排列组合综合运用
- 格式:doc
- 大小:263.00 KB
- 文档页数:5
如何应用排列组合解决实际问题排列组合是组合数学中重要的一个分支,可以用来解决各种实际问题。
它主要研究的是对事物进行选择、排序或分组的方式和方法。
本文将介绍如何应用排列组合解决实际问题,并通过一些例子来说明其应用。
一、排列的应用排列是指从一组事物中按照一定的顺序选取若干个进行排列。
它在实际问题中经常用于确定事件的顺序或次序,如赛车比赛名次的确定、球队比赛对阵的安排等。
例子1:某校有10名学生,要选出3名代表参加比赛。
问有多少种选法?解析:由于选出的代表有顺序之分,所以这是一个排列问题。
根据排列的计算公式,可以得出答案为10P3=10×9×8=720种选法。
例子2:某公司要从5名员工中选取3名代表参加会议,其中一人必须是经理。
问有多少种选法?解析:由于选出的代表有顺序之分,并且经理必须选中,所以这又是一个排列问题。
首先确定经理的选择,只有1种可能;然后从剩余的4名员工中选取2名,共有4P2=12种选法。
因此,总的选择方式为1×12=12种。
二、组合的应用组合是指从一组事物中选取若干个不考虑其顺序的组合方式。
它在实际问题中广泛应用于确定事件的组合、分组等情况,如选课、分组旅行等。
例子3:某班有10名学生,要从中选取5名学生组成一个团队。
问有多少种选法?解析:由于选出的团队不考虑顺序,所以这是一个组合问题。
根据组合的计算公式,可以得出答案为10C5=252种选法。
例子4:某城市有8个景点,旅行团要从中选择3个景点进行游览。
问有多少种选法?解析:由于选出的景点不考虑顺序,所以这又是一个组合问题。
根据组合的计算公式,可以得出答案为8C3=56种选法。
三、排列组合综合应用在实际问题中,有些情况既包含了排列又包含了组合,需要综合运用排列组合的知识来解决。
例子5:某超市有8种水果,要从中选购5种水果放入购物篮中,问有多少种选法?解析:由于选出的水果不考虑顺序,所以这是一个组合问题。
根据组合的计算公式,可以得出答案为8C5=56种选法。
高二数学排列组合综合应用试题1.用0、1、2、3、4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是()A.48B.36C.28D.12【答案】C【解析】解:根据题意,在0,1,2,3,4中有3个偶数,2个奇数,可以分3种情况讨论:①、0被奇数夹在中间,先考虑奇数1、3的顺序,有2种情况;再将1、0、3看成一个整体,与2、4全排列,有种情况;故0被奇数夹在中间时,有2×6=12种情况;②、2被奇数夹在中间,先考虑奇数1、3的顺序,有2种情况;再将1、0、3看成一个整体,与2、4全排列,有种情况,其中0在首位的有2种情况,则有6-2=4种排法;故2被奇数夹在中间时,有2×4=8种情况;③、4被奇数夹在中间时,同2被奇数夹在中间的情况,有8种情况,则这样的五位数共有12+8+8=28种.【考点】排列、组合的应用.2.从不同号码的双鞋中任取只,其中恰好有双的取法种数为()A.B.C.D.【答案】A【解析】先从这5双中选1双,在从剩余4双中选2双,每双取1只,取法共有种.【考点】组合的综合应用.3.如图,用4种不同的颜色对图中5个区域涂色( 4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有种.(用数字作答)【答案】96【解析】由题意知本题是一个分步计数问题,第一步:涂区域1,有4种方法;第二步:涂区域2,有3种方法;第三步:涂区域4,有2种方法(此前三步已经用去三种颜色);第四步:涂区域3,分两类:第一类,3与1同色,则区域5涂第四种颜色;第二类,区域3与1不同色,则涂第四种颜色,此时区域5就可以涂区域1或区域2或区域3中的任意一种颜色,有3种方法.所以,不同的涂色种数有4×3×2×(1×1+1×3)=96.【考点】排列组合的应用.4. 5名同学排成一列,某个同学不排排头的排法种数为 .【答案】96.【解析】先安排排头,有4种排列方法;再安排其余四个位置,有中排列方法;由分步乘法计数原理,得5名同学排成一列,某个同学不排排头的排法种数为.【考点】计数原理、排列.5. 7颗颜色不同的珠子,可穿成种不同的珠子圈.【答案】360.【解析】由于环状排列没有首尾之分,将n个元素围城的环状排列剪开看成n个元素排成一排,即共有种排法.由于n个元素共有n种不同的剪法,则环状排列共有种排法,而珠子圈没有反正,故7颗颜色不同的珠子,可穿成种不同的珠子圈.故应填入:360.【考点】计数原理.6.从0,1,2,3中选取三个不同的数字组成一个三位数,则不同的三位数有()A.24个B.20个C.18个D.15个【答案】C【解析】从0,1,2,3四个数中取3个不同的数组成一个三位数,则百位可取1,2,3三种,十位数可0及百位取的1,2,3中剩下的两位,也有三种取法,个位可以取百位及十位取剩下的两个,共两种,所以不同的三位数有,选C.【考点】排列组合应用7.将三个分别标有A,B,C的球随机放入编号为1,2,3,4的四个盒子中,则1号盒子中有球的不同放法种数为______________.【答案】37【解析】按1号盒子中球的个数分三类:第一类1号盒子中有1个球,再分两小类:第1小类:余下两球放入两个不同盒子内,有种不同放法,第2小类:余下两球放入同一盒子内,有种不同放法,所以有种不同放法;第二类1号盒子中有2个球,有种不同放法;第三类1号盒子中有3个球,有1种不同放法;故共有:27+9+1=37种不同的放法.【考点】排列组合.8.将三个1、三个2、三个3填入3×3的方格中,要求每行、每列都没有重复数字,则不同的填写方法共有种。
排列与组合综合应用(二)一、选择题1.某班上午有五节课,分別安排语文,数学.英语.物理、化学各一节课.要求语文与化学相邻,数学与物理不相邻.且数学课不排第一节,则不同排课法的种数是()A. 16B. 24C. 8D. 122.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组每组至少一人,则不同的分配方案的种数为()A. 50B. 80C. 120D. 1403.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排,若小明的父母至少有一人与他相邻,则不同坐法的总数为()A. 60B. 72C. 84D. 964.安排甲、乙、丙、丁四位教师参加星期一至星期六的值日工作,每天安排一人,甲、乙、丙每人安排一天,丁安排三天,并且丁至少要有两天连续安排,则不同的安排方法种数为()A. 72B. 96C. 120D. 1565.由0,1,2,3,5组成的无重复数字的五位偶数共有()A. 36个B. 42个C. 48个D. 120个6.某校选定甲、乙、丙、丁、戊共5名教师去3个边远地区支教(每地至少1人),其中甲和乙一定不同地,甲和丙必须同地,则不同的选派方案共有()种.A. 27B. 30C. 33D. 367.某技术学院安排5个班到3个工厂实习,每个班去一个工厂,每个工厂至少安排一个班,则不同的安排方法共有()A. 60种B. 90种C. 150种D. 240种8.某人连续投篮6次,其中3次命中,3次未命中.