共生固氮微生物
- 格式:ppt
- 大小:742.00 KB
- 文档页数:21
换兑市暧昧阳光实验学校高三生物生物固氮【本讲信息】一. 教学内容:生物固氮二. 学习内容:本周学生物固氮,掌握生物固氮的概念,固氮微生物的类群。
共生固氮菌根瘤的特点,自生固氮菌、圆褐固氮菌的特点。
了解生物固氮的原理。
过程。
掌握氮元素的循环过程,以及生物固氮的用。
掌握土壤自生,固氮菌的分离,理解原理,初步制作临时涂片的方法。
三. 学习:1. 固氮微生物的种类2. 生物固氮的基本过程3. 生物固氮的意义以及在农业生产上的用4. 掌握土壤自生固氮菌的分离原理四. 学习难点:1. 固氮微生物的种类(自生固氮菌,共生固氮菌)2. 生物固氮的基本过程3. 生物固氮的意义以及在农业生产上的用4. 掌握土壤自生固氮菌的分离五. 学习过程(一)固氮类型固氮:将空气中的氮分子转化成氮化合物的过程生物固氮:固氮微生物将空气中的还原成氨的过程高能固氮:雷电(形成氮的氧化物)固氮化能固氮:工业合成氨(高温、高压、催化剂)生物固氮:固氮微生物作用每年生物固氮的总量占地球上固氮总量的90%左右。
生物固氮在氮循环中起重要作用。
(二)固氮微生物的种类1. 固氮微生物都是原核微生物,目前共发现100多种。
主要有:根瘤菌、蓝藻、放线菌2. 类型:(1)共生固氮微生物指与绿色植物互利共生时才能固氮的微生物如:根瘤菌——与豆科植物互利共生弗兰克氏放线菌——与桤木属、杨梅属、沙棘属植物共生蓝藻——与红萍水生蕨类或罗汉松裸子植物共生,地衣即是。
根瘤菌:在土壤中分布广泛,其固的氮素占自然界生物固氮的绝大形状:棒槌型、T型、Y型代谢类型:需氧异养细菌,原核生物特点:①只有在侵入到豆科植物的根内才能固氮②不同的根瘤菌各自只能侵入特种类的豆科植物③根瘤菌与豆科植物互利共生根瘤形成:①豆科植物幼苗长出后,相的根瘤菌就侵入到根内②根瘤菌在根内不断繁殖③刺激根内薄壁细胞分裂,该处组织膨大形成根瘤重要意义:豆科植物从根瘤中获得的氮素占所需氮素的30%到80%(2)自生固氮微生物指在土壤中能够进行固氮的微生物,如:圆褐固氮菌圆褐固氮菌:异养需氧原核生物(细菌)结构特点:①大多是杆菌或短杆菌②通常是单生或对生生活(显微镜下观察呈8字型)③细菌外层有一层荚膜功能特点:①异养需氧生活②能固氮,固氮能力较强(能在无氮培养基中生长)③能分泌生长素(促进植株生长和果实发育)生产用:常制作成菌剂,投入到土壤中,提高农作物的产量①作用对象:小麦,水稻,棉花,玉米②主要菌种:圆褐固氮菌,棕色固氮菌③施用方式:a. 基施以基肥的形式使用b. 追施追加在作物的根部,覆盖土壤c. 拌种阴凉处晾干后使用④增产效果:单纯使用菌剂不能满足农作物对氮营养的需要,只能是一种补充措施菌落特点:①色土褐色②表面光滑呈黏稠状(具有荚膜)③形状不规则(通常具有菌毛,具运动能力)(3)固氮微生物(高中了解内容)必须生活在根际、叶面或动物的肠道处才能固氮的微生物如:雀稗固氮菌、固氮螺菌——生活在玉米、雀稗、水稻和甘蔗植物根内的皮层细胞间特点:具有一的专一性,但不形成根瘤那种特殊结构可以进行自行固氮,介于自生固氮和共生固氮之间(三)生物固氮过程:1. 生物固氮是在细胞内的固氮酶的催化下进行的,不同固氮微生物的固氮酶的催化作用基本相同2. 基本过程:(1)将N2还原成NH3,将C2H2还原成C2H4(2)需要e和H+(来自植物体内的化学反)(3)需要ATP提供能量是一个释能过程3. 