冷轧卷取机和开卷机张力控制
- 格式:pdf
- 大小:195.96 KB
- 文档页数:4
浅谈冷轧机电气控制中的张力控制摘要:经济在不断的发展,社会在不断的进步,在卷材卷取与开卷的时候,随着卷径的变化,其张力也将随之发生变化,为冷轧机的正常运行造成不利影响。
本文主要阐述了冷轧机生产过程中张力波动的影响因素,以及张力控制的基本原理和张力的基本概念等,希望通过本文的研究为冷轧机生产过程中的张力控制提供有益的借鉴。
关键词:冷轧机;电气控制;张力控制引言20世纪90年代以后,我国铜加工企业陆续从国外引进了一些现代化铜板带轧机。
在消化、吸收国外先进技术的基础上,我国近年来也自行开发研制了一批新型高精度轧机,大大提升了我国铜板带生产的装备水平。
本文介绍我院为某铜加工厂设计制造的560~可逆铜带冷轧机电气控制系统的原理和系统组成。
1张力在轧制过程中的作用张力是指轧机的前后卷筒给带材拉紧的力,或者机架之间相互作用使带材承受的拉力。
以前张力为例,卷筒的外缘线速度只有大于带材的出辊速度,也就是速度之差大于零,才能建立前张力。
在轧制过程中,张力有如下作用:(1)能降低单位压力,调整主电机的负荷。
张力的作用使变形区的应力状态发生了变化,减少了纵向的压应力,从而使轧制时金属的变形抗力减少,降低了轧制压力,减少轧制时的能耗。
前张力使轧制力矩减少,后张力使轧制力矩增加,当前张力大于后张力时,能减轻主电机的负荷、增大道次的加工率。
(2)调节张力可控制带材厚度。
由弹跳方程H=S+P/K(其中,H为轧出厚度,mm;S为轧辊辊缝,mm;P为轧制压力,kg;K为刚度系数,kg/mm)可知,用改变张力大小的方法来改变轧制压力,可使轧出的厚度发生变化。
(3)调整张力可控制板形。
改变张力能够改变轧制力,压力的变化影响到轧辊的弹性弯曲,从而改变了辊缝的形状。
此外,改变张应力沿带材宽向的分布,使金属沿横向的延伸均匀,从而获得良好的板形。
(4)防止带材跑偏,保证轧制稳定。
在张力作用下,配合对中系统将有效防止带材跑偏。
(5)防止出现断带、堆料等现象。
卷取(开卷)机的恒张力控制
潘德全
【期刊名称】《武钢技术》
【年(卷),期】1990()11
【摘要】卷取(开卷)机主要是恒张力调节,其控制方案主要有两种:一是卷取机的电流电势调节复合张力控制系统,卷取机电机的磁通必须正比于卷径的变化。
这一系统也叫与卷径相关的弱磁控制。
二是力矩调节的恒张力控制,它的基本原理是在基速以上,电机全压调磁,在基速以下,电机满磁调压。
这一系统又叫与反电势(EMK)相关的弱磁控制。
本文通过冷轧厂最新引进的HC轧机中卷取的LOGDYN系列组件的控制方案,对两种恒张力卷取(开卷)的原理作一介绍。
【总页数】6页(P24-29)
【关键词】卷取机;恒张力;控制
【作者】潘德全
【作者单位】冷轧厂
【正文语种】中文
【中图分类】TG333.24
【相关文献】
1.卷取机恒张力控制方法与应用 [J], 莫一
2.T400工艺板在开卷机和卷取机恒张力控制中的应用 [J], 陈戈;乔聪明
3.卷取机与开卷机张力控制系统 [J], 张再辉;刘贵汉
4.基于矢量控制变频器的卷取机恒张力控制系统设计 [J], 金仁才;童有红
5.基于重卷机组的开卷取恒张力控制系统 [J], 付中奇;王胜勇
因版权原因,仅展示原文概要,查看原文内容请购买。
冷轧后带钢处理线卷取张力控制杨光(迁安市思文科德薄板科技有限公司,河北064400)内容摘要:主要介绍了在冷轧后带钢处理线卷取作业中张力控制系统的原理及应用,适用于脱脂、连续退火线、重卷、镀锌、镀锡等机组。