则他第1次、第2次两次均未命中的概率是()A. 12B. 310C. 14D. 15二、填空题(本大题共4小题,共20.0分)9.现有7件互不相同的产品,其中有4件次品,3件正品,每次从中任取一件测试,直到4件次品全被测出为止,则第三件次品恰好在第4次被测出的所有检测方法有______种.10.用数字1、2、3、4、5构成数字不重复的五位数,要求数字1,3不相邻,数字2、5相邻,则这样的五位数的个数是______(用数字作答).11.若把英语单词“good”的字母顺序写错了,则可能出现的错误共有______种.12.某高中高三某班上午安排五门学科(语文,数学,英语,化学,生物)上课,一门学科一节课,要求语文与数学不能相邻,生物不能排在第五节,则不同的排法总数是______.三、解答题(本大题共8小题,共96.0分)13.我校今年五四表彰了19名的青年标兵,其中A,B,C,D 4名同学要按任意次序排成一排照相,试求下列事件的概率(1)A在边上;(2)A和B在边上;(3)A或B在边上;(4)A和B都不在边上.14.六个人按下列要求站成一排,分别有多少种不同的站法?(1)甲、乙必须相邻;(2)甲、乙不相邻;(3)甲、乙之间恰有两人;(4)甲不站在左端,乙不站在右端.15.从8名运动员中选4人参加4×100米接力赛,在下列条件下,各有多少种不同的排法?(写出计算过程,并用数字作答)(1)甲、乙两人必须跑中间两棒;(2)若甲、乙两人只有一人被选且不能跑中间两棒;(3)若甲、乙两人都被选且必须跑相邻两棒.16.4男3女站成一排,求满足下列条件的排法共有多少种?(1)任何两名女生都不相邻,有多少种排法?(2)男甲不在首位,男乙不在末位,有多少种排法?(3)男生甲、乙、丙顺序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?17.6本不同的书,按如下方法分配,各有多少种分法:(1)分给甲、乙、丙3人,每人各得2本;(2)分给甲、乙、丙3人,甲得1本,乙得2本,丙得3本;(3)分给甲、乙、丙3人,其中一人得1本,其中一人得2本,其中一人得3本.18.有编号分别为1、2、3、4的四个盒子和四个小球,把小球全部放入盒子.问:(1)共有多少种放法?(2)恰有一个空盒,有多少种放法?(3)恰有2个盒子内不放球,有多少种放法?19.有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:(Ⅰ)选其中5人排成一排;(Ⅱ)排成前后两排,前排3人,后排4人;(Ⅲ)全体排成一排,女生必须站在一起;(Ⅳ)全体排成一排,男生互不相邻;(Ⅴ)全体排成一排,甲不站在排头,也不站在排尾。
排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。
在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。
1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。
2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。
3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。
4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。
5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。
6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。
7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。
8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。
9. 对称性法,利用排列组合的对称性质,简化计算过程。
10. 逆向思维法,从问题的逆向思考,求解排列组合问题。
11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。
12. 构造法,通过构造合适的排列组合模型,求解问题。
13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。
14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。
15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。
16. 模拟法,通过模拟排列组合过程,求解问题。
17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。
18. 穷举法,通过穷举所有可能的情况,求解问题。
19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。
宜春中学数学学科2-3册笫一章排列组合的综合应用3、4导学案 编号:59-60编写:丁红平 审核:高二数学理科备课组学习目标:1.进一步理解和应用分步计数原理和分类计数原理;2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力 ;3.学会应用数学思想和方法解决排列组合问题。
.学习重点:排列组合在其他一些方面的应用 学习难点:排列组合在其他一些方面的应用 学习过程:一、(约3分钟)引例1:交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂.1.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.2.男运动员6名,女运动员4名,其中男女队长各1人,选派5人外出比赛,在下列情形下各有多少种选派方法?(1)队长至少有1人参加;(2)既要有队长,又要有女运动员.解:(1)设A ={选派5人有男队长参加的},B ={选派5人有女队长参加的},则原题即求n(A ∪B), 而n(A ∪B)=n(A)+n(B)-n(A ∩B). n(A)=49C =n(B), n(A ∩B)=38C , 故n(A ∩B)=19623849=-C C .另解:设A ={选派5人有1个队长参加的},B ={选派5人有2个队长参加的},则原题即求n(A ∪B),n(A)=4812C C , n(B)=3822C C , n(A ∩B)=n()=0. 因此n(A ∪B)=n(A)+n(B)=4812C C +3822C C =196.说明:A ∩B 即选派5人既要有1个队长参加又要有2个队长参加这件事,这是不可能事件.(2)设A ={选派5人有队长参加的},B ={选派5人有女运动员参加的},则原题即求n(A ∩B), 又)()()(B A n I n B A n ⋂-=⋂)()(B A n I n ⋃-=)()()()(B A n B n A n I n ⋂+--=191555658510=+--=C C C C即有191种选派方法. 说明:即选派5人,既无队长又无女运动员参加.