB=2,∴BC=OC=∴CD=OD−OC=≈0.3(米),答:该盛水筒旋转至B处时,它到水面的距离为0.3米.【点睛】本题考查了圆的性质,含30度角的直角三角形的性质以及勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.【题型8垂径定理在格点中的运用】【例8】(2023春·湖北武汉·九年级校联考期末)如图是由小正方形组成的7×6网格,每个小正方形的顶点叫做格点.仅用无刻度的直尺在给定网格中完成画图.(1)在图(1)中,A,B,C三点是格点,画经过这三点的圆的圆心O,并在该圆上画点D,使AD=BC;(2)在图(2)中,A,E,F三点是格点,⊙I经过点A.先过点F画AE的平行线交⊙I于M,N两点,再画弦MN的中点G.【答案】(1)见解析(2)见解析【分析】(1)首先根据网格的特点和圆的性质求得点D,然后根据矩形的对角线互相平分和圆的性质求得点O即可;(2)设AE与⊙I的交点为C,根据网格的特点和平行线的求得直线BF交⊙I于M,N两点,然后连接AN,CM 交于点D,连接DI并延长交MN与点G即可求解.【详解】(1)如图所示,连接AD,BC相交于点O,由网格可得,AD1=BC=3,由网格的特点可得,D2B∥AC∵点A,C,B,D2在同一个圆上∴AD2=BC=3∴点D1和D2即为所要求作的D点;∵∠DAB=∠ABC=∠BCD=90°∴四边形ABCD是矩形,∴OA=OB=OC=OD,∴点O即为经过A,B,C三点的圆的圆心,∴点O即为所求作的点;‘(2)如图所示,∵AC∥MN,点A,C,N,M在⊙I上∴AM=CN∴四边形AMNC是等腰梯形,。
垂径定理及其推论(重点)垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
如图1所示,垂径定理用几何语言表示为∵CD为直径,CD⊥AB(OD⊥AB),∴EA=EB,AC=BC,AD=BD,图1推论:1.平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两条弧。
如图1所示,用几何语言表述为∵CD过圆心,AE=BE,∴CD⊥AB,AC=BC,AD=BD,2.平分弧的直径垂直平分这条弧所对的弦。
如图2所示,用几何语言表述为∵CD过圆心,AC=BC,∴CD⊥AB,AE=BE.或∵CD过圆心,AD=BD, ∴CD⊥AB,AE=BE. 图2弦心距:圆心到圆的一条弦的距离叫做弦心距,如上图所示,OE的长度就是弦心距。
提醒:(1)定理中“垂直于弦的直径”可以是直径,也可以是半径,甚至可以使过圆心的直线或线段。
(2)对于一个圆和一条直线,如果具备以下五个条件中的任意两个,那么一定具备其他三个:①过圆心;②垂直于弦;③平分弦(非直径);④平分弦所对的劣弧;⑤平分弦所对的优弧,可以简记为“523定理(5个条件已知两个条件,可以知道另三个结论)”。
(3)在应用垂径定理与推论进行计算时,通常作垂直于弦的半径(或直径、弦心距)这一辅助线,构造如图所示的直角三角形,根据垂径定理与勾股定理得:。
根据此公式,在 a,r,d三个量中,知道其中两个量就可以求出第三个量。
1.如图(1),在⊙O中,P是弦AB的中点,CD是过点P的直径,•则下列结论中不正确的是()A.AB⊥CD B.∠AOP=∠BOP C.弧AD=弧2.如图(2),已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是()A.2.5 B.3.5 C.4.5 D.5.53.如图(2),⊙O的直径为10,圆心O到弦AB的距离OM为3,则AB的长为__ ___;在⊙O上,到弦AB所在直线的距离为2的点共有个。
4.如图(3), P为⊙O内一点,OP=3cm,⊙O半径为5cm,则经过P点的最短弦长为_______;最长弦长为_______.5.如图,AB为⊙O直径,E是弧BC的中点,且∠ACO=900,OE交BC于点D,.(3)BA。
第18讲垂径定理及其推论一、学习目标1.通过观察、思考、归纳和概括形成圆的概念.2.结合图形认识和理解弦、直径、半圆、弧、优弧、劣弧、等圆和等弧等概念.3. 通过折叠操作得出垂径定理及其推论,通过推理的方式说明结论的正确性,会运用垂径定理或逆定理解决实际问题.考情分析垂径定理及其推论是中考必考知识,常常与直角三角形、等腰三角形等一起考查.与圆有关的计算中,经常利用“垂直于弦的直径平分这条弦”添加辅助线(半径或弦心距),构造直角三角形,运用勾股定理计算有关线段长度.二、基础知识²轻松学1.圆的基本概念(1)圆的定义:在一个平面内,一条线段绕它固定的一个端点旋转一周,另一个端点所形成的图形叫做圆,固定的端点叫做圆心,线段叫做半径.【精讲】①圆是所有到定点(圆心)的距离等于定长(半径)的点的集合,即同一个圆上所有的点到定点的距离等于定长,反过来,到定点的距离等于定长的所有的点都在同一个圆上;②圆是一条封闭的曲线(圆周),而不是圆面.(2)相关概念连结圆上任意两点的线段叫做弦.过圆心的弦叫做直径.圆上任意两点间的部分叫做圆弧,简称弧.任意一条直径的两个端点将圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫优弧,小于半圆的弧叫劣弧.【精讲】①直径是圆中最长的弦;直径是弦,但弦不一定是直径;②半圆是一种特殊的弧,但弧不一定是半圆.(3)关于等圆、等弧能够重合的两个圆叫做等圆.能重合的两条弧叫做等弧.