关键字:张力控制、带钢处理线Coiling tension control of strip steel after cold rollingYang guang(Qian'an City SWKD Co. Ltd. cod sheet,hebei 064400,China)Content summary: mainly introduces the principle and application of tension control system in coiling process of cold rolledstrip,Apply to degreasing, continuous annealing line, heavy coil,zinc plating, tin plating and other units.Keywords: tension control, strip processing line引言:目前就轧后带钢处理线卷取方式多采用张力控制,较之速度控制系统,张力控制系统能保证产品质量及工艺的连贯性,所以张力控制系统开发的是否完善,不仅会影响到机组工艺的连贯性,还会导致产线产品质量出现问题,因此张力控制系统是否完善也成为了机组自动化开发维护人员值得研究的课题。
我公司现阶段除已建成一条80万吨酸连轧机组外,还有电解脱脂、罩式退火炉、平整机组及电镀锡机组,近期的产品升级改造项目——连续热镀铝锌项目也将于年底投入生产,这其中除了罩式退火炉外,其他机组卷取均采用间接张力控制系统。
而对于因卷取张力控制不完善造成的问题也是本文研究的主要课题。
一、张力控制系统概述张力控制系统在控制方式上分为直接张力控制和间接张力控制,在工艺控制上分为恒张力控制和非恒张力控制。
冷轧连续镀锌机组带钢张力控制算法研究摘要:张力是工业生产过程中的重要参数。
在带钢连续镀锌过程中,带钢张力的波动是造成带钢产品质量下降及制约连续镀锌机组高速运行的重要原因。
关键词:冷轧,张力控制。
Strip Tension Control in Continuous Galvanizing Process Abstract: Tension is the importance parameter for the industrial production. In continuous galvanizing process, strip tension is an important factor that decides whether the continuous galvanizing line works steadily and promptly or not.Key words: cold-rolling, tension control引言连续镀锌机组是生产高质量冷轧带钢的关键设备,带钢在该机组中进行再结晶退火处理,以完善带钢的微观组织,提高带钢的塑性和冲压成形性。
经过镀锌的带钢防腐性能大大提高。
带钢具有合适的张力是带钢高速运行及防止带钢跑偏和热瓢曲,获得良好带钢板形的重要条件之一。
张力的波动不仅会影响带钢产品的质量,严重时会导致带钢断带,造成连续镀锌机组停产。
镀锌机组一旦停产,将会产生废品和协议品。
因此,掌握带钢张力的动态特性,保证带钢在连续镀锌过程中具有合适、稳定的张力,是提高带钢产品质量和产量的重要手段。
连续镀锌机组工艺过程十分复杂,设备众多,自动化控制系统所涉及的范围非常广泛,但控制方法和应用的理论并不像冷连轧机那样复杂。
各个工艺段存在共同的自动化控制功能,分别为:物料跟踪功能,带钢速度控制,带钢张力控制,设备的顺序动作控制,急停连锁控制;数据采集与处理,二级数据库管理,炉区数学模型控制,气刀测厚镀层控制。