从以上例题我们可以看出,用集合与对应思想分析处理排列组合问题,实质上就是将同一问题中满足不同限制条件的元素的排列或组合的全体与不同的集合之间建立相应的对应关系,而将各限制条件之间的关系转化为集合与集合之间的运算关系,通过计算集合的元素个数来计算排列或组合的个数,这有助于将带有多个附加条件的排列或组合问题分解为只有1个或简单几个附加条件的排列或组合问题来处理,这可大大简化复杂的分类过程,从而降低了问题的难度. 例2、(1)以正方体的顶点为顶点的四面体共有( )A 、70种B 、64种C 、58种D 、52种解析:正方体8个顶点从中每次取四点,理论上可构成48C 四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以四面体实际共有481258C -=个.(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有( )A 、150种B 、147种C 、144种D 、141种 解析:10个点中任取4个点共有410C 种,其中四点共面的有三种情况:①在四面体的四个面上,每面内四点共面的情况为46C ,四个面共有464C 个;②过空间四边形各边中点的平行四边形共3个;③过棱上三点与对棱中点的三角形共6个.所以四点不共面的情况的种数是44106436141C C ---=种.(3)正方体8个顶点可连成多少队异面直线?解析:因为四面体中仅有3对异面直线,可将问题分解成正方体的8个顶点可构成多少个不同的四面体,从正方体8个顶点中任取四个顶点构成的四面体有481258C -=个,所以8个顶点可连成的异面直线有3×58=174对.(约10分钟)例1、小明家住二层,他每次回家上楼梯时都是一步迈两级或三级台阶。
四年级奥数讲义:排列组合的综合应用排列组合是数学中风格独特的一部分内容.它具有广泛的实际应用.例如:某城市电话号码是由六位数字组成,每位可从0~9中任取一个,问该城市最多可有多少种不同的电话号码?又如从20名运动员中挑选6人组成一个代表队参加国际比赛.但运动员甲和乙两人中至少有一人必须参加代表队,问共有多少种选法?回答上述问题若不采用排列组合的方法,结论是难以想像的.(前一个问题,该城市最多可有1000000个不同电话号码.后一个问题,代表队有20196种不同选法.)当然排列组合的综合应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.有时利用图示法,可使问题简化便于正确理解与把握.例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理.解:符合要求的选法可分三类:不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的.因此,依加法原理,选取两幅不同类型的画布置教室的选法有15+10+6=31种.注运用两个基本原理时要注意:①抓住两个基本原理的区别,千万不能混.不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数.不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数.②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:第一类抽出的产品中有2件次品,第二类抽出的产品中有1件次品,那么这样的分类显然漏掉了抽出的产品中无次品的情况.又如:把能被2、被3、或被6整除的数分为三类:第一类为能被2整除的数,第二类为能被3整除的数,第三类为能被6整除的数.这三类数互有重复部分.③在运用乘法原理时,要注意当每个步骤都做完时,这件事也必须完成,而且前面一个步骤中的每一种方法,对于下个步骤不同的方法来说是一样的.例2 一学生把一个一元硬币连续掷三次,试列出各种可能的排列.分析要不重不漏地写出所有排列,利用树形图是一种直观方法.为了方便,树形图常画成倒挂形式.解:由此可知,排列共有如下八种:正正正、正正反、正反正、正反反、反正正、反正反、反反正、反反反.例3 用0~9这十个数字可组成多少个无重复数字的四位数.分析此题属于有条件限制的排列问题,首先弄清楚限制条件表现为:①某位置上不能排某元素.②某元素只能排在某位置上.分析无重复数字的四位数的千位、百位、十位、个位的限制条件:千位上不能排0,或说千位上只能排1~9这九个数字中的一个.而且其他位置上数码都不相同,下面分别介绍三种解法.解法1:分析某位置上不能排某元素.分步完成:第一步选元素占据特殊位置,第二步选元素占据其余位置.解:分两步完成:第一步:从1~9这九个数中任选一个占据千位,有9种方法.第二步:从余下的9个数(包括数字0)中任选3个占据百位、十位、个位,百位有9种.十位有8种,个位有7种方法.由乘法原理,共有满足条件的四位数9×9×8×7=4536个.答:可组成4536个无重复数字的四位数.解法2:分析对于某元素只能占据某位置的排列可分步完成:第一步让特殊元素先占位,第二步让其余元素占位.在所给元素中0是有位置限制的特殊元素,在组成的四位数中,有一类根本无0元素,另一类含有0元素,而此时0元素只能占据百、十、个三个位置之一.解:组成的四位数分为两类:第一类:不含0的四位数有9×8×7×6=3024个.第二类:含0的四位数的组成分为两步:第一步让0占一个位有3种占法,(让0占位只能在百、十、个位上,所以有3种)第二步让其余9个数占位有9×8×7种占法.所以含0的四位数有3×9×8×7=1512个.∴由加法原理,共有满足条件的四位数3024+1512=4536个.解法3:从无条件限制的排列总数中减去不合要求的排列数(称为排除法).此题中不合要求的排列即为0占据千位的排列.解:从0~9十个数中任取4个数的排列总数为10×9×8×7,其中0在千位的排列数有9×8×7个(0确定在千位,百、十、个只能从9个数中取不同的3个)∴共有满足条件的四位数10×9×8×7-9×8×7=9×8×7×(10-1)=4536个.注用解法3时要特别注意不合要求的排列有哪几种?要做到不重不漏.例4 从右图中11个交点中任取3个点,可画出多少个三角形?分析首先,构成三角形与三个点的顺序无关因此是组合问题,另外考虑特殊点的情况:如三点在一条直线上,则此三点不能构成三角形,四点在一条直线上,则其中任意三点也不能构成三角形.此题采用排除法较方便.解:组合总数为C311,其中三点共线不能构成的三角形有7C33,四点共线不能构成的三角形有2C34,∴C311-(7C33+2C34)=165-(7+8)=150个.例5 7个相同的球,放入4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?(请注意,球无区别,盒是有区别的,且不允许空盒)分析首先研究把7分成4个自然数之和的形式,容易得到以下三种情况:①7=1+1+1+4②7=1+2+2+2③7=1+1+2+3其次,将三种情况视为三类计算不同的放法.第一类:有一个盒子里放了4个球,而其余盒子里各放1个球,由于4个球可任意放入不同的四个盒子之一,有4种放法,而其他盒子只放一个球,而球是相同的,任意调换都是相同的放法,所以第一类只有4种放法.第二类:有一个盒子里放1个球,有4种放法,其余盒子里都放2个球,与第一类相同,任意调换都是相同的放法,所以第二类也只有4种放法.