北京市密云区2015七年级下学期期末考试数学试题含答案
- 格式:doc
- 大小:553.00 KB
- 文档页数:12
2015-2016学年度北师⼤版七年级数学下册期末测试卷及答案(精选两套)2015-2016学年度七年级下册数学期末测试卷(⼀)⼀、选择题(本⼤题共6⼩题,每⼩题3分,共18分) 1.下列各组长度的三条线段能组成三⾓形的是()A.1cm ,2cm ,3cm B.1cm ,1cm ,2cm C.1cm ,2cm ,2cm ;D.1cm ,3cm ,5cm ;2.下⾯是⼀位同学做的四道题:①a 3+a 3=a 6;②(xy 2)3=x 3y 6;③x 2?x 3=x 6;2A.(x+a)(x-a)B.(b+m)(m-b)C.(-x-b)(x-b)D.(a+b)(-a-b) 4.如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列⼀个条件后,仍⽆法判定△ADF ≌△CBE 的是()A .∠A=∠CB .AD=CBC .BE=DFD .AD ∥BC5.如图,⼀只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬⾏,那么蚂蚁爬⾏的⾼度h 随时间t 变化的图象⼤致是()6.将⼀张正⽅形纸⽚按如图1,图2所⽰的⽅向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸⽚展开铺平,再得到的图案是()A .B .C .D .⼆、填空题(本⼤题共8⼩题,每⼩题3分,共24分) 7.计算21()2--= _______1A 2A 3A 4A 5A A .B .C .D .8.如图有4个冬季运动会的会标,其中不是轴对称图形的有______个9.已知等腰三⾓形的⼀边长为4,另⼀边长为8,则这个等腰三⾓形的周长为___________. 10.已知:2211,63a b a b -=-=,则22a b +=_______ 11.如图,是我们⽣活中经常接触的⼩⼑,⼑柄外形是⼀个直⾓梯形(挖去⼀⼩半圆),⼑⽚上、下是平⾏的,转动⼑⽚时会形成∠1、∠2,则∠1+∠2=_______.12.如图所⽰,∠E=∠F=90°,∠B=∠C ,AE=AF .给出下列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ;④CD=DN .其中正确的结论是.(将你认为正确的结论的序号都填上)第11题图第12题图第13题图13.如图是叠放在⼀起的两张长⽅形卡⽚,图中有∠1、∠2、∠3,则其中⼀定相等的是_____14.如果a 2+b 2+2c 2+2ac-2bc=0,那么2015a b+的值为三、(本⼤题共4⼩题,每⼩题6分,共24分) 15.已知:2x ﹣y=2,求:〔(x 2+y 2)﹣(x ﹣y )2+2y (x ﹣y )〕÷4y 的值.16.若2(1)()a a a b --- =4,求222a b ab +-的值17.已知:如图,AB ∥CD ,∠ABE=∠DCF ,说明∠E=∠F 的理由.18.如图,把宽为2cm的纸条ABCD沿EF,GH同时折叠,B、C两点恰好落在AD边的P点处,若△PFH的周长为10cm,求长⽅形ABCD的⾯积.四、(本⼤题共3⼩题,每⼩题8分,共24分)19.将⼀副直⾓三⾓尺BAC和BDE如图放置,其中∠BCA=30°,∠BED=45°,(1)若∠BFD=75°,判断AC与BE的位置关系,并说明理由;(2)连接EC,如果AC∥BE,AB∥EC,求∠CED的度数.20.投掷⼀枚普通的正⽅体骰⼦24次.(1)你认为下列四种说法中正确的为(填序号);①出现1点的概率等于出现3点的概率;②投掷24次,2点⼀定会出现4次;③投掷前默念⼏次“出现4点”,投掷结果出现4点的可能性就会加⼤;④若只连续投掷6次,出现的点数之和不可能等于37.(2)求出现奇数的概率;(3)出现6点⼤约有多少次?21.如图所⽰,在△ABC中,DM、EN分别垂直平分AB和AC,交BC 于D、E,(1)若∠DAE=50°,求∠BAC的度数;(2)若△ADE的周长为19cm,求BC的长.五、(本⼤题共2⼩题,每⼩题9分,共18分)22.⼩明的⽗亲在批发市场按每千克1.8元批发了若⼲千克的西⽠进城出售,为了⽅便,他带了⼀些零钱备⽤.他先按市场价售出⼀些后,⼜降价出售.售出西⽠千克数x与他⼿中持有的钱数y元(含备⽤零钱)的关系如图所⽰,结合图像回答下列问题:(1)降价前他每千克西⽠出售的价格是多少?(2)随后他按每千克下降0.5元将剩余的西⽠售完,这时他⼿中的钱(含备⽤的钱)是450元,问他⼀共批发了多少千克的西⽠?(3)⼩明的⽗亲这次⼀共赚了多少钱?23.