2800mm冷轧机速度、张力控制卷取机轧机开卷机一、冷轧机工艺参数:1,来料规格厚度:≤7.5mm宽度:1200~2650mm入口张力(KN):180/9(低速)---96/4.8(高速)带材外径:φ2800mm(最大)最大卷重:30000kg2,成品规格厚度:0.15 ~6.0mm宽度:1200~2650mm出口张力(KN):180/9(低速)---96/4.8(高速)带卷内径:φ610mm/φ665mm带卷外径:φ2800mm(最大)钢套筒规格:φ605/φ665×(2350)2900mm最大轧制力:3000t(30MN)轧制速度:0-1500 m/min工作辊辊径mm:φ450~490二、主传动参数:1,开卷机电机:电机类型:交流同步电动机,凸极式电机型号:AMZ 0710MR06 LSB极数: 6极额定输出功率:2205KW电压:3130V电流:416-422A转速:0-339-1500RPM频率:19.5-75HZ转矩:54-14KN-m减速比:4.09/2.2励磁电流:196-160A励磁电压:107-87V2,机架主电机电机类型:交流同步电动机,凸极式电机型号:AMZ 0900XV06 LSB极数:6极额定输出功率::6500KW电压:3150V电流:1212-1225A转速:0-438-1300RPM频率:21.9-65HZ转矩:142-48KN-m减速比2.279/1.225励磁电流295-256A励磁电压:135-118V3,卷取机电机:电机类型:交流同步电动机,凸极式电机型号:AMZ 0710LU06 LSB极数:6极输出功率:2920KW电压:3150V电流547-554A转速:392-1500RPM频率19.6-75HZ转速71-19KN-m减速比3.12/1.826励磁电流198-167A三,交流同步电动机介绍1,概括:1902年,瑞典工程师丹尼尔森利用特斯拉感应电动机的旋转磁场观念,发明了交流同步电动机。
冷轧连退机组张力控制探索【摘要】冷轧连退机组生产过程中张力控制决定最终的产品质量与合格率。
为了提升冷轧连退机组自动化控制效率,优化生产资源结构,借助新型设备对整个生产线张力进行调整,这对于优化整个连退机组生产线自动化控制以及PLC及变频器补偿设计都具有非常重要的作用。
目前,我公司冷轧连退生产线自动化程度高,在整个带钢退火过程中,张力控制通过对生产线西门子PLC与变频器传递控制信号,利用张力辊组和开卷机、卷取机、出入口后套建立张力控制模型,本文对冷轧连退机组张力进行分析,从而加深了张力控制对生产稳定运行重要性的意义。
【关键词】连退机组;张力控制;转矩;张力辊组1引言冷轧连退机组生产线自动化程度高,在生产过程中,由于张力的存在,所以保证了带钢在连续运转过程中不跑偏,张力控制对生产线起着至关重要的作用。
张力数据的调整与设置是生产中重要的数据,一般张力数据采用脉络调整,依靠入口开卷机、出口卷曲机、生产线张力辊组、出入口活套建立完成[1]。
2连退机组主要设备组成及主要工艺流程连退机组生产线按工艺流程大致包括以下内容:开卷机、焊机、入口活套、清洗段、连退炉、平整机、拉矫机,耐指纹机、圆盘剪、涂油机、分切剪、卷曲机。
在整条生产线上还分布着8组张力辊组,其构成见图1。
冷轧连退生产线开卷机按照一定的速度控制要求,将两卷带钢的带头与带尾焊接在一起。
整条生产线张力控制,通过8组张力辊完成。
同时,参与张力控制的还包括出口和入口、活套检查站、平整机[2]。
在该连退生产线前期进行清洗处理,分为碱清洗、电解清洗和热水漂洗,对冷轧带钢的表面清洗与净化。
带钢经过入口活套进入,连退炉,对带钢完成热处理,改变了带钢内部的晶格结构,从而完成对带钢硬度的处理,退火后的带钢经过出口活套和平整理,对整个带钢表面的质量进行深加工处理,然后经过圆盘点修正边部完成最后的产品。
3连退机组张力控制分析3.1PLC系统张力闭环控制流程分析根据生产带钢的品种、宽度、厚度不同权限的张力参数要不断地进行优化。
环球市场/施工技术-170-冷轧薄板生产中带钢张力的控制研究及应用齐 乐河北省唐山市唐钢冷轧部摘要:当前冷轧生产中的带钢张力问题已经越来越引起重视,带钢及轧制张力的控制好坏对薄板产品的板型、表面质量、尺寸精度、力学性能都起到了至关重要的作用。
随着国际冷轧设备技术的发展和进步,我国在高精度轧制技术方面做了大量的研究开发,冷轧薄板工艺设备水平大幅提升,但是冷轧生产中带钢张力的控制技术还需要进一步加强研究。