第三类:有两个盒子里各放一个球,另外两个盒子里分别放2个及3个球,这时分两步来考虑:第一步,从4个盒子中任取两个各放一个球,这种取法有C24种.第二步,把余下的两个盒子里分别放入2个球及3个球,这种放法有P22种.由乘法原理有C24×P22=12种放法.∴由加法原理,可得符合题目要求的不同放法有4+4+12=20(种)答:共有20种不同的放法.注本题也可以看成每盒中先放了一个球垫底,使盒不空,剩下3个球,放入4个有区别盒的放置方式数.例 6 用红、橙、黄、绿、蓝、青、紫七种颜色中的一种,或两种,或三种,或四种,分别涂在正四面体各个面上,一个面不能用两色,也无一个面不涂色的,问共有几种不同涂色方式?分析首先介绍正四面体(模型).正四面体四个面的相关位置,当底面确定后,(从上面俯视)三个侧面的顺序有顺时针和逆时针两种(当三个侧面的颜色只有一种或两种时,顺时针和逆时针的颜色分布是相同的).先看简单情况,如取定四种颜色涂于四个面上,有两种方法;如取定一种颜色涂于四个面上,只有一种方法.但取定三种颜色如红、橙、黄三色,涂于四个面上有六种方法,如下图①②③(图中用数字1,2,3分别表示红、橙、黄三色)如果取定两种颜色如红、橙二色,涂于四个面上有三种方法.如下图④⑤⑥但是从七种颜色里,每次取出四种颜色,有C47种取法,每次取出三种颜色有C37种取法,每次取出两种颜色有C27种取法,每次取出一种颜色有C17种取法.因此着色法共有2 C47+6 C37+3 C27+ C17=350种.习题六1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如右图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.有十张币值分别为1分、2分、5分、1角、2角、5角、1元、2元、5元、10元的人民币,能组成多少种不同的币值?并请研究是否可组成最小币值1分与最大币值(总和)之间的所有可能的币值.。
排列组合综合应用(4)一、选择题1.4个男生4个女生站成一排,要求相邻两人性别不同且男生甲与女生乙相邻,则这样的站法有()A. 576种B. 504种C. 288种D. 252种2.某地举办科技博览会,有3个场馆,现将24个志愿者名额分配给这3个场馆,要求每个场馆至少有一个名额且各场馆名额互不相同的分配方法共有()种A. 222B. 253C. 276D. 2843.某次运动会中,主委会将甲、乙、丙、丁四名志愿者安排到三个不同比赛项目中担任服务工作,每个项目至少1人,若甲、乙两人不能到同一个项目,则不同的安排方式有()A. 24种B. 30种C. 36种D. 72种4.有6×6的方阵,3辆完全相同的红车,3辆完全相同的黑车,它们均不在同一行且不在同一列,排列方法种数为()A. 720B. 20C. 518400D. 144005.一个国际象棋棋盘(由8×8个方格组成),其中有一个小方格因破损而被剪去(破损位置不确定).“L”形骨牌由三个相邻的小方格组成,如图所示.现要将这个破损的棋盘剪成数个“L”形骨牌,则A. 至多能剪成19块“L”形骨牌B. 至多能剪成20块“L”形骨牌C. 一定能剪成21块“L”形骨牌D. 前三个答案都不对6.在100,101,102,…,999这些数中,各位数字按严格递增(如“145”)或严格递减(如“321”)顺序排列的数的个数是()A. 120B. 204C. 168D. 2167.学校安排一天6节课,语文、数学、英语和三节不同的选修课,则满足“数学不排第一节和第六节,三节选修课至少2节相邻”的不同排法数是A. 288B. 324C. 360D. 420二、填空题(本大题共10小题,共50.0分)8.某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位中至少有3个连在一起,则不同的停放方法有______ 种.9.将4个不同的小球放入编号为1,2,3,4的4个盒子中,恰有2个空盒的方法共有____________种(用数字作答).10.将六名教师分配到甲、乙、丙、丁四所学校任教,其中甲校至少分配两名教师,其它三所学校至少分配一名教师,则不同的分配方案共有______种.(用数字作答)11.某大学安排4名毕业生到某企业的三个部门A,B,C实习,要求每个部门至少安排1人,其中甲大学生不能安排到A部门工作,安排方法有______种(用数字作答).12.某校高一年级拟开设12门选修课程,规定每位学生从中选择6门.由于课程设置限制,某学生从A,B,C,D四门课程中最多选1门,从E,F两门课程中也最多选1门,则该学生共有______种不同的选课种数.(用数字作答)13.现有7名志愿者,其中只会俄语的有3人,既会俄语又会英语的有4人.从中选出4人担任“一带一路”峰会开幕式翻译工作,2人担任英语翻译,2人担任俄语翻译,共有________种不同的选法.14.在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年纪尚小,所以要么不参加该项任务,另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被平均分成两组,一组去远处,一处去近处.则不同的搜寻方案有_______种。
6.2.3 排列组合的综合运用(精练)【题组一全排列】1.(2020·中山大学附属中学高二期中)一个市禁毒宣传讲座要到4个学校开讲,一个学校讲一次,不同的次序种数为( )A.4 B.44C.24 D.48【答案】C【详细解析】一个市禁毒宣传讲座要到4个学校开讲,一个学校讲一次,不同的次序种数为4 4=432124A⨯⨯⨯=.故选:C2.(2020·全国高二单元测试)3名学生报名参加篮球、足球、排球、计算机课外兴趣小组,每人选报一门,则不同的报名方案有________种.【答案】64【详细解析】由题意参加篮球、足球、排球、计算机课外兴趣小组,每个学生有4种选择,则3名同学共有34=64种报名方案.故答案为:64.3.(2020·上海高二专题练习)若把英文单词“hello”的字母的顺序写错了,则可能出现的错误共有_________种.【答案】59【详细解析】由题意知本题是一个排列组合及简单的计数问题五个字母进行全排列共有55120A=种结果,字母中包含2个l,∴五个字母进行全排列的结果要除以2,共有60种结果,在这60种结果里有一个是正确的,∴可能出现的错误的种数是60159-=,故答案为:59.4.(2021·浙江衢州市)将9个相同的球放到3个不同的盒子中,每个盒子至少放一个球,且每个盒子中球的个数互不相同,则不同的分配方法共有________种.【答案】18【详细解析】将9个相同的球分成个数不同的3份,有(1,2,6),(1,3,5),(2,3,4)三种情况,再将这3份个数不同的球放到3个不同的盒子中,有336A=种情况,所以不同的分配方法共有1863=⨯种.故答案为:185.(2020·天津河西区·高二期中)学校要安排一场文艺晚会的11个节目的演出顺序,除第1个节目和最后1个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,则不同的排法有_____种.