固氮酶:有两种蛋白质组成,只有两种蛋白质同时存在时才能起固氮作用(1)两种蛋白质分别是:含铁的蛋白质——铁蛋白;含有铁和钼的蛋白质——钼铁蛋白(2)电子先传递给铁蛋白,然后传递给钼铁蛋白,最终被2N或22HC接受(3)ATP一要与Mg结合,形成Mg—ATP复合物才能起作用(4)具有底物多样性(四)生物固氮的意义:1. 植物吸收土壤中的氨盐和硝酸盐,在体内将无机氮转化为有机氮2. 动物直接或间接以植物为食,同化形成动物有机氮3. 动植物有机氮被微生物分解成氨——氨化作用4. 氨或氨盐在硝化细菌的作用下最终氧化成硝酸盐——硝化作用5. 硝酸盐被反硝化细菌还原成亚硝酸盐,进一步形成分子态氮返回大气——反硝化作用意义:没有以生物固氮为主的固氮作用,大气中的分子态氮就不能被植物吸收利用。
共生固氮和联合固氮的名词解释
共生固氮:微生物与植物紧密生活在一起,由固氮微生物进行固氮,微生物在与植物共生状态下直接将大气中分子态氮转化成化合态氮。
联合固氮:自然界只有某些微生物能直接将大气中的氮通过固氮酶还原成NH4+,这类微生物包括细菌、蓝绿藻、放线菌等。
在固氮的细菌中有一类属于自由生活的类群,它们定殖于植物根表(有的能侵入根表皮和外皮层的细胞间隙)和近根土壤中,靠根系分泌物生存,繁延,与植物根系有密切的关系。
但宿主植物并不形成特异分化的结构。
植物与细菌之间的这种共生关系称联合共生固氮。
这类固氮菌称联合固氮菌。
高二生物生物固氮试题1.下列生物肯定不能固氮的是()A.硝化细菌B.某些蓝藻C.圆褐固氮菌D.根瘤菌【答案】A【解析】固氮微生物指把大气中的氮气转化为含氮化合物的微生物,种类很多,分为自生和共生固氮微生物。
前者独立存在于土壤之中,如圆褐固氮菌,蓝藻;后者与高等植物等共生时才能固氮,如根瘤菌,固定的氮素除供自身生长发育外,部分以无机状态或简单的有机氮化物分泌于体外,供植物吸收利用。
硝化细菌是利用NH3氧化分解释放的能量,将CO2和H2O合成有机物,释放O2。
【考点】本题考查固氮微生物的有关知识,意在考查考生理解所学知识的要点,把握知识间的内在联系的能力。
2.生物固氮中的固氮酶是由下列哪两个亚基组成。
A.Mo-Fe蛋白,Fe蛋白B.Fe-S蛋白,FdC.Mo-Fe蛋白,CytcD.Cytc,Fd【答案】A【解析】固氮酶由钼铁蛋白、铁蛋白组成,这两种蛋白结合在一起,才能起作用,一旦被O2氧化,就无法固氮,故生物固氮在厌氧条件下进行;故选A。
【考点】固氮酶。
点评:本题相对简单,属识记内容。
3.下列关于根瘤菌结构和功能特征的表达中,正确的是A.原核、异养、共生固氮B.真核、自养、共生固氮C.原核、异养、自生固氮D.真核、自养、自生固氮【答案】A【解析】本题考查了根瘤菌结构和功能的相关知识。
与豆科植物共生,形成根瘤并固定空气中的氮气供植物营养的一类杆状细菌。
能促使植物异常增生的一类革兰氏染色阴性需氧杆菌。
在根瘤内,根瘤菌从豆科植物根的皮层细胞中吸取碳水化合物、矿质盐类及水分。
以进行生长和繁殖。
同时它们又把空气中游离的氮通过固氮作用固定下来,转变为植物所能利用的含氮化合物,供植物生活所需。
这样,根瘤菌与根便构成了互相依赖的共生关系。
故选A。