【精讲】①等圆是两个半径相等的圆;②等弧存在于同圆或等圆;③长度相等的弧不一定是等弧(等弧的半径相等、过弧的两端的半径所夹的角也相等).2.圆的轴对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.3.垂径定理及其推论垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,且平分弦所对的两条弧.【精讲】垂径定理和推论可以理解为一条直线涉及五个特征:垂直于弦、经过圆心、平分弦、平分弦所对的优弧、平分弦所对的劣弧,只要具备这五个中的任意两个条件,就可得出其余三个结论.三、重难疑点²轻松破1.运用垂径定理及推论进行有关的判断运用垂径定理可以得出直径所分弦所成的两条相等的线段,两组相等的弧;运用垂径定理的推论可知经过圆心、平分非直径弦的直线与这条弦的位置关系垂直,两组相等的弧;根据圆的轴对称性可知,弧的中点与弦的中点所在直线一定经过圆心,所以这条直线也是弧、弦所构成的弓形的对称轴,进行有关判断时,注意将垂径定理、推论和圆的轴对称性综合运用.例1如图18-1,AB 是⊙O 的直径,弦CD⊥AB 于点E ,则下列结论一定正确的个数有①CE=DE ;②BE=OE ;③CB ⌒=BD ⌒;④∠CAB=∠DAB;⑤AC=AD 。
垂径定理的5个结论垂径定理是解决圆与直线之间关系的一项重要定理,它有着广泛的应用。
下面将从五个不同的角度,详细介绍垂径定理的五个结论。
一、定理1:切线垂直于半径根据垂径定理的第一个结论,圆的切线垂直于过切点的半径。
这一结论可以通过简单的几何推理得出。
设圆的半径为r,切点为A,切线为l,连接圆心O与切点A,假设在切点A处引出一条过切点A 的直径AB,连接OB。
由于OA=OB=r,所以AB是圆的直径。
根据定理,AB垂直于切线l。
因此,切线l垂直于过切点A的半径OA。
二、定理2:半径平分弦垂径定理的第二个结论表明,过圆心的半径可以平分弦。
这一结论也可以通过几何推理来证明。
设圆的半径为r,弦的两个端点为A、B,连接圆心O与弦的中点M。
根据定理,OM垂直于弦AB。
又因为OM=r,所以OM是圆的半径,即OM=OA=OB=r。
因此,OM平分弦AB。
三、定理3:半径垂直于弦垂径定理的第三个结论是,过圆心的半径垂直于弦。
这一结论可以通过定理2的推论得出。
根据定理2,过圆心的半径OM平分弦AB。
因为OM平分弦AB,所以OM垂直于弦AB。
因此,过圆心的半径垂直于弦。
四、定理4:垂直弦的两条半径相等定理4指出,如果两条半径分别垂直于同一条弦,那么这两条半径的长度相等。
设圆的两条半径分别为OA和OB,弦为AB,连接OA和OB。
根据定理,OA垂直于弦AB,OB垂直于弦AB。
因为OA=OB=r,所以垂直弦的两条半径相等。
五、定理5:垂直弦的两条半径互为中线垂径定理的第五个结论是,如果两条半径分别垂直于同一条弦,那么这两条半径互为弦的中线。
设圆的两条半径分别为OA和OB,弦为AB,连接OA和OB,垂直弦的两条半径分别为OC和OD。
根据定理,OA垂直于弦AB,OB垂直于弦AB,所以OC=OD=r。
因此,垂直弦的两条半径互为弦的中线。
垂径定理有着五个重要的结论:切线垂直于半径、半径平分弦、半径垂直于弦、垂直弦的两条半径相等、垂直弦的两条半径互为中线。
专题3.2 垂径定理及其推论【十大题型】【北师大版】【题型1 由垂径定理及其推论判断正误】 (1)【题型2 根据垂径定理与勾股定理综合求值】 (3)【题型3 根据垂径定理与全等三角形综合求值】 (8)【题型4 在坐标系中利用垂径定理求值或坐标】 (14)【题型5 利用垂径定理求平行弦问题】 (19)【题型6 利用垂径定理求同心圆问题】 (23)【题型7 垂径定理的实际应用】 (27)【题型8 垂径定理在格点中的运用】 (33)【题型9 利用垂径定理求整点】 (37)【题型10 利用垂径定理求最值或取值范围】 (41)【知识点1垂径定理及其推论】(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【题型1由垂径定理及其推论判断正误】【例1】(2023春·九年级单元测试)如图,CD是⊙O的直径,弦AB⊥CD于点E,连接BC、BD,下列结论中不一定正确的是()A.AE=BE B.AD=BD C.OE=DE D.AC=BC【答案】C【分析】根据垂径定理判断即可;【详解】∵直径CD垂直于弦AB于点E,则由垂径定理可得,AE=BE,AD=BD,AC=BC,故选项A,B,D 正确;OE=DE无法得出,故C错误.故选C.【点睛】本题主要考查了垂径定理的应用,准确分析判断是解题的关键.【变式1-1】(2023春·北京海淀·九年级人大附中校考阶段练习)在学习了《圆》这一章节之后,甲、乙两位同学分别整理了一个命题:甲:相等的弦所对的圆心角相等;乙:平分弦的直径垂直于这条弦.下面对这两个命题的判断,正确的是A.甲对乙错B.甲错乙对C.甲乙都对D.甲乙都错【答案】D【分析】根据在同圆或等圆中, 如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等, 则另外两组量也相等,可判断甲命题;由垂径定理可得判断乙命题.【详解】(1)在同圆或等圆中, 相等的弦所对的弧对应相等,故甲命题错误; (2)平分弦的直径垂直于不是直径的弦; 故乙命题项错误;故选D.【点睛】本题主要考查同圆或等圆中,弧、弦、圆心角的关系及垂径定理.