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D 不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“⼤”或“⼩”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三⾓形.六、(本⼤题共1⼩题,共12分)24.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)①找出图1中的⼀对全等三⾓形并说明理由;②写出图1中线段DE、AD、BE满⾜的数量关系;(不必说明理由)(2)当直线MN绕点C旋转到图2的位置时, 探究线段DE、AD、BE之间的数量关系并说明理由;(3)当直线MN绕点C旋转到图3的位置时,问DE、AD、BE之间⼜具有怎样的数量关系?直接写出这个数量关系(不必说明理由).参考答案1~6. CBDBBB 7.4 8.3 9.20 10.1 11.90°12.①②③13.∠2=∠314.1 15. 1.16.8 17.略18. 解:∵把宽为2cm的纸条ABCD沿EF,GH同时折叠,B、C两点恰好落在AD边的P点处,∴BF=PF,PH=CH,∵△PFH的周长为10cm,∴PF+FH+HC=BC=10cm,∴长⽅形ABCD的⾯积为:2×10=20(cm 2),19. (1)AC∥BE,理由略(2)45°.20. (1)①④(2)12(3)421. (1)∠BAC=115°;(2)BC=19cm.22(1)3.5元(2)120千克,(3)450﹣120×1.8﹣50=184元,DEA=24. 解:(1)①△ADC≌△CEB.理由如下::∵∠ACB=90°,∠ADC=90°,∠BEC=90°∴∠ACD+∠DAC=90°,∠ACD+∠BCE=90°,∴∠DAC=∠BCE,在△ADC与△BEC中,,∴△ADC≌△BEC(AAS);②DE=CE+CD=AD+BE.理由如下:由①知,△ADC≌△BEC,∴AD=CE,BE=CD,∵DE=CE+CD,∴DE=AD+BE;(2)∵AD⊥MN于D,BE⊥MN于E.∴∠ADC=∠BEC=∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.在△ADC和△CEB中,∴△ADC≌△CEB.∴CE=AD,CD=BE.∴DE=CE﹣CD=AD﹣BE.(3)同(2),易证△ADC≌△CEB.∴AD=CE,BE=CD∵CE=CD﹣ED∴AD=BE﹣ED,即ED=BE﹣AD;当MN旋转到图3的位置时,AD、DE、BE所满⾜的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).2015-2016学年度七年级数学下册期末测试卷(⼆)⼀、选择题(本⼤题共6⼩题,每⼩题3分,共18分)1.下⾯有4个汽车标志图案,其中不是轴对称图形的是( )2.下列运算:①x 2+x 4=x 6 ②2x+3y=5xy ③x 6÷x 3=x 3 ④(x 3)2=x 6 其中正确的有()A.1个B.2个C.3个D.4个DA .(2a +b )(2b -a ) B.(12x +1)(-12x -1) C .(3x -y )(-3x +y ) D.(-x -y )(-x +y ) 5.如图,⼀扇窗户打开后,⽤窗钩AB 可将其固定,这⾥所运⽤的⼏何原理是()A.三⾓形的稳定性B.两点之间线段最短C.两点确定⼀条直线D.垂线段最短6.如图,⼩亮在操场上玩,⼀段时间内沿M A B M →→→的路径匀速散步,能近似刻画⼩亮到出发点M 的距离y 与时间x之间关系的图象是()⼆、填空题(本⼤题共8⼩题,每⼩题3分,共24分)7.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为cm 0000002.0.这个数⽤科学记数法可表⽰为 cm . 8.已知x+y=4,则x 2﹣y 2+8y= .9.⼀个三⾓形的两边长分别是2和7,最长边a 为偶数,则这个三⾓形的周长为.B .C .D10.如图,把⼀块含有30°⾓(∠A=30°)的直⾓三⾓板ABC 的直⾓顶点放在长⽅形桌⾯CDEF 的⼀个顶点C 处,桌⾯的另⼀个顶点F 与三⾓板斜边相交于点F ,如果∠1=40°,那么∠AFE=11.从2、3、4这三个数字中任取两个数字组成⼀个两位数,其中能被3整除的两位数的概率是.第10题图第12题图12.如图,ABCDE 是封闭折线,则∠A ⼗∠B+∠C+∠D+∠E 为度. 13.⼀种圆环(如图),它的外圆直径是8厘⽶,环宽1厘⽶.①如果把这样的2个圆环扣在⼀起并拉紧(如图2),长度为厘⽶;②如果⽤x 个这样的圆环相扣并拉紧,长度为y 厘⽶,则y 与x 之间的关系式是.14.如图1是长⽅形纸袋,将纸袋沿EF 折叠成图2,再沿BF 折叠成图3,若∠DEF=α,⽤α表⽰图3中∠CFE 的⼤⼩为.三、(本⼤题共4⼩题,每⼩题6分,共24分)15.化简求值:)ab 2(]b a 6)b a ()b a [(3222-÷+--+,其中a=11()2--,b=01.16.已知b a 、是等腰△ABC 的边且满⾜0204822=+--+b a b a ,求等腰△ABC 的周长。