(用数字作答)【答案】288【详细解析】4个音乐节目要求排在第2,5,7,10的位置,有44A=24种排法;3个舞蹈节目要求排在第3,6,9的位置,有336A=种排法;2个曲艺节目要求排在第4,8的位置,有222A=种排法.故共有24×6×2=288种排法.故答案为:288.6.(2020·河南)2020年新型冠状病毒肆虐全球,目前我国疫情已经得到缓解,为了彰显我中华民族的大爱精神,我国决定派遣具有丰富抗击疫情经验的四支不同的医疗队A、B、C、D,前往四个国家E、F、G、H进行抗疫技术指导,每支医疗队到一个国家,那么总共有______(请用数字作答)种的不同的派遣方法.如果已知A医疗队被派遣到H国家,那么此时B医疗队被派遣到E国的概率是______.【答案】241 3【详细解析】由题意可知,每支医疗队到一个国家的派遣方法数为4424A=,由于A医疗队被派遣到H国家,则B医疗队可派遣到其它3个国家,因此,B医疗队被派遣到E国的概率是1 3.故答案为:24;13.【题组二相邻问题】1.(2020·沙坪坝区·重庆八中)小涛、小江、小玉与本校的另外2名同学一同参加《中国诗词大会》的决赛,5人坐成一排,若小涛与小江、小玉都相邻,则不同坐法的总数为()A.6 B.12 C.18 D.24【答案】B【详细解析】解:将小涛与小江、小玉捆绑在一起,与其他两个人全排列,其中小涛位于小江、小玉之间,按照分步乘法计算原理可得323212A A⋅=故选:B2.(2020·宁夏吴忠市·吴忠中学高二期末)将A,B,C,D,E,F这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A,B,C三个字母连在一起,且B在A与C之间的概率为()A .112B .15C .115D .215【答案】C【详细解析】由捆绑法可得所求概率为242466A A 1A 15P ==.故答案为C3.(2020·陕西彬州市·高二月考)5个男生,2个女生排成一排,若女生不能排在两端,但又必须相邻,则不同的排法种数为 A .480 B .720 C .960 D .1440【答案】C【详细解析】两个女生必须相邻,捆绑222A =,女生不能排两端,则从5个男生中任选两人排两端,2520A =,剩余3个男生与捆绑在一起的2个女生看成4个元素,排在其余位置,4424A =,所以不同的排法种数为:22425422024960A A A ⋅⋅=⨯⨯=.4.(2020·广东广州市)2020年初,全国各大医院抽调精兵强将前往武汉参加新型冠状病毒肺炎阻击战,各地医护人员分别乘坐6架我国自主生产的“运20”大型运输机,编号为1,2,3,4,5,6号,要求到达武汉天河飞机场时,每五分钟降落一架,其中1号与6号相邻降落,则不同的安排方法有( ) A .60 B .120 C .144 D .240【答案】D【详细解析】由题意,因为1号与6号相邻降落,可1号与6号排列后看作一个,同其它飞机进行全排, 将则不同的安排方法有2525240A A =种.故选:D.5.(2020·莒县教育局教学研究室高二期中)3名男生、3名女生排成一排,男生必须相邻,女生也必须相邻的排法种数为( ) A .2 B .9C .72D .36【答案】C【详细解析】根据题意男生一起有336A =排法,女生一起有336A =排法,一共有3333272A A =种排法,故选:C ..6.(2020·江苏宿迁市·宿迁中学高二期中)三位女歌手和她们各自的指导老师合影,要求每位歌手与她们的老师站一起,这六人排成一排,则不同的排法数为( ) A .24B .48C .60D .96【答案】B【详细解析】先将三位女歌手和她们各自的指导老师捆绑在一起,记为三个不同元素进行全排,再将各自女歌手和她的指导老师进行全排,则不同的排法数3222322248N A A A A ==,故选:B.【题组三 不相邻问题】1.(2020·全国)六个人排队,甲乙不能排一起,丙必须排在前两位的概率为( ) A .760B .16C .1360D .14【答案】C【详细解析】丙排第一,除甲乙外还有3人,共33A 种排法,此时共有4个空,插入甲乙可得24A ,此时共有3234=612=72A A ⋅⨯种可能;丙排第二,甲或乙排在第一位,此时有1424C A 排法,甲和乙不排在第一位, 则剩下3人有1人排在第一位,则有122323C A A 种排法, 此时故共有1412224323+=84C A C A A 种排法. 故概率6672841360P A +==. 故选:C.2.(2020·全国)将编号为1、2、3、4、5的5个小球全部放入A 、B 、C 三个盒子内,若每个盒子不空,且放在同一个盒子内的小球编号不相连,则不同的方法总数有( ) A .42 B .36 C .48 D .60【答案】A【详细解析】将编号为1、2、3、4、5的5个小球,根据小球的个数可分为1、1、3或1、2、2两组. ①当三个盒子中的小球个数分别为1、1、3时,由于放在同一个盒子里的小球编号互不相连, 故3个小球的编号只能是1、3、5的在一个盒子里,故只有一种分组方法,再分配到三个盒子,此时共有336A =种分配方法;②当三个盒子中的小球个数分别为1、2、2时,由于放在同一个盒子里的小球编号互不相连,此时放2个小球的盒子中小球的编号分别为()1,3、()2,4或()1,3、()2,5或()1,4、()2,5或()1,4、()3,5或()1,5、()2,4或()2,4、()3,5,共6种,再分配到三个盒子中,此时,共有33636A =种.综上所述,不同的放法种数为64362+=种.故选:A.3.(2020·全国)某节目组决定把《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另外确定的两首诗词排在后六场做节目开场诗词,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有( ) A .72种 B .48种 C .36种 D .24种【答案】C【详细解析】首先可将《将进酒》与《望岳》捆绑在一起和另外确定的两首诗词进行全排列,共有336A =种排法,再将《山居秋暝》与《送杜少府之任蜀州》插排在3个空里(最后一个空不排),共有236A =种排法,则后六场开场诗词的排法有6636⨯=种,故选:C.4.(2020·防城港市防城中学高二期中)5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为( ) A .72 B .48 C .24 D .60【答案】C【详细解析】先将丙与丁捆绑,形成一个“大元素”与戊进行排列,然后再将甲、乙插空,由分步乘法计数原理可知,不同的排法种数为22222324A A A =种.故选:C.5..(2020·北京丰台区·高二期末)某活动中需要甲、乙、丙、丁4名同学排成一排.若甲、乙两名同学不相邻,则不同的排法种数为_________.(用数字作答) 【答案】12【详细解析】先求出甲、乙、丙、丁4名同学排成一排的全排列:4424A =;再求出甲、乙两名同学相邻的排列:2412A =然后,4244241212A A -=-=故答案为:126.(2020·上海)2位女生3位男生排成一排,则2位女生不相邻的排法共有______种. 