【变式1-2】(2023春·全国·九年级专题练习)下列命题正确的是()A.垂直于弦的直径平分弦所对的两条弧B.弦的垂直平分线经过圆心C.平分弦的直径垂直于弦D.平分弦所对的两条弧的直线垂直于弦【答案】ABD【分析】根据垂径定理及其推论进行判断即可.【详解】A、垂直于弦的直径平分弦所对的两条弧,正确;B、弦的垂直平分线经过圆心,正确;C、平分弦(不是直径)的直径垂直于弦,故错误;D、平分弦所对的两条弧的直线垂直于弦,正确;故选ABD.【点睛】本题考查了垂径定理:熟练掌握垂径定理及其推论是解决问题的关键.【变式1-3】(2023·福建三明·泰安模拟)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论正确的是( )A .DE=BEB .BC =BD C .△BOC 是等边三角形D .四边形ODBC 是菱形【答案】B【详解】试题分析:∵AB ⊥CD ,AB 过O ,∴DE=CE ,BC =BD ,根据已知不能推出DE=BE ,△BOC 是等边三角形,四边形ODBC 是菱形.故选B .【考点】垂径定理.【题型2 根据垂径定理与勾股定理综合求值】【例2】(2023·贵州遵义·统考三模)在半径为r 的圆中,弦BC 垂直平分OA ,若BC =6,则r 的值是( )A B .C .D 【答案】C【分析】设BC 、OA 交于D ,根据题意和垂径定理得到OD =12r ,BD =3,∠ODB =90°,在Rt △OBD 由勾股定理得到r 2=32+,解方程即可得到答案.【详解】解:设BC 、OA 交于D ,∵弦BC 垂直平分OA ,BC =6,∴OD =12OA =12r ,BD =12BC =3,∠ODB =90°,在Rt△OBD中,由勾股定理得OB2=OD2+BD2,∴r2=32+,解得r=故选C.【点睛】本题主要考查了勾股定理和垂径定理,利用方程的思想求解是解题的关键.【变式2-1】(2023春·浙江·九年级统考阶段练习)如图,已知⊙O的半径为5,弦AB=8,点E在AB上运动,连结OE,过点E作EF⊥OE交⊙O于点F,当EF最大时,OE+EF的值为.【答案】7【分析】当OE⊥AB,EF最大,即点F与点B重合,过O作OE⊥AB于E,连接OB,根据垂径定理得到BE=4,根据勾股定理得到【详解】解:当OE⊥AB,EF最大,即点F与点B重合,过O作OE⊥AB于E,连接OB,∵AB=8,∴BE=4,∵OB=5,∴,∴OE+EF=OE+OB=7,故答案为7.【点睛】本题考查了垂径定理,勾股定理,正确的作出辅助线是解题的关键.【变式2-2】(2023·湖北孝感·校联考一模)如图,△ABC内接于⊙O,OC⊥OB,OD⊥AB于D交AC于E 点,已知⊙O的半径为1,则AE2+CE2的值为()A.1B.2C.3D.4【答案】B【分析】连接BE,根据垂径定理得到AD=DB,得到EA=EB,∠EAO=∠EBO=∠ACO,根据勾股定理计算即可.【详解】解:连接BE,如图,∵OD⊥AB,∴AD=DB,∴EA=EB,∠EAO=∠EBO=∠ACO,∵∠ECB+∠EBC=∠ECO+45°+∠EBC=∠OBE+45°+∠EBC=90°,∴∠BEC=90°,在直角△BEC中,BE2+CE2=BC2,∵OC⊥OB,且OC=OB=OA∴BC2=2OA2=2,∴BE2+CE2=2,即AE2+CE2=2.故选:B.【变式2-3】(2023春·江苏泰州·九年级校考阶段练习)如图,在⊙O中,AB是直径,P为AB上一点,过点P作弦MN,∠NPB=45°.(1)若AP=2,BP=6,求MN的长;(2)若MP=3,NP=5,求AB的长;(3)当P在AB上运动时(∠NPB=45°不变)请求出其范围.【答案】(1)2)3)不变,值为12【分析】(1)作OH⊥MN于H,连接ON,先计算出OA=4,OP=2,在Rt△POH中,由于∠OPH=45°,则Rt△OHN中,利用勾股定理计算出OH⊥MN得到HM=HN,所以(2)作OH⊥MN于H,连接ON,先计算出HM=HN=4,PH=1,在Rt△POH中,由∠OPH=45°得到OH=1,再在Rt△OHN中利用勾股定理可计算出(3) 作OH⊥MN于H,连接ON,根据垂定理得HM=HN,设圆的半径为R,在Rt△OHN中,利用勾股定理得到OH2+NH2=ON2=R2,在Rt△POH中,由∠OPH=45°得OH=PH,则PH2+NH2=R2,然后变形PM2+PN2可得到2(PH2+NH2),所以PM2+PN2的值为2R2,又AB=2R,代入计算即可求出答案.【详解】解:(1)作OH⊥MN于H,连接ON,∵AP=2,BP=6,∴AB=8,∴OA=4,OP=2,在Rt△POH中,∵∠OPH=45°,∴在Rt△OHN中,∵ON=4,∴∵OH⊥MN,∴HM=HN,∴(2)作OH⊥MN于H,连接ON,则HM=HN,∵MP=3,NP=5,∴MN=8,∴HM=HN=4,∴PH=1,在Rt△POH中,∵∠OPH=45°,∴OH=1,在Rt△OHN中,∵HN=4,OH=1,∴∴(3的值不发生变化,为定值1,2作OH⊥MN于H,连接ON,则HM=HN,设圆的半径为R,在Rt△OHN中,OH2+NH2=ON2=R2,在Rt△POH中,∵∠OPH=45°,∴OH=PH,∴PH2+NH2=R2,∵PM2+PN2=(HM-PH)2+(NH+PH)2=(NH-PH)2+(NH+PH)2=2(PH2+NH2)=2R2.又AB2=4R2,=2R2 4R2=1 2的值不发生变化,为定值12.