北师大版七年级下册数学期末考试试卷及答案(word 版可编辑修改)1北师大版七年级下册数学期末考试试卷及答案(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版七年级下册数学期末考试试卷及答案(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为北师大版七年级下册数学期末考试试卷及答案(word 版可编辑修改)的全部内容。
2第2题图nmba70°70°110°第3题图CBA 2112第六题图DCB A七年级数学(下)期末考试卷时间:120分钟 总分:120分一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)1、计算)1)(1(+-x x = 。
2、如图,互相平行的直线是 。
3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A= .4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 。
5、汽车司机在观后镜中看到后面一辆汽车的车牌号为 ,则这辆车的实际牌照是 。
6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 。
7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如此下去,结果如下表:所 剪 次 数 1 2 3 4 … n正三角形个数471013…an则=n a 。
8、已知412+-kx x 是一个完全平方式,那么k 的值为 .9、近似数25.08万精确到 位,有3DCBA 位有效数字,用科学计数法表示为 。
10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 。
2015年七年级数学下学期期末试卷一、选择题(每题3分,共18分) 1、下列运算正确的是( )。
A 、1055a a a =+B 、2446a a a =⨯C 、a a a =÷-10D 、044a a a =- 2、给出下列图形名称:(1)线段 (2)直角 (3)等腰三角形 (4)平行四边形 (5)长方形,在这五种图形中是轴对称图形的有( )A 、1个B 、2个C 、3个D 、4个3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 1524、1纳米相当于1根头发丝直径的六万分之一.则利用科学记数法来表示,头发丝的半径..是( )A 、6万纳米 B 、6×104纳米 C 、3×10-6米 D 、3×10-5米5、下列条件中,能判定两个直角三角形全等的是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条直角边对应相等6、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A 、1个B 、2个C 、3个D 、4个C D8060速度二、填空题(每空3分,共27分) 7、单项式313xy -的次数是 . 8、一个三角形的三个内角的度数之比为2:3:4,则该三角形按角分应为 三角形. 9、在十届全国人大四次会议上谈到解决“三农"问题时说,2006年中央财政用于“三农”的支出将达到33970000万元,这个数据用科学记数法可表示为 万元.10、如图∠AOB=1250,AO ⊥OC,B0⊥0D 则∠COD= .11、小明同学平时不用功学习,某次数学测验做选择题时,他有1道题不会做,于是随意选了一个答案(每小题4个项),他选对的概率是 . 12、若229a ka ++是一个完全平方式,则k 等于 . 13、()32+m (_________)=942-m14、已知:如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心, AD 为半径作AE 弧,再以AB 的中点F 为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 .ODCBA15、观察下列运算并填空:1×2×3×4+1=25=52; 2×3×4×5+1=121=112: 3×4×5×6+1=361=192;……根据以上结果,猜想析研究 (n+1)(n+2)(n+3)(n+4)+1= 。