4.下列关于固氮微生物叙述错误的是()A.固氮微生物有自生的,有共生的B.固氮微生物有自养的,有异养的C.固氮微生物有的是分解者,有的是消费者D.共生固氮微生物只有和相应的生物共生才能生存【答案】D【解析】略5.圆褐固氮菌除了具有固氮能力外,还能A.产生生长素,进行激素调节B.促进植物花粉发育和受精C.产生生长素,是其生命不可缺少的物质D.促进植物生长和果实发育【答案】D【解析】略6.下列关于生物固氮和碳循环的有关叙述,正确的是A.用圆褐固氮菌的浸出液涂抹扦插枝条基部,枝条容易生根B.生物固氮是通过固氮微生物,把大气中的N转化为硝酸盐的过程2C.根瘤菌是是异养需氧型生物,在土壤中能够独立固氮D.反硝化细菌在有氧的条件下能够将硝酸盐最终转化为N2【答案】A【解析】略7.下列关于生物固氮和固氮微生物不正确的是()①根瘤菌的固氮量与其侵入植物的生长状况无关②圆褐固氮菌固定的氮可直接被植物吸收利用③生物固氮过程就是通过固氮微生物,把大气中的氮气转化为氨④根瘤菌是共生固氮菌,独立存在时不能生存⑤根瘤菌的固氮基因编码区内的外显子的数量比内含子多⑥大豆种子用其破碎的根瘤进行拌种,可以提高豆科植物的产量A.③⑥B.④C.③④D.①②④⑤【答案】A【解析】略8.有关氮循环中微生物代谢类型、相关生理过程及生态地位全部正确的一组是()【答案】A【解析】略9.下面是关于氮被生物吸收途径的叙述,其中正确的是()①氮在大气中的体积分数高达78%,但不能被植物直接利用②通过高能固氮,可将空气中游离的氮转化为硝酸盐或氨,从而被植物以自由扩散方式吸收③所有豆科植物都具有生物固氮作用,其根部的根瘤菌可将氮气转变成硝酸盐,被植物吸收④动物以植物为食而获得氮,并转化为动物蛋白等含氮有机物⑤动植物死亡后,遗骸中的含氮有机物被微生物分解成NH3、NO-后,能被植物再次利用3A.①④⑤B.③⑤C.②③D.②③⑤【答案】A【解析】略10.如图表示的是生态系统中的氮循环示意图。
微生物在固定氮中的作用及其调控机制氮是生命的基本元素之一,是构成生物体的核酸、蛋白质等必需元素。
然而,在自然界中,氮的存在形式主要是空气中的氮气(N2),这种形式的氮却不能直接被植物吸收利用,因为固氮的反应需要高能量的化学键的断裂。
然而,在自然界中一些微生物能够利用高级别的氮化合物为能源,将空气中的氮转化成小分子低能级的氮化合物,从而实现对氮的固定。
这种过程称为生物固氮,也被认为是生态系统中最重要的氮素转化途径之一。
一、微生物固氮的类型固氮的微生物主要包括自由生活的和共生生活的两类,其中,大多数自由生活的固氮微生物属于泛菌门的一种,称为氢化菌(Hydrogenobacter)和蓝藻(Anabaena)。
1. 自由生活的微生物固氮自由生活的微生物固氮是指能独立生存,在土壤、水体等环境中自由活动并能进行固氮的微生物。
其中,最常见的是一些泛菌门的微生物,包括许多细菌属,如Azotobacter、Azospirillum、Klebsiella、Pseudomonas等,其中,Azotobacter和Azospirillum是目前应用较广的固氮微生物。
对于这类微生物,为了增加自身的固氮量,一些根据渗透压、营养要求不同的固氮微生物会发生栖息的现象,形成根结菌留在植物根系上,这时的微生物被称为共生生物。
2. 共生微生物固氮共生微生物固氮即多种微生物(一般为革兰氏气单胞菌与根瘤菌)与植物共生,形成定殖在植物根系中的根瘤菌。
根瘤菌通过有氧呼吸供植物能量,同时通过固氮向植物提供生长所需的氮。
广义上说,共生微生物固氮包括具有根瘤菌能力或寄生植物的微生物。