基于此本文分析了冷轧薄板生中带钢张力的控制。
关键词:冷轧薄板;带钢张力;控制1、概述现代钢铁工业向着多品种,高质量,深加工,清洁生产的方向发展。
随着市场对板材,尤其是薄板宽板需求的增加,轧钢产品对品种质量的要求越来越高。
现代轧钢机都安装了板材自动厚度控制(AGC),自动张力控制(ATC)以及板形检测与控制等自动化系统。
轧机装备水平的提高对传动系统提出了高精度和高动态性能的技术要求。
为了适应现代轧钢工业的发展,我国钢铁企业轧机在近期都进行了大规模电气自动化系统的技术更新改造。
从生产的情况来看,炼出的钢有很大一部分要轧制成板带钢,冷轧薄板成品板一般厚度范围在0.3~3mm,宽度多为1250mm、1500mm,可以直接外销,也可以进一步深加工,如退火、镀锌、彩涂等,好的最终产品可以做家电板、汽车板等,前景广阔,因此进一步加强对其的研究非常有必要。
2、冷轧薄板生产中带钢张力的控制的意义在带钢冷连轧生产过程中,由于开卷、卷曲机与主机以及主轧机之间存在速度偏差而产生了带钢张力。
张力轧制是冷连轧生产的一个重要特点。
机架间带钢所受的张力分为前张力和后张力两种。
作用方向与轧制方向相同的张力叫做“前张力”,而作用方向与轧制方向相反者则称之为“后张力”。
张力在冷连轧生产中的作用主要体现在以下几个方面。
(1)稳定轧制过程,防止轧件跑偏;在轧制过程中,若轧件出现不均匀延伸,则沿轧件宽度方向上的张力分布将会发生相应的变化,及延伸较大的一侧张力减少,否则反之。
一、冷连轧机的工作原理四机架冷连轧机的机械组成是由开卷机、四个连轧机架、卷取机等组成。
轧钢的轧制分穿带、建张、正常轧制和出钢四个阶段。
带钢经过开卷机后经酸洗、水洗到达第一机架,第一机架轧辊的带动电机通过电动使带钢穿过,依此法使带钢穿过二、三、四机架到卷取机,卷取机咬住带钢后,穿带结束。
在张力闭环控制投入之前,通过手动调节开卷机、四个机架轧辊及卷取机的速度来建立各机架间及开卷机与第一机架间第四机架与卷取机间的张力建张结束后,在不进行张力闭环控制情况下,靠各机架速度的搭配给定进行轧制。
当张力达到设定张力的100% 时,张力闭环控制投入运行,进入正常张力轧制阶段。
张力是联系各个机架参数的桥梁和纽带,在较大的张力条件下进行轧制是带钢冷连轧生产的一个重要特点,这就要求张力的控制要合理,而张力控制系统是一个在高实时性要求下的变参数系统,所以对它进行实时快速的控制就显得非常必要了。
轧机张力的产生与测量张力是连轧过程的一个重要现象,各机架通过带钢张力传递影响,传递能量而相互发生联系,张力是由于机架间速度不协调而造成的,以两个机架为例,由于某种原因(外扰量或调节量变动时)而使1#轧机带钢出口速度减小(可以是轧辊速度减小,也可能由于压下率等其他工艺参数变动,造成前滑量减小)或使2#轧机带钢入口速度加大(原因也可以是轧辊速度变大或后滑量减小),结果使1#~2#机架间的带钢产生拉拽,从而产生张力。
张力问题是连轧中的核心问题,大张力轧制是带钢冷连轧生产的一个重要特点,合理的张力制度,可以保证轧制过程稳定而且对成品带钢质量及带卷质量的控制有着重要的影响。
张力在轧制过程中的主要作用有如下几点:(1)防止轧件跑偏防止轧件跑偏是保证冷连轧能否正常轧制的一个重要问题。
在实际的生产过程中,轧件跑偏将破坏正常板形,引起操作事故甚至设备事故,特别是在开坯时,需耗费很多时间,甚至采用停机、抬辊等办法来纠正,直接影响生产效率,因此,在轧制过程中必须尽量地防止轧件跑偏现象的发生。
开卷机张力控制方法的探讨一、摘要:介绍了开卷生产线上开卷机的开卷张力控制方法,比较了电机控制和制动器控制的优缺点,指出电机控制适用于大卷料、高速度开卷。
关键词:机械制造;张力;开卷机;开卷生产线二、前言1、开卷机是开卷生产线中必不可少的一台重要设备,通过本公司多年来生产开卷线的实践,以及对国内外多台开卷机的调研分析,我们就开卷机设计中最重要的张力控制问题进行了初步探讨。