第2题图nmba70°70°110°第3题图CBA2112第六题图DCB A 七年级数学(下)期末考试卷一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)1、计算)1)(1(+-x x = 。
2、如图,互相平行的直线是 。
3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = 。
4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 。
5、汽车司机在观后镜中看到后面一辆汽车的车牌号为 ,则这辆车的实际牌照是 。
6、如图,∠1 =∠2 ,若△ABC ≌△DC B,则添加的条件可以是 。
7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如此下去,结果如下表:所 剪 次 数 1 2 3 4 … n正三角形个数 471013…an则=na。
8、已知412+-kx x 是一个完全平方式,那么k 的值为 。
9、近似数25.08万精确到 位,有 位有效数字,用科学计数法表示为 。
10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 。
二、选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)11、下列各式计算正确的是( )A . a2+ a 2=a 4ﻩﻩB. 211aa a =÷- C. 226)3(x x = D . 222)(y x y x +=+第1页 共4页DCBA DC B A FEDC B A EDCBA12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )A.91B. 61 C. 51 D. 31 13、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s(单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )15、教室的面积约为60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小 C. 课桌面的大小 D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° C.125° D. 130° 17、平面上4条直线两两相交,交点的个数是 ( ) A. 1个或4个 B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个 18、如图,点E 是BC 的中点,AB⊥B C, DC ⊥B C,AE 平分∠BAD ,下列结论:① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD=AB+CD ,四个结论中成立的是 ( )A . ① ② ④ ﻩ ﻩ B. ① ② ③ C . ② ③ ④ ﻩ ﻩ D. ① ③ ④876954521乙甲BA OEDA三、解答题(共66分)19、计算(每小题4分,共12分) (1)201220112)23()32()31(-⨯--- (2)的值求22,10,3b a ab b a +==-(3)〔225)2)(()2(y y x y x y x -+--+〕÷()2y20、(6分) 某地区现有果树24000棵,计划今后每年栽果树3000棵。
北师大版七年级第二学期期末数学试卷及答案一、选择题(共10小题).1.下列图形是轴对称图形的是()A.B.C.D.2.将0.0012用科学记数法表示为()A.1.2×10﹣2B.1.2×10﹣3C.1.2×10﹣4D.1.2×10﹣53.下列说法正确的是()A.明天会下雨是必然事件B.随机事件发生的概率为C.概率很小的事件不可能发生D.不可能事件发生的概率为04.三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.165.计算(x2)3的结果是()A.x6B.x5C.3x2D.6x6.在Rt△ABC中,若一个锐角等于40°,则另一个锐角的度数为()A.40°B.45°C.50°D.60°7.下列计算正确的是()A.(3×103)2=6×105B.36×32=38C.(﹣)4×34=﹣1D.36÷32=338.若等腰三角形的顶角为50°,则它的底角度数为()A.40°B.50°C.65°D.60°9.