【点睛】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.【题型3根据垂径定理与全等三角形综合求值】【例3】(2023春·江苏·九年级专题练习)如图,⊙O的弦AB垂直于CD,点E为垂足,连接OE.若AE=1,AB=CD=6,则OE的值是( )A.B.C.D.【答案】A【分析】如图所示,过O点作OH⊥AB于H点,OF⊥CD于F点,连接OB、OC,根据垂径定理可求出EH的值,再证Rt△OBH≌Rt△OCF(HL),可得OH=OF,根据正方形的判定可得四边形OHEF为正方形,由此即可求解.【详解】解:如图所示,过O点作OH⊥AB于H点,OF⊥CD于F点,连接OB、OC,∴根据垂径定理得,DF =CF =12CD =12×6=3,AH =BH =12AB =12×6=3,∵AE =1,∴EH =AH−AE =3−1=2,在Rt △OBH 和Rt △OCF 中,OB =OC BH =CF ,∴Rt △OBH≌Rt △OCF(HL),∴OH =OF ,∵CD ⊥AB ,∴∠HEF =90°,∵∠OHE =∠OFE =90°,∴四边形OHEF 为正方形,OE 是正方形的对角线,∴OE ==故选:A .【点睛】本题考查圆与三角形的综合,掌握圆的基础值,垂径定理,全等三角形的判定和性质,正方形的判定和性质等知识的综合运用是解题的关键.【变式3-1】(2023春·全国·九年级专题练习)如图,AB 为圆O 直径,F 点在圆上,E 点为AF 中点,连接EO ,作CO ⊥EO 交圆O 于点C ,作CD ⊥AB 于点D ,已知直径为10,OE =4,求OD 的长度.【答案】3【分析】根据垂径定理的逆定理得到OE ⊥AF ,由CO ⊥EO ,得到OC ∥AF ,即可得到∠OAE =∠COD ,然后通过证得△AEO ≌△ODC ,证得CD =OE =4,然后根据勾股定理即可求得OD .【详解】解:∵E 点为AF 中点,∴OE ⊥AF ,∵CO ⊥EO ,∴OC ∥AF ,∴∠OAE =∠COD ,∵CD ⊥AB ,∴∠AEO =∠ODC ,在△AEO 和△ODC 中,∠OAE =∠COD ∠AEO =∠ODC OA =OC,∴△AEO ≌△ODC (AAS ),∴CD =OE =4,∵OC =5,∴OD3.【点睛】本题考查垂径定理的逆定理、平行线的判定与性质、全等三角形的判定与性质、勾股定理,熟练掌握垂径定理和全等三角形的判定与性质是解答的关键【变式3-2】(2023·上海·统考中考真题)已知:在圆O 内,弦AD 与弦BC 交于点G,AD =CB,M,N 分别是CB 和AD 的中点,联结MN,OG .(1)求证:OG ⊥MN ;(2)联结AC,AM,CN ,当CN//OG 时,求证:四边形ACNM 为矩形.【答案】(1)见解析;(2)见解析【分析】(1)连结OM,ON ,由M 、N 分别是CB 和AD 的中点,可得OM ⊥BC ,ON ⊥AD ,由AB =CD , 可得OM =ON ,可证RtΔEOP≌RtΔFOP (HL ),MG =NG ,∠MGO =∠NGO ,根据等腰三角形三线合一性质OG ⊥MN ;(2)设OG 交MN 于E ,由RtΔEOP≌RtΔFOP ,可得MG =NG ,可得∠CMN =∠ANM ,CM =12CB =12AD =AN ,可证△CMN≌△ANM 可得AM =CN ,由CN ∥OG ,可得∠AMN =∠CNM =90°,由∠AMN +∠CNM=180°可得AM ∥CN ,可证ACNM 是平行四边形,再由∠AMN =90°可证四边形ACNM 是矩形.【详解】证明:(1)连结OM,ON ,∵M 、N 分别是CB 和AD 的中点,∴OM ,ON 为弦心距,∴OM ⊥BC ,ON ⊥AD ,∴∠GMO =∠GNO =90°,在⊙O 中,AB =CD ,∴OM =ON ,在Rt △OMG 和Rt △ONG 中,OM =ON OG =OG ,∴RtΔGOM≌RtΔGON (HL ),∴MG =NG ,∠MGO =∠NGO ,∴OG ⊥MN ;(2)设OG 交MN 于E ,∵RtΔGOM≌RtΔGON (HL ),∴MG =NG ,∴∠GMN =∠GNM ,即∠CMN =∠ANM ,∵CM =12CB =12AD =AN ,在△CMN 和△ANM 中CM =AN ∠CMN =∠ANM MN =NM,∴△CMN≌△ANM,∴AM=CN,∠AMN=∠CNM,∵CN∥OG,∴∠CNM=∠GEM=90°,∴∠AMN=∠CNM=90°,∴∠AMN+∠CNM=90°+90°=180°,∴AM∥CN,∴ACNM是平行四边形,∵∠AMN=90°,∴四边形ACNM是矩形.【点睛】本题考查垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定,掌握垂径定理,三角形全等判定与性质,等腰三角形判定与性质,平行线判定与性质,矩形的判定是解题关键.【变式3-3】(2023春·江西赣州·九年级统考期末)按要求作图(1)如图1,已知AB是⊙O的直径,四边形ACDE为平行四边形,请你用无刻度的直尺作出∠AOD的角平分线OP;(2)如图2,已知AB是⊙O的直径,点C是BD的中点,AB∥CD,请你用无刻度的直尺在射线DC上找一点P,使四边形ABPD是平行四边形.【答案】(1)见解析(2)见解析【分析】(1)连接AD,EC交于点F,作射线OF交⊙O于点P,OP即为所求;(2)连接DB,OC交于点E,作射线AE交DC于点P,四边形ABPD即为所求.