2、通常,开卷机应具有的功能有:卷料装在卷筒上,卷筒胀开将卷料内径撑紧;卷筒旋转将卷料料头低速送进;产生恒定的开卷张力,以防止带材运行过程中产生跑偏;开卷线全线紧急停车时,开卷机能迅速制动,防止在开卷机与后续设备之间出现带材堆积而损伤带材。
3、近年来,开卷线的生产率有了很大的提高,带材运行速度在横剪线上已达120m/min,纵剪线上已达200m/min。
带材运行速度的提高要求严格防止带材的跑偏,因此,要求开卷机不但能够产生一定的开卷张力,而且在整个开卷过程中保持开卷张力的恒定不变。
由于卷料的最大重量已超过30t,最大外径超过2000mm,因此,开卷机在启动加速和快速制动时。
应避免冲击式的施加张力或改变张力,并将张力维持在一定的限度之内。
三、开卷机负载的机械特性:开卷机在工作过程中,卷料的外径由大变小,而开卷线在正常运行过程中应保持带材运行速度稳定不变,因此,开卷机卷筒的转速应随之由低变高,电机转速也由低变高,由于开卷过程中带材的张力要保持恒定不变,随着卷料外径由大变小,电机轴上的张力转矩也由大变小,因此,开卷机的转矩与转速成反比。
四、电机与开卷机张力控制:1、轧钢车间的开卷机多年来都是由直流电动,产生开卷张力,并实现张力的自动恒定控制流电机驱动控制性能好,技术成熟,动态和静态精度高,迄今仍在大量使用。
近年来,交流变频拖动发展迅速,应用已日趋广泛,大有逐渐取代调速拖动的趋势。
这里仅就直流电机的开卷张力控制作一简介。
2、这种张力控制方式与卷取机的卷取张力控制方式十分相似,只是开卷张力形成的张力转矩和直流电机的旋转方向相反。
嘉善申华金属包装材料有限公司冷轧机作业指导书核准:修订:草拟:目的:冷轧机处于铸轧流水线的收尾阶段,为了帮助大家正确使用及维护此设备,特制订本操作说明书,以供参考。
使用范围:本作业指导书仅适合本公司冷轧工序使用。
冷轧机常识及工作原理:1:本公司冷轧机分三个部分操作,一共有三个操作台,即收卷机操作台,1#主机操作台,2#主机操作台。
2、用途 公司冷轧机用于批量铝板冷轧,生产量大、成品率高、单位能耗小等特点,适用于铝板带材的中、精轧及制成品,具有轧制精度高、速度快、张力稳定等多项优点。
3:设备组成:该机型由主机架、前后导位装置、传动底座、液压系统、电控系统、冲剪系统、收卷系统等部分组成。
4:生产原理:冷轧机,是在“再结晶”温度(包括常温)下将一定厚度的板材轧成目标厚度的设备。
传统的冷轧机都是用力矩电机和直流电机来控制的。
冷轧机的设备一般由3部分组成,即主机、剪切机、收卷机。
“冷轧机”顾名思义,是一种以冷作业方式对金属材料进行轧制的冶金加工设备。
所谓“冷轧”,是指在金属的“再结晶”温度(包括常温)之下对板材进行压力加工,或称“压延”。
轧件通过两相对旋转的轧辊以压力进行加工,使其产生塑性变形,称为轧制工艺过程。
轧机通过工作辊来完成这一过程。
工作辊包含有旋转和移动两种运动。
前者靠摩擦力进行轧制运动,由轧机主传动实现;后者用来调节压下量,控制轧件的变形程度,由轧机压下装置实现。
主传动由主电机通过联轴器带动减速机高速轴,减速后由低速轴通过齿轮联轴器与变速箱输入端相联,输出端通过万向节轴分别带动上下工作辊使其产生线速度相等、旋转方向相反的轧制运动。
压下装置共两组,分别安装在机架上面,经内外各一台压下电机及两级蜗轮、蜗杆副减速后传递给压下螺杆,压下螺杆由压下螺母固定在每片机架的窗口中间,通过安全臼及液压平衡装置使轧辊上下运动。
压下电机出轴上安装有制动器,使压下螺杆获得准确的位置精度。
压下装置必须反应灵敏,具有单独点动和内外联动的功能。
张力控制一、开卷机、卷取机控制开卷机和卷取机采用间接张力控制:上图为开卷机和卷曲机的控制框图,主控制环还是速度电流控制双环,但其设定值和速度主令有一个速差。
在主控制环的速调输出上叠加一个张力限幅值,这个值就是开卷机和S 辊间的张力值转换为的转矩值。