如图,能判定DE∥AC的条件是()A.∠3=∠C B.∠1=∠3C.∠2=∠4D.∠1+∠2=180°10.小红从家出发去晨跑,她离开家和返回的距离y(米)与时间x(分)的关系图象如图所示.下列结论错误的是()A.出发10分钟时,小红距离家1000米B.整个晨跑过程一共走了3600米C.返回时速度为60米/分D.去时的平均速度小于返回速度二、填空题(7小题)11.正方形有条对称轴.12.计算:2a•3a2=.13.计算:4x2÷(2x)=.14.如图,∠A=∠D,∠1=∠2,要得到△ABC≌△DEF,添加一个条件可以是.15.某路口东西方向红绿灯的设置时间为:红灯30s,绿灯27s,黄灯3s.司机甲随机的从东往西开车到达该路口,请问他遇到红灯的概率是.16.如图,AD为∠BAE的平分线,AB∥CD.若∠BAE=40°,则∠ADC=度.17.如图,△ABC沿DE折叠,点A落在边BC上的点A1处,连接AA1,△ABC的周长为C△ABC=8.给出下列结论:①AE=A1E;②∠BAC=∠EA1D;③DE垂直平分AA1;④C+C=8.正确结论的序号是.三、解答题(一)(3个题,每题6分,共18分)18.计算:()﹣1+(π﹣3)0﹣(﹣2)2.19.先化简,再求值:(a+2b)(a+b)+(a﹣b)2,其中a=﹣1,b=2.20.弹簧挂上物体后会伸长,测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)间有下面关系(假设弹簧在弹性限度内):x012345y1010.51111.51212.5(1)根据表格,直接写出y与x之间的关系式为;(2)求挂了10千克的物体后弹簧的长度.四、解答题(二)(3个题,每题8分,共24分)21.如图,在钝角△ABC中.(1)用尺规作图法作AC的垂直平分线,与边BC、AC分别交于点D、E(保留作图痕迹,不用写作法);(2)在(1)的条件下,画出△ABC的AC边上的高BH(可用三角板画图),连接AD,直接写出∠ADE和∠HBC的大小关系.22.一个不透明的盒子里装有红、蓝、黄三种颜色的小球共60个,它们除颜色外其它均相同,其中红球有20个,蓝球比黄球多4个,随机的从盒子里摸出一个球.(1)求摸出一球是红球的概率;(2)求摸出一球是黄球的概率.23.如图,在△ABC中,AB=AC,D是BC边上的一点,以AD为边在AD右侧作△ADE,使AE=AD,连接CE,∠BAC=∠DAE=100°.(1)试说明△BAD≌△CAE;(2)若DE=DC,求∠CDE的度数.五、解答题(三)(2个小题,每小题10分,共20分)24.已知A=(4x4﹣x2)÷x2,B=(2x+5)(2x﹣5)+1.(1)求A和B;(2)若变量y满足y﹣A=B,求y与x的关系式;(3)在(2)的条件下,当y=7时,求8x2+(8x2﹣y)2﹣30的值.25.在△ABC中,AB=BC=12,∠ABC=90°.如图1,过点A作AH⊥AB,点D、E是从点A同时出发的两个动点,分别在射线AH和线段AB上运动,速度都为每秒2个单位.连结BD、DE,延长DE交直线BC于点M.当E到达点B时两点停止运动,设运动时间为t.(1)如图1,请直接写出AC与DM的位置关系和数量关系;(2)如图2,若改为在线段AB的上方作AH⊥AB,其它条件保持不变.①写出AC与DM的关系;当t=3时,判断△AEC和△MBD是否是全等三角形?并说明判断的理由;②连结CD和CE,求△CDE的面积y与t的关系式,并写出当t=3时y的值.参考答案一、选择题(10个题,每题3分,共30分)1.下列图形是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义分析得出答案.解:A.不是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项符合题意.故选:D.2.将0.0012用科学记数法表示为()A.1.2×10﹣2B.1.2×10﹣3C.1.2×10﹣4D.1.2×10﹣5【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0012=1.2×10﹣3.故选:B.3.下列说法正确的是()A.明天会下雨是必然事件B.随机事件发生的概率为C.概率很小的事件不可能发生D.不可能事件发生的概率为0【分析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.解:A.明天会下雨是随机事件,故此选项错误;B.随机事件发生的概率为0到1之间;故此选项错误;C.概率很小的事件也有可能发生,故此选项错误;D.不可能事件发生的概率为0,此选项正确;4.