【详解】(1)解:如图1,连接AD,EC交于点F,作射线OF交⊙O于点P,OP即为所求;∵四边形ACDE 为平行四边形,∴AF =DF ,∵OA =OD ,∴ OP 是∠AOD 的角平分线;(2)如图2,连接OD ,连接DB ,OC 交于点E ,作射线AE 交射线DC 于点P ,四边形ABPD 即为所求;∵点C 是BD 的中点,∴OC ⊥DB ,∵OD =OB ,∴DE =EB ,∵AB∥CD ,∴∠ABE =∠PDE ,在△ABE 与△PDE 中,∠ABE =∠PDE∠AEB =∠PED DE =BE,∴△ABE≌△PDE ,∴AB =DP,∵AB∥DP,∴四边形ABPD是平行四边形.【点睛】本题考查了平行四边形的性质与判定,垂径定理,三线合一,掌握以上知识是解题的关键.【题型4在坐标系中利用垂径定理求值或坐标】【例4】(2023春·九年级单元测试)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图像被⊙P截得的弦AB的长为a的值是( )A.4B.3+C.D.3+【答案】B【分析】作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,求出D点坐标为(3,3),可得△OCD为等腰直角三角形,从而△PED也为等腰直角三角形.根据垂径定理得AE=BE=Rt△PBE中,利用勾股定理求出PE=1,再求出PD的长即可求解.【详解】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴∠PDE =∠ODC =45°,∵PE ⊥AB ,∴△PED 为等腰直角三角形,AE =BE =12AB =12×=在Rt △PBE 中,PB =3,∴PE =1,∴PD =∴a =3故选B .【点睛】本题考查了一次函数的性质,勾股定理,等腰直角三角形的判定与性质,以及垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.正确作出辅助线是解答本题的关键.【变式4-1】(2023·全国·九年级专题练习)如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标是(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,求点C 的坐标.【答案】点C 的坐标为(1,3)【分析】连接CM ,作MN ⊥CD 于N ,CH ⊥OA 于H ,根据题意得CD =OB =8,CN =MH ,CH =MN ,根据垂径定理得出CN =DN = 12 CD =4.MO =MC =5, 在Rt △MNC 中,勾股定理得出MN =3,进而得出C 的纵坐标为3,又OH =OM−MH =5−4=1,即可求解.【详解】解:如图,连接CM ,作MN ⊥CD 于N ,CH ⊥OA 于H .∵四边形OCDB 为平行四边形,B 点的坐标是(8,0),∴CD =OB =8,CN =MH ,CH =MN .又∵MN⊥CD,CD=4.∴CN=DN=12∵点A的坐标是(10,0),∴OA=10,∴MO=MC=5.在Rt△MNC中,MN===3.∴CH=3.又OH=OM−MH=5−4=1.∴点C的坐标为(1,3).【点睛】本题考查了平行四边形的性质,坐标与图形,垂径定理,勾股定理,掌握垂径定理是解题的关键.【变式4-2】(2023·江苏南京·九年级专题练习)如图,在平面直角坐标系中,一个圆与两坐标轴分别交于A、B、C、D四点.已知A(6,0),B(﹣2,0),C(0,3),则点D的坐标为.【答案】(0,−4)【详解】设圆心为P,过点P作PE⊥AB于点E,PF⊥CD于点F,先根据垂径定理可得EA=EB=4,FC=FD,进而可求出OE=2,再设P(2,m),即可利用勾股定理表示出PC2,PA2,最后利用PA=PA列方程即可求出m值,进而可得点D坐标.【解答】解:设圆心为P,过点P作PE⊥AB于点E,PF⊥CD于点F,则EA=EB=AB=4,FC=FD,2∴OE =EB ﹣OB =4﹣2=2,∴E (2,0),设P (2,m ),则F (0,m ),连接PC 、PA ,在Rt △CPF 中,PC 2=(3﹣m )2+22,在Rt △APE 中,PA 2=m 2+42,∵PA =PC ,∴(3﹣m )2+22=m 2+42,∴m =±12(舍正),∴F (0,−12),∴CF =DF =3−(−12)=72,∴OD =OF +DF =12+72=4,∴D (0,﹣4),故答案为:(0,﹣4).【点睛】本题考查垂径定理,涉及到平面直角坐标系,勾股定理等,解题关键是利用半径相等列方程.【变式4-3】(2023春·湖北鄂州·九年级校联考期末)如图,在平面直角坐标系中,⊙O 经过点(0,10),直线y =kx +2k−4与⊙O 交于B 、C 两点,则弦BC 的最小值是( )A.B.C.D.以上都不对【答案】C【分析】易知直线y=kx+2k−4过定点D(−2,−4),运用勾股定理可求出OD,由⊙O经过点(0,10),可求出半径OB=10,由于过圆内定点D的所有弦中,与OD垂直的弦最短,因此只需运用垂径定理及勾股定理就可解决问题.【详解】解:对于直线y=kx+2k−4,当x=−2时,y=−4,故直线y=kx+2k−4恒经过点(−2,−4),记为点D.由于过圆内定点D的所有弦中,与OD垂直的弦最短,即当OD⊥BC时,BC最短,连接OB,如图所示,∵D(−2,−4),∴OD==∵⊙O经过点(0,10),∴OB=10,∴BD∵OB⊥BC,∴BC=2BD=∴弦BC的最小值是故选:C.