二、活套控制活套控制采用直接张力控制:主控制环也还是速度和电流控制双环,另外根据活套的张力设定值,通过张力调节其输出速度调整量,叠加到到速度调节器的输入上。
张力调节器的实际张力值来源:1)张力计2)进行间接计算。
三、张力辊的控制张力辊为S辊,其分为两类:(1)速度控制张紧辊主辊做标准速度电流控制双环,速调用PI调节器,从辊也是速度电流双环,但是采用P调节器,其I来自于主辊(因为P和I调节器分开,所以一定要关闭从调节器的I环节)(2)张力控制张紧辊有以下4种情况:1)直接张力控制,有张力计2)直接张力控制,无张力计3)间接张力控制4)转矩控制注:A速度控制张紧辊和张力控制张紧辊都要分为主辊和从辊,其中主辊的速度调节器采用PI 调节器,而从辊的速度调节器采用P调节器,其I分量来自于主辊,因为主辊的积分分量反映了主辊的转矩,这样两辊的出力百分值都相同了。
B两辊中到底那个作为主辊:对于P100=4 功率大的作为主。
P100=5,靠近张力计的为主。
在没有张力计的场合,带钢进入的为主。
对于以上1)和2),主辊的控制方法都是在速度电流双环的速度环上叠加张力调节器输出,张力调节器的张力实际值可能来自于张力计,也有可能来自于计算值。
作负荷平衡需要SCB2,通过硬线连接,做点对点通讯。
四、速度调节器和张力调节器在张力调试中,调试的主要参数是能够对速度调节器及张力调节器产生影响的参数。
如下图(1)所示为速度调节器,在程序中所在位置为NCNOT/H3/NCO200。
如图(2)所示为张力调节器,在程序中所在位置是TECON/E3/TREG120。
速度调节器张力调节器(一)、速度调节器控制:1、速度环速度给定的由来:(1)速度控制器:当采用“经典积分控制环节时”,速度给定用的速度给定参考模型NSET_RM,当不采用“经典积分控制环节时,速度给定用的是综合速度N_ADD。
恒张力控制冷轧卷取机的调试恒张力控制冷轧卷取机的调试哈昌频1,曹国胜2(1.上海市安装工程有限公司,上海200080;2.陕西省设备安装工程公司,陕西西安710068)摘要:在冷轧机带材轧制过程中成品质量很大程度上取决于对轧制张力的控制,文章介绍了调试方法和经验公式。
关键词:冷轧卷取机;调试;恒张力;公式中图分类号:TG 333.52 文献标识码:B 文章编号:1002-3607(2004)06-0037-051 系统介绍在冷轧机带材轧制过程中成品质量很大程度上取决于对轧制张力的控制,在上海铝材厂调试一套四辊铝箔冷轧机组,其设备由三机架组成,一台主轧机、一台开卷机、一台卷取机,主轧机是不可逆的四辊轧机,均采用SCR -D 直流传动系统控制。
该套设备调试成功投产后,运行状态良好。
在此将卷取机的运行原理和调试总结如下。
图1 冷轧机组工作示意图冷轧机组主要参数(1)主轧机最大轧制力:100t ;轧制速度:1~5m/s ;坯料最大厚度:0.1mm ,成品最小厚度:0.028mm 。
(2)卷取机张力范围:30~200kg ;卷筒直径:<300mm ;带卷最大外径:<740mm ;减速箱传动比:i =3.15电动机规格:输出功率13kW ,额定电压220V ,额定电流85A ,转速400/1200r.p.m 。
2 轧机张力控制原理按照铝箔卷带材料的轧制工艺要求,保持恒定的轧制张力使铝带在开卷机和卷取机上张紧,才能保证轧出的成品厚度均匀,板形平整,表面光滑,卷取机(或开卷机)与轧机之间带材的张力是由卷取机(或开卷机)来建立的。
见图2。
图2 卷取机建立张力示意图T —轧制张力(kg );M —卷取机作用到卷筒上的转矩;M F —负载转矩;V —轧制线速度;D —卷筒直径;i —减速箱传动比。
根据直流传动原理,电动机发出的转矩:M D =C M(1)卷筒上的转矩:M =M D ?i =C M(2)2004年12月总137期第6期安装I NST A LLATI ON Dec.2004T otal №.137№.6负载的转矩:M F=D/2?T(3)当系统稳定运行时:M=M F(4)即:C M 由此得到张力:T=2C M从张力公式分析,只要保持电动机电枢电流I D 恒定,并使电动机的磁场<跟随卷径D变化,且使。