其中,根瘤菌是利用植物根部平面细胞中“受原体”抗体结构与植物根细胞接合后进入植物体内异化并生长发育具有固氮能力的一类菌群。
二、微生物固氮的作用与意义1. 微生物对植物固氮的帮助植物只有在植物根系中生存的共生根瘤菌的固氮作用下才能生长和繁殖。
微生物不仅利用可以耐受固氮的植物成分,而且利用解毒酶诱导因子固氮。
生物固氮一. 教学内容:生物固氮二. 学习内容:本周复习生物固氮,本周内容在高考有涉及,新课程中将固氮的基本原理降低层次,内容不多,但作为高考全面备考思想,还是希望能对此内容能加深理解,同时本周再次将重点内容光合作用做次复习,巩固知识。
三. 学习重点:1. 光合作用的能量转换过程,有机物的生成,提高光合作用的效率2. 生物固氮,固氮微生物,氮循环四. 学习难点:1. 生物固氮五.五.复习过程:(一)固氮类型固氮:将空气中的氮分子转化成氮化合物的过程生物固氮:固氮微生物将空气中的还原成氨的过程每年生物固氮的总量占地球上固氮总量的90%左右,生物固氮在氮循环中起重要作用。
(二)固氮微生物的种类1. 固氮微生物都是原核微生物,目前共发现100多种。
主要有:根瘤菌、蓝藻、放线菌2. 类型:(1)共生固氮微生物指与绿色植物互利共生时才能固氮的微生物如:根瘤菌——与豆科植物互利共生弗兰克氏放线菌——与桤木属、杨梅属、沙棘属等植物共生蓝藻——与红萍等水生蕨类或罗汉松等裸子植物共生,地衣即是。
根瘤菌:在土壤中分布广泛,其固定的氮素占自然界生物固氮的绝大部分形状:棒槌型、T型、Y型代谢类型:需氧异养细菌,原核生物特点:①只有在侵入到豆科植物的根内才能固氮②不同的根瘤菌各自只能侵入特定种类的豆科植物③根瘤菌与豆科植物互利共生根瘤形成:①豆科植物幼苗长出后,相应的根瘤菌就侵入到根内②根瘤菌在根内不断繁殖③刺激根内薄壁细胞分裂,该处组织膨大形成根瘤重要意义:豆科植物从根瘤中获得的氮素占所需氮素的30%到80%(2)自生固氮微生物指在土壤中能够独立进行固氮的微生物,如:圆褐固氮菌圆褐固氮菌:异养需氧原核生物(细菌)结构特点:①大多是杆菌或短杆菌②通常是单生或对生生活(显微镜下观察呈8字型)③细菌外层有一层荚膜功能特点:①异养需氧生活②能独立固氮,固氮能力较强(能在无氮培养基中生长)③能分泌生长素(促进植株生长和果实发育)(三)生物固氮的意义:1. 植物吸收土壤中的氨盐和硝酸盐,在体内将无机氮转化为有机氮2. 动物直接或间接以植物为食,同化形成动物有机氮3. 动植物有机氮被微生物分解成氨——氨化作用4. 氨或氨盐在硝化细菌的作用下最终氧化成硝酸盐----硝化作用5. 硝酸盐被反硝化细菌等还原成亚硝酸盐,进一步形成分子态氮返回大气——反硝化作用意义:没有以生物固氮为主的固氮作用,大气中的分子态氮就不能被植物吸收利用。
固氮微生物的类型
固氮是指将大气中的氮气转化为可供植物利用的氨态氮的过程。
而固氮微生物是指能够通过固氮作用将氮气还原为氨态氮的微生物。
这些微生物可以在土壤中或与植物共生的根瘤中发挥作用,为植物提供氮源,促进植物的生长和发育。
固氮微生物的类型非常多样,包括细菌、真菌和蓝藻等。
在这些微生物中,细菌是最为常见和重要的固氮微生物。
以下是一些常见的固氮微生物类型:
1.根瘤菌:根瘤菌是一类与豆科植物共生的细菌。
它们能够与植物根部形成根瘤,通过与植物根瘤细胞的共生关系来固氮。
根瘤菌主要包括红豆根瘤菌、白豆根瘤菌等。
2.自由生活固氮细菌:这些细菌不与特定的植物共生,而是自由地生活在土壤中。