【点睛】本题主要考查了直线上点的坐标特征、垂径定理、勾股定理等知识,发现直线恒经过点(−2,−4)以及运用“过圆内定点D的所有弦中,与OD垂直的弦最短”这个经验是解决该题的关键.【题型5利用垂径定理求平行弦问题】【例5】(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.【答案】2或14【分析】由于弦AB与CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB与CD在圆心同侧;②弦AB 与CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB与CD在圆心同侧时,如图①,过点O作OF⊥AB,垂足为F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∵AB=12,CD=16,∴CE=8,AF=6,∵OA=OC=10,∴由勾股定理得:EO=6,OF=8,∴EF=OF−OE=2;②当弦AB与CD在圆心异侧时,如图,过点O作OE⊥CD于点E,反向延长OE交AB于点F,连接OA,OC,同理EO==6,OF=8,EF=OF+OE=14,所以AB与CD之间的距离是2或14.故答案为:2或14.【点睛】本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.【变式5-1】(2023春·浙江杭州·九年级校考阶段练习)如图,矩形ABCD与圆心在AB上的☉O交于点G,B,F,E,GB =5,EF =4,那么AD = .【答案】32【分析】连接OF,过点O作OH⊥EF,垂足为H,根据垂径定理,在△OHF中,勾股定理计算.【详解】如图,连接OF,过点O作OH⊥EF,垂足为H,EF=2,则EH=FH=12∵GB=5,∴OF =OB =52,在△OHF 中,勾股定理,得OH =32,∵四边形ABCD 是矩形,∴四边形OADH 也是矩形,∴AD =OH =32,故答案为:32.【点睛】本题考查了垂径定理、勾股定理,熟练掌握两个定理是解题的关键.【变式5-2】(2023春·九年级课时练习)如图,AB ,CD 是半径为15的⊙O 的两条弦,AB =24,CD =18,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上任意一点,则PA +PC 的最小值为 .【答案】【分析】由于A 、B 两点关于MN 对称,因而PA +PC =PB +PC ,即当B 、C 、P 在一条直线上时,PA +PC 的值最小,即BC 的值就是PA +PC 的最小值.【详解】解:连接BC ,OB ,OC ,作CH 垂直于AB 于H .∵AB =24,CD =18,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,∴BE =12AB =12,CF =12CD =9,∴OE =9,OF =12,∴CH =OE +OF =9+12=21,BH =BE +EH =BE +CF =12+9=21,在Rt △BCH 中,根据勾股定理得:BC即PA +PC 的最小值为故答案为:【点睛】本题考查垂径定理以及最短路径问题,灵活根据垂径定理确定最短路径是解题关键.【变式5-3】(2023·全国·九年级专题练习)如图,A,B,C,D在⊙O上,AB//CD经过圆心O的线段EF⊥AB 于点F,与CD交于点E,已知⊙O半径为5.(1)若AB=6,CD=8,求EF的长;(2)若CD=EF=BF,求弦AB的长;【答案】(1)7;(2)8AB=3,再由勾股定理求出OF的长,同理求出OE的【分析】(1)连接AO和DO,由垂径定理得AF=12长,即可求出EF的长;(2)连接BO和DO,先由垂径定理和勾股定理求出OE的长,设EF=BF=x,在Rt△OBF中,利用勾股定理列式求出x的值,得到BF的长,即可求出AB的长.【详解】解:(1)连接AO和DO,∵EF⊥AB,且EF过圆心,AB=3,∴AF=12∵AO=5,∴OF=4,∵AB//CD,∴EF⊥CD,CD=4,同理DE=12OE=3,∴EF=OF+OE=4+3=7;(2)如图,连接BO和DO,∵CD=∴DE=∴OE=1,设EF=BF=x,则OF=x−1,在Rt△OBF中,OF2+BF2=BO2,(x−1)2+x2=25,解得x1=4,x2=−3(舍去),∴BF=4,∴AB=2BF=8.【点睛】本题考查垂径定理,解题的关键是熟练掌握垂径定理,并能够结合勾股定理进行运用求解.【题型6利用垂径定理求同心圆问题】【例6】(2023春·湖北孝感·九年级校联考阶段练习)如图,两个圆都是以O为圆心.(1)求证:AC=BD;(2)若AB=10,BD=2,小圆的半径为5,求大圆的半径R的值.【答案】(1)见解析;(2【分析】(1)作OE⊥AB,由垂径定理得AE=BE,CE=DE,即可得到AC=BD;(2)连接OB,OD,由AB=10,则BE=5,由勾股定理,得OE2=OD2−DE2,OE2=OB2−BE2,DE=BE−BD=5−2=3,即可求出大圆半径.【详解】解:(1)如图:作OE⊥AB于E,由垂径定理,得:AE=BE,CE=DE,∴BE−DE=AE−CE,即AC=BD;(2)如图,连接OD,OB,∵AB=10,∴BE=AE=5,DE=5-2=3,在Rt△OBE和Rt△ODE中,由勾股定理,得:OE2=OD2−DE2,OE2=OB2−BE2,∴OD2−DE2=OB2−BE2,即52−32=OB2−52,解得:OB∴【点睛】本题考查了垂径定理,以及勾股定理,熟练掌握垂径定理和勾股定理进行计算是解题的关键.