⽤于冷轧板⽣产的开卷机绪论开卷机是轧钢成卷⽣产不可少的设备。
保证开卷机顺利⼯作对提⾼轧机⽣产率有很重要意义。
冷轧机组中,开卷机⽤于将钢卷伸展。
采⽤恒张⼒轧制,可以提⾼带钢质量。
例如对于1700冷轧机组开卷机设计,其⽤于⼆机架冷轧机组中。
⾸先,选择开卷机的设计⽅案,并对设计⽅案进⾏评述。
由于冷带钢开卷张⼒⼤,采⽤四棱锥卷筒结构。
⽤液压缸移动斜楔进⾏胀缩。
将四棱锥体单独加⼯装在卷筒轴上,这样改进,加⼯⽅便。
当锥体磨损后可以单独更换。
这样,可以降低设备维修费⽤。
另外,四个扇形块边采⽤搭接技术,防⽌卷筒胀开后出现空隙,减少钢卷局部压扁,提⾼钢卷质量。
去掉钳⼝,采⽤助卷器卡紧带钢头部,⽅便卸卷。
这次设计,计算带钢卷开过程中对卷筒的压⼒并计算卷取轴弯曲强度,对⽀承轴承进⾏选择和校核。
采⽤合理的润滑⽅案、润滑⽅法和控制技术,使开卷机技术先进,经济合理。
强度⾜够,有⼴泛的使⽤价值,可⽤于酸洗、热处理、镀锌和镀锌机组中。
经过朱⽼师的指导,我们所设计型号为KJJ-560。
第⼀章开卷机的概念和发展趋势1.1选题的背景和⽬的开卷机的设计,除了按⼀般机械设计程序进⾏机构和强度设计外,尚有⼏个与⼯艺和操作有关特殊问题。
如机构选择、主要参数确定、卷筒压⼒计算和张⼒、调速、卷取质量等。
开卷机的结构形式的选择,热带钢卷取机装在热带钢轧机的后⾯地下式开卷机,⼀般三辊式成形辊布置多⽀点棱锥型卷筒。
冷轧带钢卷取机安装冷轧机组、平整机组外,⼴泛⽤于各类纵切和横切精整机组、重卷机组和酸洗机组的不同部位以满⾜不同的⼯艺要求。
在可逆式冷轧机上轧制时,带钢张⼒由开卷机产⽣,因⽽这种开卷机要承受很⼤的张⼒,宽带钢的张⼒可达400~500千⽜,特别多辊轧机轧制合⾦薄带材时,带钢对卷取机的径向压⼒极⼤,长期以来多采⽤带钳⼝的实⼼卷筒。
在设置重卷机组倒卷时,多采⽤⼋棱锥⽆缝隙卷筒,以防⽌卷筒损坏坯带材表⾯。
冷带钢开卷机是冷轧⽣产的重要设备。
1.2开卷机的概述开卷设备⼤体可分为:悬臂式开卷机、双圆柱头式开卷机和双锥头式开卷机。
冷轧开卷机、卷取机的张力系统控制冷轧厂酸轧线为四机架连轧机,其中开卷机、卷取机系统需实现张力
设定、静态张力电流、各种补偿电流的计算, 断带保护、圈数计算及显
示等功能。
传动部分为:开卷机、卷取机各有两电机各自对应一套传动
控制系统,
一、开卷机、卷取机张力控制
开卷机、卷取机在启动加速和快速制动时,应避免冲击式的施加张
力或改变张力,并将张力维持在一定的限度之内。
1、开卷机和卷取机负载的机械特性
开卷机在工作过程中,卷料的外径由大变小,而开卷线在正常运行
过程中应保持带材运行速度稳定不变,因此,开卷机卷筒的转速应随之
由低变高,电机转速也由低变高,即:N=60IV/Dπ
式中:N——电机转速;D——卷料外径;
V——带材运行速度;I——开卷机的传动比。
由于开卷过程中带材的张力要保持恒定不变,随着卷料外径由大变小,
电机轴上的张力转矩也由大变小,有:M=T*D/2η
式中:M——张力转矩;T——开卷张力;η——传动系统机械效率。
因此,开卷机的转矩与转速成反比,由式上两式可得到功率为:P=M*N
由上分析说明,在转速和转矩的变化过程中,开卷机的负载功率不变,
即开卷机负载的机械特性是恒功率型。
二、开卷机、卷取机系统的张力控制
为保证轧制过程中, 开卷机、卷取机的前后张力恒定,控制系统主要
有以下环节。
1 卷取机卷取过程中张力的设定
卷取机一旦完成咬钢,带钢即要承受一定的张力,以保证带钢卷取的质量。
该张力是在卷取机与冷连轧机之间形成的。
在卷取机卷取的各个阶段,带钢承受的张力不同。
在咬钢过程中,为使带钢从卷芯开始卷取紧实,卷取机一旦咬住带头,就要以较大的张力值进行卷取,此时的张力通常比正常轧制时的张力要大。