【答案】72【详细解析】根据题意,分2步进行分析:①、将3位男生排成一排,有336A =种情况,②、3名男生排好后有4个空位可选,在4个空位中,任选2个,安排两名女生,有2412A =种情况,则2位女生不相邻的排法有61272⨯=种;故答案为:727.(2020·安徽省太和第一中学高二月考(理))将A ,B ,C ,D ,E 五个字母排成一排,若A 与B 相邻,且A 与C 不相邻,则不同的排法共有__种. 【答案】36【详细解析】依题意,可分三步,先排D ,E ,有22A 种方法,产生3个空位,将,A B 捆绑有22A 种方法,将,A B 捆绑看作一个元素,插入三个空位之一,有13A 种方法,这时AB 、D 、E 产生四个空位,最后将C 插入与A 不相邻的三个空位之一,有13A 种方法,根据分步乘法计数原理得:共有2211223336A A A A ⨯⨯⨯=种,故答案为:36.8.(2020·博兴县第三中学高二月考)某班上午有五节课,分别安排语文,数学,英语,物理,化学各一节课.要求语文与化学相邻,数学与物理不相邻,则不同排课法的种数是___________ 【答案】24【详细解析】根据题意,分3步进行分析:①要求语文与化学相邻,将语文与化学看成一个整体,考虑其顺序,有222A =种情况, ②将这个整体与英语全排列,有222A =种顺序,排好后,有3个空位, ③数学与物理不相邻,有3个空位可选,有236A =种情况,则不同排课法的种数是22624⨯⨯=种;故答案为:24. 【题组四 分组分配】1.(2020·全国)将6本不同的书分给甲、乙、丙3名学生,其中一人得1本,一人得2本,一人得3本,则有________种不同的分法. 【答案】360【详细解析】先把书分成三组,把这三组分给甲、乙、丙3名学生.先选1本,有16C 种选法;再从余下的5本中选2本,有25C 种选法;最后余下3本全选,有33C 种选法.故共有12365360C C C ⋅⋅=种选法.由于甲、乙、丙是不同的3人,还应考虑再分配,故共有3360360A =种分配方法.故答案为: 360.2.(2020·全国)将6本不同的书分给甲、乙、丙、丁4个人,每人至少1本的不同分法共有________种.(用数字作答) 【答案】1560【详细解析】把6本不同的书分成4组,每组至少1本的分法有2种.①有1组3本,其余3组每组1本,不同的分法共有31163213320l C C C C A = (种); ②有2组每组2本,其余2组每组1本,不同的分法共有22116421222245C C C C A A ⋅= (种). 所以不同的分组方法共有20+45=65(种).然后把分好的4组书分给4个人,所以不同的分法共有44651560A ⨯= (种).故答案为:1560.3(2020·福建省泰宁第一中学高二月考)五一劳动节期间,5名游客到三个不同景点游览,每个景点至少有一人,至多两人,则不同的游览方法共有___________种.(用数字填写答案) 【答案】90【详细解析】把5人按人数2,2,1分成三组,然后再安排到三个景点浏览,总方法为2235332290C C A A ⨯=. 故答案为:90.4.(2020·全国)把5张不同的电影票分给4个人,每人至少一张,则不同的分法种数为________. 【答案】240.【详细解析】将这5张不同的电影票分成四组,每组至少一张,共有2111532133C C C C A 种分组办法,再分给4人的不同分法有211145321433240C C C C A A ⋅=种.故答案为:240. 5.(2020·全国)从6个人中选4个人值班,第一天1个人,第二天1个人,第三天2个人,共有多少种排法_________. 【答案】180【详细解析】112654C C C 180=.故答案为:180.6.(2020·重庆北碚区·西南大学附中高二期中)某学校安排5名高三教师去3个学校进行交流学习,且每位教师只去一个学校,要求每个学校至少有一名教师进行交流学习,则不同的安排方式共有______种. 【答案】150【详细解析】分2步分析:先将5名高三教师分成3组,由两种分组方法,若分成3、1、1的三组,有3510C =种分组方法,若分成1、2、2的三组,有1225422215C C C A =种分组方法, 则一共有101525+=种分组方法;再将分好的三组全排列,对应三个学校,有336A =种情况,则有256150⨯=种不同的安排方式; 故答案为:150.7.(2020·全国)2020年是全面建成小康社会目标实现之年,是脱贫攻坚收官之年根据中央对“精准扶贫”的要求,某市决定派5名党员和3名医护人员到三个不同的扶贫村进行调研,要求每个扶贫村至少派党员和医护人员各1名,则所有不同的分派方案种数为________________.(用数字作答). 【答案】900【详细解析】由题意分两步完成:第一步:将5名党员分派到三个不同的扶贫村,第二步,将3名医护人员分派到三个不同的扶贫村.第一步:因为党员有5人,先分成3个组进行分派,分组情况有两种,第一种按人数是1,1,3分组有1135432210C C C A ⋅⋅=种不同情况,第二种按人数是2,2,1分组有2215312215C C C A ⋅⋅=种不同情况,再将分好的组分派到不同的扶贫村共有33(1015)150A +⨯=种不同分派方式;第二步:将3名医护人员分派到3个不同的扶贫村,共有336A =种不同情况.所以所有的不同分派方案有1506900⨯=种. 故答案为:900. 【题组五 几何问题】1.(2021·全国)直线x m =,y x =将圆面224x y +≤分成若干块,现有5种颜色给这若干块涂色,且任意两块不同色,则所有可能的涂色种数是( ) A .20 B .60 C .120 D .240【答案】D【详细解析】当2m ≤-或2m ≥时,圆面224x y +≤被分成2块, 此时不同的涂色方法有5420⨯=种,当2m -<≤2m ≤<时,圆面224x y +≤被分成3块, 此时不同的涂色方法有54360⨯⨯=种,当m <<时,圆面224x y +≤被分成4块, 此时不同的涂色方法有5432120⨯⨯⨯=种, 所有可能的涂色种数是240. 故选:D2.(2021·安徽省)224x y +≤表示的平面区域内,以横坐标与纵坐标均为整数的点为顶点,可以构成的三角形个数为( ) A .286 B .281 C .256 D .176【答案】C【详细解析】由题意可得224x y +≤表示的平面区域内的整点共有13个,其中三点共线的情况有10种,五点共线的情况有2种,所以从13个点中可以构成三角形的个数为33313351022861020256C C C --=--=个.故选C .3.(2020·全国高二单元测试)以一个正方体的顶点为顶点的四面体的个数为( ) A .70 B .64 C .58 D .52【答案】C【详细解析】正方体的8个顶点中任取4个共有C 84=70个,不能组成四面体的4个顶点有:已有的6个面,对角面:有6个,共12个, ∴以一个正方体的顶点为顶点的四面体共有:70−12=58个.故答案为C. 【题组六 方程不等式问题】1.(2021·太原市)不定方程12x y z ++=的非负整数解的个数为( ) A .55 B .60 C .91 D .540【答案】C【详细解析】不定方程12x y z ++=的非负整数解的个数⇔将12个相同小球放入三个盒子,允许有空盒的放法种数.