【变式6-1】(2023春·浙江台州·九年级统考期末)如图,一人口的弧形台阶,从上往下看是一组同心圆被一条直线所截得的一组圆弧.已知每个台阶宽度为32cm(即相邻两弧半径相差32cm),测得AB=200cm,AC=BD=40cm,则弧AB所在的圆的半径为cm【答案】134【分析】由于所有的环形是同心圆,画出同心圆圆心,设弧AB所在的圆的半径为r,利用勾股定理列出方程即可解答.【详解】解:设弧AB所在的圆的半径为r,如图.作OE⊥AB于E,连接OA,OC,则OA=r,OC=r+32,∵OE⊥AB,∴AE=EB=100cm,在RT△OAE中OE2=OA2−AE2=r2−1002,在RT△OCE中,OE2=OC2−CE2=(r+32)2−1402,则r2−1002=(r+32)2−1402解得:r=134.故答案为:134.【点睛】本题考查垂径定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.【变式6-2】(2023春·九年级课时练习)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水面AB的宽度是( )cm.A.6B.C.D.【答案】C【分析】作OD ⊥AB 于C ,交小圆于D ,可得CD=2,AC=BC ,由AO 、BO 为半径,则OA=OD=4;然后运用勾股定理即可求得AC 的长,即可求得AB 的长.【详解】解:作OD ⊥AB 于C ,交小圆于D ,则CD=2,AC=BC ,∵OA=OD=4,CD=2,∴OC=2,∴∴AB=2AC=故答案为C.【点睛】本题考查的是垂径定理的应用及勾股定理,作出辅助线、构造出直角三角形是解答本题的关键.【变式6-3】(2023·浙江杭州·九年级)如图,两个同心圆的半径分别为2和4,矩形ABCD 的边AB 和CD 分别是两圆的弦,则矩形ABCD 面积的最大值是 .【答案】16【分析】过点O 作OP ⊥AB 于P 并反向延长交CD 于N ,作OM ⊥AD 于点M ,连接OA 、OD ,根据面积之间的关系得出S △AOD =12S 矩形APND =14S 矩形ABCD ,从而得出S 矩形ABCD 最大时,S △AOD 也最大,过点D 作AO 边上的高h ,根据垂线段最短可得h≤OD ,利用三角形的面积公式即可求出S △AOD 的最大值,从而求出结论.【详解】解:过点O 作OP ⊥AB 于P 并反向延长交CD 于N ,作OM ⊥AD 于点M ,连接OA 、OD∴AO=2,OD=4,四边形APND 和四边形PBCN 为矩形,PN ⊥CD ,∴OM=AP根据垂径定理可得:点P 和点N 分别为AB 和CD 的中点,∴S 矩形APND =12S 矩形ABCD∵△AOD 的高OM 等于矩形APND 的宽,△AOD 的底为矩形APND 的长∴S △AOD =12S 矩形APND =14S 矩形ABCD∴S 矩形ABCD 最大时,S △AOD 也最大过点D 作AO 边上的高h ,根据垂线段最短可得h≤OD (当且仅当OD ⊥OA 时,取等号)∴S △AOD =12AO·h≤12AO·OD=12×2×4=4故S △AOD 的最大值为4∴S 矩形ABCD 的最大值为4÷14=16故答案为:16.【点睛】此题考查的是垂径定理、各图形面积的关系和三角形面积的最值问题,掌握垂径定理、利用边的关系推导面积关系和垂线段最短是解决此题的关键.【题型7 垂径定理的实际应用】【例7】(2023·浙江温州·校联考二模)如图,是某隧道的入口,它的截面如图所示,是由APB 和直角∠ACB 围成,且点C 也在APB 所在的圆上,已知AC =4m ,隧道的最高点P 离路面BC 的距离DP =7m ,则该道路的路面宽BC = m ;在APB 上,离地面相同高度的两点E ,F 装有两排照明灯,若E 是AP 的中点,则这两排照明灯离地面的高度是m .【答案】【分析】先求得圆心的位置,根据垂径定理得到AM=CM=2,即可求得半径为5,根据勾股定理即可求得CD,进而求得BC,根据勾股定理求得PA,从而以及垂径定理求得PN,利用勾股定理求得ON,通过证得△EOK≅△OPN求得EK=ON,进一步即可求得EQ.【详解】作AC的垂直平分线OM,交PD于O,交AC于M,则O是圆心,连接OC,∴OD=MC=1AC=2,2∵PD=7,∴圆的半径为7−2=5,∴CD∴BC=2CD=连接PA、OE交于N,作AH⊥PD于H,EQ⊥BC于Q,∵PD=7,DH=AC=4,∴PH=7−4=3,∵AH=CD=∴PA==∵E是AP的中点,∴OE垂直平分PA,∴PN∴ON∵EQ∥PD,∴∠OEK=∠EOP,在△EOK和△OPN中,∠OEK=∠PON∠EKO=∠ONP=90°EO=PO,∴△EOK≅△OPN(AAS),∴EK=ON=∴EQ=EK+KQ+2,故答案为.【点睛】本题考查了垂径定理和勾股定理的应用,三角形全等的判定和性质,作出辅助线构建直角三角形是解题的关键.【变式7-1】(2023春·浙江嘉兴·九年级平湖市林埭中学校联考期中)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你用直尺和圆规补全这个输水管道的圆形截面(保留作图痕迹);(2)若这个输水管道有水部分的水面宽AB=8cm,水面最深地方的高度为2cm,求这个圆形截面的半径.