在卷取机卷取过程中,卷径不断增大,当卷径达到一定数值Φ0 时,应当把张力降下来,以正常轧制张力进行卷取。
张力降下来后,由于时间较短,卷径变化并不大,为Φ1 。
从卷取的整个进程来看,这个阶段时间最长、卷径变化最大,直到卷径接近剪切时的卷径Φ2 。
而在剪切(卷经为Φc) 的时候,带钢需要承受较小的张力,以利于剪切,所以此时通过剪前夹送辊建张的办法把带钢张力降低为剪切张力。
图3中的各张力值都是由PLC根据工艺要求给出的。
剪切后的带钢经带尾定位后,卷在卷取机上,被卸卷小车运走,这样就完成了一卷带钢的轧制与卷取的任务。
图 1 带钢张力设定
2 轧制速度给定
正常轧制时, 轧制的线速度取决于主轧机的线速度V M,而卷取机的速度设定即卷取机的线速度超前主轧机的10%~20% ,以保证当卷取机建立张力后, 速度调节器的输出有足够的饱和深度来保证张力的稳定性。
处于开卷状态的开卷机系统, 为一固定的卷取方向的速度设定值,
这样其速度给定与速度反馈方向相同,使速度调节器输出处于深度饱和,而当断带时,开卷系统能提供最大的制动力矩快速停车,并以较低的速度反转,以利于带材缠紧。
3 卷径测量及计算
轧制线速度给定、张力电流、加/ 减速动态补偿电流等都与带卷卷径D 有着直接关系,卷经计算的精确程度直接影响到张力系统的控制精度。
轧机系统中在导向辊及卷取电机的轴上各装一台脉冲编码器, 再不考虑打滑的情况下, 由于导向辊与卷筒之间的带材建有张力, 同一时间段内通过导向辊的带材长度和卷筒卷取的带材长度相等,因此得D = D de *n de/n* i 式中, D de、n de、n、i 分别为导向辊的直径、转速, 卷取电机的转速和减速比。
4、张力控制
卷取电机输出的力矩为一综合力矩,包括带钢静态张力矩M T、动态加/ 减速力矩M A、摩擦力矩M R等, 最终控制结果是使由M T所产生的张力T保持恒定。
由于没有张力计,可采用间接张力控制实现恒张力控制。
由动力学及电动机电磁转矩公式M T= TD/i2,M电机= CMΦI,M T= i ×M 电机由上式可得T= 2iCMΦI/i D可以看出, 要维持张力T恒定由两种方法, 一是I 为一恒定值, 使CMΦ/D = 常数; 二是使I 反比于CMΦ/D。
第一种方法只适合于卷径变化量小的工况, 系统都工作在弱磁状态, 电动机的功率得不到充分利用。
第二种方法即最大力矩法,控制系统特性有两个工作段:第一段: 恒定最大磁场, 即零速至基速的额定磁场段。
此段电动机满磁工作,调电动机电枢电压调速, 电流必须与卷径成成比例变化, 电动机能输出最大力矩。
第二段:弱磁,即基速至最高速段。
这段是弱磁调速, 电动机的电势保持恒定, 电枢电流与带材的轧制线速度成比例。
在最大
力矩法中, 电动机实际输出的电流ID 包括产生静态张力T所需静态电
流IT、克服加/ 减速动态力矩所需电流IA、克服摩擦力矩所需电流IR 等。
4.1 静态电流IT
由上面公式可得静态电流IT= TD/i2ΦCM,又因为CMΦ= ΦCe//0. 105 和CeΦ= E/n , 考虑电机的效率η得IT= 0. 105TDn/2iEη式中n 为电机转速,E为电动机的反电势。
4. 2 加/ 减速动态电流IA
在轧机加/ 减速过程中,为了保持张力T不变,卷取电机必须给出动
态补偿电流IA。
在此不再给出详细的推导。
见PLC03 卷取机张力控制。
4. 3 摩擦力矩电流IR
摩擦力矩的产生比较复杂,可将其分为静摩擦和动摩擦。
静摩擦主要表现为卷筒由静止到转动过程的摩擦, 轧制超薄带时, 在刚启动时, 进行补偿, 启动后要去掉补偿值, 具体值可在调试中摸索。
动摩擦的来源包括电机的空载摩擦,它与电机转速有关; 和在轧制线上各设备作用于
带材的摩擦,它与实际线速度由一定的关系。
我们的摩擦力矩补偿主要是依据经验得出的与速度有关系的函数。