它们具有固氮能力,可以将氮气转化为可供植物利用的氨态氮。
常见的自由生活固氮细菌包括蓝细菌和革兰氏阴性细菌。
3.其他共生固氮微生物:除了根瘤菌外,还有其他一些微生物可以与植物共生来进行固氮。
例如,青苔和蕨类植物与一些固氮细菌共生,形成固氮团块,为植物提供氮源。
固氮微生物的类型不仅多样,而且在不同环境和植物种类中也存在差异。
不同类型的固氮微生物对不同植物的固氮效果也不同。
因此,在实际应用中,选择适合特定植物和土壤条件的固氮微生物非常重要。
总结起来,固氮微生物的类型包括根瘤菌、自由生活固氮细菌以及其他共生固氮微生物。
它们通过将氮气转化为植物可利用的氨态氮来促进植物的生长和发育。
了解不同类型的固氮微生物及其特点,有助于选择适合特定环境和植物需求的固氮微生物来改善植物的氮素供应。
生物固氮概念、类型、复合物及机制、所需条件、前景等几方面来写,重在谈复合物及机制生物固氮摘要具有生物固氮能力的仅限于原核生物,即细菌和蓝绿藻。
通过对生物固氮机制、生物固氮微生物与生物固氮微生物和植物之间的关系的研究,将生物固氮作用应用于农业定将在增加作物氮源供应、培肥地力、减少化肥用量、提高作物产量,以及促进农业生产的持续发展和环境保护方面发挥其效力。
关键词生物固氮种类和特点固氮机制应用近20年来,生物固氮研究异常活跃,已成为世界范围的重要课题。
纵观当前生物固氮研究的内容,大致有以下三个方面,即固氮资源的有效利用,固氮的遗传工程和化学模拟固氮。
在固氮资源的有效利用方面,许多国家都在大力发展豆科作物,通过其有效的共生固氮体系,增加生物氮源,改善土壤肥力,以促进农业增产。
此外,接种根瘤菌提高豆科作物产量已在全世界范围内使用。
在稻田里接种和放养红萍和固氮蓝藻,既能增加土壤中生物氮数量,又能提高水稻的产量。
这种共生固氮途径的有效利用,在我国和东南亚一些国家已有悠久的历史。
随着分子生物学的进展,固氮的遗传工程受到了广泛重视,已成为目前最活跃的研究领域。
1 生物固氮概念1.1 生物固氮是指固氮微生物将大气中的氮气还原成氨的过程。
固氮生物都属于个体微小的原核生物,所以,固氮生物又叫做固氮微生物。
2 生物固氮的种类和特点固氮微生物多种多样,不同的划分标准满足了不同的要求。
从它们的生物固氮形式来分,有自生固氮、联合固氮、和共生固氮3种。
2.1 自生固氮微生物自生固氮微生物是指能够在自由生活状态下固氮的微生物总称。
在自然界,自生固氮微生物种类很多,分散地分布在细菌和蓝细菌的不同科、属和不同的生理群中;并大致可以分为光合细菌和非光合细菌两类。
前者如红螺菌、红硫细菌和绿硫细菌等,其中的某些种类可与其它微生物联合而相互有利;后者的种类很多。
根据非光合细菌的自生固氮菌对氧的需求,可以分为厌氧的细菌如梭状芽胞杆菌;需氧细菌如自生固氮菌、贝捷林克氏固氮菌、固氮螺菌等;以及兼性细菌如多粘芽胞杆菌、克鲁伯氏杆菌、肠杆菌等。
高三生物提高农作物的光合作用效率第二节生物固氮知识精讲一. 本周教学内容:提高农作物的光合作用效率第二节 生物固氮二. 学习重点:1. 掌握光强和二氧化碳的浓度对光合作用的影响。
2. 了解N 、P 、K 、Mg 等矿质元素在光合作用中作用。
3. 了解固氮微生物的种类,及生物固氮的意义。
三. 学习过程:提高农作物的光合作用效率提高农作物产量的重要条件之一,是提高农作物对光能的利用率。