现在在每个盒子里各加一个相同的小球,问题等价于将15个相同小球放入三个盒子,没有空盒的放法种数,则只需在15个小球中形成的空位(不包含两端)中插入两块板即可,因此,不定方程12x y z ++=的非负整数解的个数为21491C =.故选:C.2.(2021·湖北)若方程12348x x x x +++=,其中22x =,则方程的正整数解的个数为 A .10B .15C .20D .30【答案】A 【详细解析】方程12348x x x x +++=,其中22x =,则1346x x x ++=将其转化为有6个完全相同的小球,排成一列,利用挡板法将其分成3组, 第一组小球数目为1x 第二组小球数目为3x 第三组小球数目为4x共有2510C =种方法故方程的正整数解的个数为10 故选A【题组七 数字问题】1.已知集合{}A a b c d =,,,,从集合A 中任取2个元素组成集合B ,则集合B 中含有元素b 的概率为( ) A .16B .13C .12D .1【答案】C【详细解析】A 中任取2个元素组成集合B ,则B 的情况有{}{}{}{}{}{}123456,,,,,,,,,,,B a b B a c B a d B b c B b d B c d ======,共6个,其中符合情况的集合为145,,B B B 共3个,故集合B 中含有元素b 的概率为3162P ==故选:C 2.如果一个四位数的各位数字互不相同,且各位数字之和等于10,则称此四位数为“完美四位数(如1036),则由数字0,1,2,3,4,5,6,7构成的“完美四位数”中,奇数的个数为( ) A .12 B .44 C .58 D .76【答案】B【详细解析】分类讨论:尾数为1:则前三位的数字可能为027,036,045,共1222312C A ⋅⋅=,还可能为234,有336A =种;尾数为3:则前三位的数字可能为016,025,共122228C A ⋅⋅=,还可能为124,有336A =种;尾数为5:则前三位的数字可能为014,023,045,共122228C A ⋅⋅=;尾数为7:则前三位的数字可能为012,共12224C A ⋅=.综上所述,共有126868444+++++=种.故选:B3.从数字0,1,2,3,4,5,6中任取3个,这3个数的乘积为偶数时的不同取法共有______种(用数字作答).【答案】34【详细解析】从数字0,1,2,3,4,5,6中任取3个,共有3735C =,乘积为奇数只有1,3,5一种情况故这3个数的乘积为偶数时的不同取法共有34种.故答案为:34【点睛】本题考查了组合的应用,利用排除法可以快速得到答案,是解题的关键.4.已知{}1,2,3,4,5,,,M m M n M m n =∈∈≠,则方程221x y m n+=表示焦点在x 轴上的椭圆的概率是_______ . 【答案】12【详细解析】因为{}1,2,3,4,5,,,M m M n M m n =∈∈≠,所以(),m n 的可能情况有:2520P =种, 又因为方程221x y m n+=表示焦点在x 轴上的椭圆,所以m n >,所以满足要求的有:2510C =种, 所以概率为:101202P ==.故答案为:12. 5.(2021·宁波市)有写好数字2,2,3,3,5,5,7,7的8张卡片,任取4张,则可以组成不同的四位数的个数为_________.【答案】204【详细解析】由题意得取出的4张卡片上的数字含有相同数字对的个数可能为0,1,2.当含有0对相同数字时,组成的不同的四位数的个数为4424A =个;当含有1对相同数字时,组成的不同的四位数的个数为221434144C C A =个;当含有2对相同数字时,组成的不同的四位数的个数为224436C C =个.综上,可以组成不同的四位数的个数为2414436204++=个.故答案为:204.6.(2020·江西省信丰中学)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.【答案】1 6【详细解析】十个数中任取七个不同的数共有C种情况,七个数的中位数为6,那么6只有处在中间位置,有C种情况,于是所求概率P==.。
排列组合的综合应用知识提要1.分类加法(分步乘法)技术原理2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示.3.排列数公式 :m n A =)1()1(+--m n n n =!!)(m n n - (n ,m ∈N ,且m n ≤). (1)(2)321!n n A n n n n =--⋅⋅⋅⋅⋅=(叫做n 的阶乘) 规定1!0=4.组合数:从n 个不同的元素中取出m ( m n ≤)个元素的所有组合的个数,用符号m n C 表示.5.组合数公式:mn C =m n m m A A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N ,m N ∈,且m n ≤) 规定01n C =,1!0=6.组合数性质:(1)m n C =m n n C - (2) m n C +1-m n C =m n C 1+ ⑶n n n n n n C C C C 2210=++++7.要弄清排列和组合的区别和联系:有序排列,无序组合。
巩固提高选择题1.某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式( )A.105种B.510种C.50种D.10种2.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有( )A .96种B .180种C .240种D .280种3.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是( )A.12694C CB.C 16C 299C.C 3100-C 394 D.A 3100-A 3944.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A .1440种B .960种C .720种D .480种5.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的 3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有( )A .311C 种 B .38A 种 C .39C 种 D .38C 种 6.欲登上第10级楼梯,如果规定每步只能跨上一级或两级,则不同的走法共有( )A.34种B.55种C.89种D.144种7.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( )A .()2142610C A 个B .242610A A 个C .()2142610C 个D .242610A 个8.从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( )A. 40种B. 60种C. 100种D. 120种9.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第( )个数.A.6B.9C.10D.810.