三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11D.16【分析】设此三角形第三边的长为a,再由三角形的三边关系即可得出结论.解:设此三角形第三边的长为a,则10﹣4<a<10+4,即6<a<14.故选:C.5.计算(x2)3的结果是()A.x6B.x5C.3x2D.6x【分析】根据幂的乘方,底数不变指数相乘计算即可.解:(x2)3=x2×3=x6.故选:A.6.在Rt△ABC中,若一个锐角等于40°,则另一个锐角的度数为()A.40°B.45°C.50°D.60°【分析】根据直角三角形两锐角互余列式计算即可得解.解:∵直角三角形中,一个锐角等于40°,∴另一个锐角的度数=90°﹣40°=50°.故选:C.7.下列计算正确的是()A.(3×103)2=6×105B.36×32=38C.(﹣)4×34=﹣1D.36÷32=33【分析】直接利用同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.解:A、(3×103)2=9×106,故此选项错误;B、36×32=38,正确;C、(﹣)4×34=1,故此选项错误;D、36÷32=34,故此选项错误;故选:B.8.若等腰三角形的顶角为50°,则它的底角度数为()A.40°B.50°C.65°D.60°【分析】等腰三角形中,给出了顶角为50°,可以结合等腰三角形的性质及三角形的内角和定理直接求出底角,答案可得.解:∵三角形为等腰三角形,且顶角为50°,∴底角=(180°﹣50°)÷2=65°.9.如图,能判定DE∥AC的条件是()A.∠3=∠C B.∠1=∠3C.∠2=∠4D.∠1+∠2=180°【分析】直接利用平行线的判定方法分别分析得出答案.解:A、当∠3=∠C时,DE∥AC,符合题意;B、当∠1=∠3时,EF∥BC,不符合题意;C、当∠2=∠4时,无法得到DE∥AC,不符合题意;D、当∠1+∠2=180°时,EF∥BC,不符合题意;故选:A.10.小红从家出发去晨跑,她离开家和返回的距离y(米)与时间x(分)的关系图象如图所示.下列结论错误的是()A.出发10分钟时,小红距离家1000米B.整个晨跑过程一共走了3600米C.返回时速度为60米/分D.去时的平均速度小于返回速度【分析】①由x=10时y=1000可得出A结论正确;②整个晨跑过程一共走了1800×2=3600米,B结论正确;③返回时速度为:1800÷(30﹣20)=180(米/分),可得C结论错误;⑤去时的平均速度为:1800÷20=90(米/分),故D结论正确.解:由图象可得:x=10时y=1000,即出发10分钟时,小红距离家1000米,故本选项不合题意;B.整个晨跑过程一共走了1800×2=3600(米),故本选项不合题意;C.返回时速度为:1800÷(30﹣20)=180(米/分),故本选项符合题意;D.去时的平均速度为:1800÷20=90(米/分),即去时的平均速度小于返回速度,故本选项不合题意.故选:C.二、填空题(7小题,每题4分,共28分)11.正方形有4条对称轴.【分析】根据正方形是轴对称图形的性质分析.解:根据正方形的性质得到,如图:正方形的对称轴是两组对边中线所在直线和两组对角线所在直线,共有4条.故答案为:4.12.计算:2a•3a2=6a3.【分析】利用单项式与单项式相乘的乘法法则运算.解:原式=6a3.故答案为6a3.13.计算:4x2÷(2x)=2x.【分析】直接利用整式的除法运算法则计算得出答案.解:4x2÷(2x)=2x.故答案为:2x.14.如图,∠A=∠D,∠1=∠2,要得到△ABC≌△DEF,添加一个条件可以是DF=AC或CD=AF..【分析】根据ASA即可解决问题.解:∵∠1=∠2,∠D=∠A,∴要得到△ABC≌△DEF,必须添加条件DF=AC或CD=AF.故答案为:DF=AC或CD=AF.15.某路口东西方向红绿灯的设置时间为:红灯30s,绿灯27s,黄灯3s.司机甲随机的从东往西开车到达该路口,请问他遇到红灯的概率是.【分析】根据题目中的数据,可以计算出司机甲遇到红灯的概率.解:由题意可得,司机甲遇到红灯的概率是=,故答案为:.16.如图,AD为∠BAE的平分线,AB∥CD.若∠BAE=40°,则∠ADC=20度.【分析】根据角平分线的定义求出∠DAB,根据平行线的性质得出∠ADC=∠DAB,代入求出即可.解:∵AD为∠BAE的平分线,∠BAE=40°,∴∠DAB=BAE=20°,∵AB∥CD,∴∠ADC=∠DAB=20°,故答案为:20.17.如图,△ABC沿DE折叠,点A落在边BC上的点A1处,连接AA1,△ABC的周长为C△ABC=8.给出下列结论:①AE=A1E;②∠BAC=∠EA1D;③DE垂直平分AA1;④C+C=8.