主要措施⎪⎩⎪⎨⎧效率提高农作物的光合作用增加光合作用面积延长光合作用时间 光合作用效率:是指绿色植物通过光合作用制造的有机物中所含有的能量,与光合作用中吸收的光能的比值。
那么,怎样才能提高农作物的光合作用效率呢?(一)光照强弱的控制光照是光合作用的条件之一,直接影响农作物光合作用效率的提高。
但是,不同的农作物,对光照强弱的需求不同,可分为阳生植物和阴生植物。
阳生植物:只有强的光照才能生长发育良好,才能提高光合作用效率,如水稻、玉米、向日葵等,应当种植在阳光充裕的地方。
阴生植物:进行光合作用时不需要太强的光照,太强的光照不利于生长发育,也就不利于提高光合作用效率。
如胡椒、人参、三七等应当种植在荫蔽的地方。
提问:请绘制光照强度与光合作用强度的关系曲线?(注意区别阳生植物和阴生植物)(二)二氧化碳的供应科学家通过研究绿色植物周围空气中二氧化碳浓度与光合作用强弱的关系:⎪⎩⎪⎨⎧浓度的提高而增强随,光合作用的强度不再浓度提高到一定程度时当逐渐增强浓度的提高,光合作用随着有机物,而且还要消耗体内的物不仅不能制造有机物的浓度很低时,绿色植2222CO CO CO CO 提问:请绘制CO 2浓度与光合作用强度的关系曲线?(注意区别C 3植物和C 4植物) 显然在一定程度上增加二氧化碳的浓度,可以提高农作物的光合作用效率。
⎪⎩⎪⎨⎧使用二氧化碳发生器增施农家肥料通风透光浓度的措施提高2CO(三)必需矿质元素的供应绿色植物进行光合作用时,需要多种必需的矿质元素。
生物固氮的研究进展一、本文概述生物固氮,指的是生物体(特别是某些微生物)在无氧或低氧条件下,将大气中的氮气(N₂)转化为氨(NH₃)或其他含氮化合物的过程。
这一过程对于全球氮循环和生物圈的氮素供应具有至关重要的作用。
本文旨在概述生物固氮的研究进展,包括固氮微生物的种类与特性、固氮机制、固氮效率的提高方法,以及生物固氮在农业、环保和工业生产等领域的应用前景。
我们将重点介绍近年来在分子生物学、基因工程和生物技术等方面的新发现和新进展,以期为推动生物固氮的深入研究和实际应用提供参考。
二、生物固氮的微生物学基础生物固氮,又称生物氮固定,是指某些微生物在常温常压下,将大气中的氮气(N₂)转化为氨(NH₃)或其它含氮化合物的过程。
这一生物过程在地球氮循环中起着至关重要的作用,为许多生态系统和农作物提供了必要的氮源。
生物固氮的微生物主要包括两大类:自生固氮菌和共生固氮菌。
自生固氮菌,如圆褐固氮菌,能够在无植物存在的情况下独立进行固氮作用。
而共生固氮菌,如根瘤菌,必须与植物形成共生关系,在植物根部形成根瘤结构,才能有效固氮。
固氮过程的核心是固氮酶的作用。
固氮酶是一种由铁蛋白和钼铁蛋白组成的复合酶,能够在ATP的供能下,将N₂还原为NH₃。
这一过程中,铁蛋白起到传递电子的作用,而钼铁蛋白则是固氮反应的催化中心。
固氮微生物具有独特的生理生态特性,以适应其在各种环境条件下的固氮生活。
例如,它们能够分泌多种胞外酶,分解有机物质以获取能量和营养;同时,它们还能够形成特殊的细胞结构,如根瘤,以提高固氮效率。
固氮效率受到多种因素的影响,包括环境因素(如温度、湿度、光照等)、土壤条件(如pH值、有机质含量等)以及微生物自身的遗传特性。
因此,在农业生产中,通过调控这些因素,可以有效提高生物固氮的效率和效果。
随着分子生物学和基因工程技术的快速发展,对固氮微生物的遗传机制和固氮酶的作用机制有了更深入的了解。
这为通过基因工程手段改良固氮微生物、提高其固氮效率提供了可能。