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两个节目插入原节目单中,则不同的插法总数为( )A.42B.36C.30D.1211.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( )A.8种B.10种C.12种D.32种12.有4个标号为1,2,3,4的红球和4个标号为1,2,3,4的白球,从这8个球中任取4个球排成一排.若取出的4个球的数字之和为10,则不同的排法种数是 ( )A .384B .396C .432D .48013.甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其中种子甲必须试种,那么不同的试种方法共有( )A.12种B.18种C.24种D.96种14.某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有( )A.6种B.9种C.18种D.24种15.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是( )A .20B .16C .10D .616.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是( )A .12694C C B.C 16C 299 C.C 3100-C 394 D.A 3100-A 394 17.有4位学生和3位老师站在一排拍照,任何两位老师不站在一起的不同排法共有( )A.(4!)2种 B.4!·3!种 C.34A ·4!种 D.35A ·4!种18.把5件不同的商品在货架上排成一排,其中a ,b 两种必须排在一起,而c ,d 两种不能排在一起,则不同排法共有( )A.12种B.20种C.24种D.48种19.在200件产品中有3件是次品,现从中任意抽取5件,其中至少有两件次品的抽法有( )A .C 210C 3197 B.C 23C 3197 C.C 5200-C 5197 D.C 5200+ C 12C 419720.有6本相同的数学书和3本相同的语文书分给9个人,每人1本,共有不同分法( )A.C 39B.A 39C.A 69D.A 39·A 3321.马路上十盏路灯,为了节约用电可以关掉三盏路灯,但两端两盏不能关掉,也不能同时关掉相邻的 两盏或三盏,这样的关灯方法有( )A.56种B.36种C.20种D.10种22.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A .36种B .48种C .72种D .96种23.有4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得21分,答错得21-分;选乙题答对得7分,答错得7-分.若4位同学的总分为0,则这4位同学不同得分情况的种数是 ( )A .48B .46C .45D . 4424.有5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A .10种B .20种C .25种D .32种25.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方 案共有( )A .36种B .48种C .96种D .192种26.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x 轴上的点的个数是( )A .100个B .90个C .81个D .72个27.从5名男生中挑选3人,4名女生中挑选2人,组成一个小组,不同的挑选方法共有( )A .3254C C 种 B. 3254C C 55A 种 C. 3254A A 种 D. 3254A A 55A 种28.从4个男生,3个女生中挑选4人参加智力竞赛,要求至少有一个女生参加的选法共有( )A.12种B.34种C.35种D.340种29.平面上有7个点,除某三点在一直线上外,再无其它三点共线,若过其中两点作一直线,则可作成不同的直线( )A.18条B.19条C.20条D.21条30.在9件产品中,有一级品4件,二级品3件,三级品2件,现抽取4个检查,至少有两件一级品的抽法共有( )A.60种B.81种C.100种D.126种填空题1. 用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有个2.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有__ 种3.在△AOB的边OA上有5个点,边OB上有6个点,加上O点共12个点,以这12个点为顶点的三角形有________个.4. 今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列,有种5. 某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有种。
6.三名教师教六个班的课,每人教两个班,分配方案共有种。
7.若100种产品中有两件次品,现在从中取3件,其中至少有一件是次品的抽法种数是种.8.3名医生和6名护士被分配到三所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有种.9.从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有种.10.有7个相同的小球,任意放人四个不同的盒子中,每个盒子都不空的放法共种.11.某单位有7个连在一起的停车位,现有3辆不同型号的车需要停放,如果要求剩余的4个空车位连在一起,则不同的停放方法有种。
12.有10个运动员名额,在分给7个班,每班至少一个,有种分配方案?13.某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有种?解答题1.有4名男生,5名女生。
⑴从中选出5名代表,有多少种选法?⑵从中选出5名代表,男生2名,女生3名且某女生必须在内有多少种选法?⑶从中选出5名代表,男生不少于2名,有多少种选法?⑷分成三个小组,每组依次有4、3、2人有多少种分组方法?2.六人按下列要求站一横排,分别有多少种不同的站法?⑴甲不站两端;⑵甲、乙必须相邻;⑶甲、乙不相邻;⑷甲、乙之间间隔两人;⑸甲、乙站在两端;⑹甲不站左端,乙不站右端.3.有4个不同的球,四个不同的盒子,把球全部放入盒内.⑴共有多少种放法?⑵恰有一个盒子不放球,有多少种放法?⑶恰有一个盒内放2个球,有多少种放法?⑷恰有两个盒不放球,有多少种放法?4.按下列要求分配6本不同的书,各有多少种不同的分配方式?⑴分成三份,1份1本,1份2本,1份3本;⑵甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;⑶平均分成三份,每份2本.5.用0,1,2,3,4,5这六个数字:⑴可组成多少个无重复数字的自然数?⑵可组成多少个无重复数字的四位偶数?⑶组成无重复数字的四位数中比4023大的数有多少?。