【答案】(1)见解析(2)5cm【分析】(1)运用尺规作图的步骤和方法即可解答;(2)作OD⊥AB于D,并延长交⊙O于C,则D为AB的中点,则AD=4cm,设这个圆形截面的半径为x cm,在Rt△AOD中,运用勾股定理求出x即可.【详解】(1)如图所示;(2)作OD⊥AB于D,并延长交⊙O于C,则D为AB的中点,∵AB=8cm,AB=4cm.∴AD=12设这个圆形截面的半径为x cm,又∵CD=2cm,∴OD=(x−2)cm,在Rt△AOD中,∵OD2+AD2=OA2,即(x−2)2+42=x2,解得x=5cm.∴圆形截面的半径为5cm.【点睛】本题考查了垂经定理和勾股定理,根据题意画出图形和灵活应用勾股定理是解答本题的关键.【变式7-2】(2023春·河北邢台·九年级校联考期末)“筒车”是一种以水流作动力,取水灌田的工具.如图,“筒车”盛水筒的运行轨迹是以轴心O为圆心的圆,已知圆心O始终在水面上方.且当圆被水面截得的弦AB 为6米时,水面下盛水筒的最大深度为1米(即水面下方部分圆上一点距离水面的最大距离).(1)求该圆的半径;(2)若水面上涨导致圆被水面截得的弦AB从原来的6米变为8米时,则水面下盛水筒的最大深度为多少米?【答案】(1)5米(2)2米AB=3,DE=1,再由勾股定理【分析】(1)作OD⊥AB于点E,交⊙O于点D,由垂径定理可得AE=12即可求出圆的半径;AB=4米.在Rt△AOE中,由勾股定理可得,AE2+OE2=OA2,则OE=3米,(2)当AB=8米时,AE=12即可求出DE的长.【详解】(1)解:如图,作OD⊥AB于点E,交⊙O于点D.AB=3米,DE=1米.则AE=12设圆的半径为r米,在Rt△AOE中,AE2+OE2=OA2,∴32+(r−1)2=r2,解得r=5,∴该圆的半径为5米;AB=4米.(2)解:当AB=8米时,AE=12在Rt△AOE中,AE2+OE2=OA2,∴42+OE2=52,∴OE=3米,∴DE=5−3=2(米).答:水面下盛水筒的最大深度为2米.【点睛】本题考查垂径定理,熟练掌握垂径定理的定义并运用是解题的关键.【变式7-3】(2023·湖南·统考中考真题)问题情境:筒车是我国古代发明的一种水利灌溉工具,既经济又环保,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图①).假定在水流量稳定的情况下,筒车上的每一个盛水筒都按逆时针做匀速圆周运动,每旋转一周用时120秒.问题设置:把筒车抽象为一个半径为r的⊙O.如图②,OM始终垂直于水平面,设筒车半径为2米.当t=0时,某盛水筒恰好位于水面A处,此时∠AOM=30°,经过95秒后该盛水筒运动到点B处.(参考数据,≈1.414 1.732)问题解决:(1)求该盛水筒从A处逆时针旋转到B处时,∠BOM的度数;(2)求该盛水筒旋转至B处时,它到水面的距离.(结果精确到0.1米)【答案】(1)∠BOM=45°;(2)该盛水筒旋转至B处时,它到水面的距离为0.3米.【分析】(1)先求得该盛水筒的运动速度,再利用周角的定义即可求解;(2)作BC⊥OM于点C,在Rt△OAD中,利用含30度角的直角三角形的性质以及勾股定理求得OD的长,在Rt△OBC中,利用勾股定理求得OC的长,据此即可求解.【详解】(1)解:∵旋转一周用时120秒,=3°,∴每秒旋转360°120当经过95秒后该盛水筒运动到点B处时,∠AOB=360°−3°×95=75°,∵∠AOM=30°,∴∠BOM=75°−30°=45°;(2)解:作BC⊥OM于点C,设OM与水平面交于点D,则OD⊥AD,在Rt△OAD中,∠AOD=30°,OA=2,OA=1,OD=∴AD=12在Rt△OBC中,∠BOC=45°,OB=2,∴BC=OC=∴CD=OD−OC=≈0.3(米),答:该盛水筒旋转至B处时,它到水面的距离为0.3米.【点睛】本题考查了圆的性质,含30度角的直角三角形的性质以及勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.【题型8垂径定理在格点中的运用】【例8】(2023春·湖北武汉·九年级校联考期末)如图是由小正方形组成的7×6网格,每个小正方形的顶点叫做格点.仅用无刻度的直尺在给定网格中完成画图.(1)在图(1)中,A,B,C三点是格点,画经过这三点的圆的圆心O,并在该圆上画点D,使AD=BC;(2)在图(2)中,A,E,F三点是格点,⊙I经过点A.先过点F画AE的平行线交⊙I于M,N两点,再画弦MN的中点G.【答案】(1)见解析(2)见解析【分析】(1)首先根据网格的特点和圆的性质求得点D,然后根据矩形的对角线互相平分和圆的性质求得点O即可;(2)设AE与⊙I的交点为C,根据网格的特点和平行线的求得直线BF交⊙I于M,N两点,然后连接AN,CM 交于点D,连接DI并延长交MN与点G即可求解.【详解】(1)如图所示,连接AD,BC相交于点O,由网格可得,AD1=BC=3,由网格的特点可得,D2B∥AC∵点A,C,B,D2在同一个圆上∴AD2=BC=3∴点D1和D2即为所要求作的D点;∵∠DAB=∠ABC=∠BCD=90°∴四边形ABCD是矩形,∴OA=OB=OC=OD,∴点O即为经过A,B,C三点的圆的圆心,∴点O即为所求作的点;‘(2)如图所示,∵AC∥MN,点A,C,N,M在⊙I上∴AM=CN∴四边形AMNC是等腰梯形,。