正确结论的序号是①②③④.【分析】由折叠的性质可得AE=A1E,AD=A1D,∠BAC=∠EA1D,可得DE垂直平分AA1,由线段的和差关系可求C+C=8,即可求解.解:∵△ABC沿DE折叠,点A落在边BC上的点A1处,∴AE=A1E,AD=A1D,∠BAC=∠EA1D,故①②正确,∴DE垂直平分AA1,故③正确,∵△ABC的周长为C△ABC=8,∴AB+AC+BC=8,∵C+C=BE+A1E+A1B+CD+A1D+CA1=BE+AE+BC+AD+DC=AB+AC+BC,∴C+C=8,故④正确,故答案为:①②③④.三、解答题(一)(3个题,每题6分,共18分)18.计算:()﹣1+(π﹣3)0﹣(﹣2)2.【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.解:原式=3+1﹣4=0.19.先化简,再求值:(a+2b)(a+b)+(a﹣b)2,其中a=﹣1,b=2.【分析】根据整式的混合运算顺序进行化简,然后代入值进行计算即可.解:原式=a2+ab+2ab+2b2+a2﹣2ab+b2=2a2+ab+3b2,当a=﹣1,b=2时,原式=2×(﹣1)2+(﹣1)×2+3×22=12.20.弹簧挂上物体后会伸长,测得一弹簧的长度y(厘米)与所挂物体的质量x(千克)间有下面关系(假设弹簧在弹性限度内):x012345y1010.51111.51212.5(1)根据表格,直接写出y与x之间的关系式为y=0.5x+10;(2)求挂了10千克的物体后弹簧的长度.【分析】(1)根据表格中的数据可以求得y与x的函数关系式;(2)把x=10代入(1)的结论解答即可.解:(1)由表格的数据可知,当x=0时,y=10,x每增加1kg,弹簧伸长0.5cm,∴y=0.5x+10;故答案为:y=0.5x+10;(2)把x=10代入y=0.5x+10得:y=5+10=15.即挂了10千克的物体后弹簧的长度为15cm.四、解答题(二)(3个题,每题8分,共24分)21.如图,在钝角△ABC中.(1)用尺规作图法作AC的垂直平分线,与边BC、AC分别交于点D、E(保留作图痕迹,不用写作法);(2)在(1)的条件下,画出△ABC的AC边上的高BH(可用三角板画图),连接AD,直接写出∠ADE和∠HBC的大小关系.【分析】(1)利用尺规作图法作AC的垂直平分线即可;(2)在(1)的条件下,画出△ABC的AC边上的高BH(可用三角板画图)即可,进而可以写出∠ADE和∠HBC 的大小关系.解:(1)如图,AC的垂直平分线DE即为所求;(2)在(1)的条件下,AC边上的高BH即为所求.∠ADE和∠HBC的大小关系为:相等.理由如下:∵DE是AC的垂直平分线,∴DA=DC,AE=EC,又DE=DE,∴△ADE≌△CDE(SSS),∴∠ADE=∠CDE,∵BH⊥AC,DE⊥AC,∴DE∥BH,∴∠CDE=∠HBC,∴∠ADE=∠HBC.22.一个不透明的盒子里装有红、蓝、黄三种颜色的小球共60个,它们除颜色外其它均相同,其中红球有20个,蓝球比黄球多4个,随机的从盒子里摸出一个球.(1)求摸出一球是红球的概率;(2)求摸出一球是黄球的概率.【分析】(1)用红球的个数除以球的总个数即可得;(2)设黄球有x个,则篮球有(x+4)个,根据三种颜色球的总个数为60列方程求出x的值,再用黄色球的个数除以总个数即可得.解:(1)摸出一球是红球的概率为=;(2)设黄球有x个,则篮球有(x+4)个,根据题意,得:20+x+x+4=60,解得:x=18,∴袋子中黄球有18个,∴摸出一球是黄球的概率为=.23.如图,在△ABC中,AB=AC,D是BC边上的一点,以AD为边在AD右侧作△ADE,使AE=AD,连接CE,∠BAC=∠DAE=100°.(1)试说明△BAD≌△CAE;(2)若DE=DC,求∠CDE的度数.【分析】(1)根据SAS证明三角形全等即可.(2)证明∠B=∠ACB=∠ACE=40°,推出∠DCE=80°,利用等腰三角形的性质以及三角形内角和定理解决问题即可.【解答】(1)证明:∵∠BAC=∠DAE=100°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)解:∵AB=AC,∠BAC=100°,∴∠B=∠ACB=40°,∵△BAD≌△CAE,∴∠B=∠ACE=40°,∴∠DCE=∠BCA+∠ACE=80°,∵DE=DC,∴∠DEC=∠DCE=80°,∴∠EDC=180°﹣80°﹣80°=20°.五、解答题(三)(2个小题,每小题10分,共20分)24.已知A=(4x4﹣x2)÷x2,B=(2x+5)(2x﹣5)+1.(1)求A和B;(2)若变量y满足y﹣A=B,求y与x的关系式;(3)在(2)的条件下,当y=7时,求8x2+(8x2﹣y)2﹣30的值.【分析】(1)利用多项式除以单项式法则,以及平方差公式计算确定出A与B即可;(2)把化简得到A与B代入y﹣A=B中计算,得到y与x的关系式即可;(3)把y=7代入(2)中关系式计算求出x的值,即可求出所求.解:(1)A=(4x4﹣x2)÷x2=4x2﹣1,B=(2x+5)(2x﹣5)+1=4x2﹣25+1=4x2﹣24;(2)由y﹣A=B,得到y=A+B=4x2﹣1+4x2﹣24=8x2﹣25;(3)把y=7代入(2)中关系式得:8x2﹣25=7,即x2=4,则原式=8×4+(8×4﹣7)2﹣30=32+625﹣30=627.25.在△ABC中,AB=BC=12,∠ABC=90°.如图1,过点A作AH⊥AB,点D、E是从点A同时出发的两个动点,分别在射线AH和线段AB上运动,速度都为每秒2个单位.连结BD、DE,延长DE交直线BC于点M.当E到达点B时两点停止运动,设运动时间为t.(1)如图1,请直接写出AC与DM的位置关系和数量关系AC∥DM,AC=DM;(2)如图2,若改为在线段AB的上方作AH⊥AB,其它条件保持不变.①写出AC与DM的关系;当t=3时,判断△AEC和△MBD是否是全等三角形?并说明判断的理由;②连结CD和CE,求△CDE的面积y与t的关系式,并写出当t=3时y的值.【分析】(1)易证△DAE是等腰直角三角形,得∠DAE=90°,∠AED=45°,证明△ABC是等腰直角三角形,得AC=AB,∠BAC=∠ACB=45°,推出∠BAC=∠AED,则AC∥DM,过点D作DN⊥CB交CB延长线于N,则DN∥AB,由ASA证得△ADB≌△NBD,得DN=AB,证明△DNM是等腰直角三角形,得DM=DN,即可推出AC=DM;(2)①设AC与DM交F,证明∠DAF=45°,∠ADE=45°,则∠DFA=180°﹣∠DAF ﹣∠ADF=90°,得出AC⊥DM,△DFA是等腰直角三角形,得DF=AF,证明△CFM是等腰直角三角形,得CF=MF,即可得出AC=DM;当t=3时,易证AD=AE=BE,△EBM是等腰直角三角形,得BM=BE,∠BME =45°,推出BM=AE,即可由SAS证得△AEC≌△MBD;②由△AFE是等腰直角三角形,得AF=t,CF=AC﹣AF=12﹣t,由△DAE是等腰直角三角形,得DE=2t,由S△CDE=DE•CF,即可得出y与t的关系式,当t=3时代入即可得出y的值.【解答】(1)解:AC与DM的位置关系和数量关系是:AC∥DM,AC=DM;理由如下:∵点D、E是从点A同时出发的两个动点,分别在射线AH和线段AB上运动,速度都为每秒2个单位,∴AD=AE,∵AH⊥AB,∴△DAE是等腰直角三角形,∴∠DAE=90°,∠AED=45°,∵∠ABC=90°,AB=BC,∴△ABC是等腰直角三角形,∴AC=AB,∠BAC=∠ACB=45°,∴∠BAC=∠AED,∴AC∥DM,过点D作DN⊥CB交CB延长线于N,如图1所示:则DN∥AB,∴∠ABD=∠NDB,∵∠DAE=90°,∠ABC=90°,∴AD∥CN,∴∠ADB=∠NBD,在△ADB和△NBD中,,∴△ADB≌△NBD(ASA),∴DN=AB,∵AC∥DM,∴∠DMN=∠ACB=45°,∴△DNM是等腰直角三角形,∴DM=DN,∴AC=DM,故答案为:AC∥DM,AC=DM;(2)①AC与DM的关系为:AC⊥DM,AC=DM,理由如下:设AC与DM交F,如图2所示:∵△ABC是等腰直角三角形,∴∠BAC=∠BCA=45°,∵HA⊥AB,∴∠DAE=90°,∴∠DAF=90°﹣45°=45°,同(1)得:△DAE是等腰直角三角形,∴∠ADE=45°,∴∠DFA=180°﹣∠DAF﹣∠ADF=180°﹣45°﹣45°=90°,∴AC⊥DM,△DFA是等腰直角三角形,∴DF=AF,∴∠CFM=∠DFA=90°,∵∠ACB=45°,∴△CFM是等腰直角三角形,∴CF=MF,∴AF+CF=DF+MF,即AC=DM;当t=3时,△AEC和△MBD是全等三角形,如图3所示,理由如下:当t=3时,AE=AD=2×3=6,∴BE=AB﹣AE=12﹣6=6,∴AD=AE=BE,∵∠BEM=∠AED=45°,∴△EBM是等腰直角三角形,∴BM=BE,∠BME=45°,∴BM=AE,∵∠BAC=45°,∴∠EAC=∠BMD,在△AEC和△MBD中,,∴△AEC≌△MBD(SAS);②如图4所示:∵∠AED=45°,AC⊥DE,∴△AFE是等腰直角三角形,∴AF=AE=×2t=t,∵AC=AB=12,∴CF=AC﹣AF=12﹣t,∵△DAE是等腰直角三角形,∴DE=AE=×2t=2t,∵S△CDE=DE•CF,∴y=×2t×(12﹣t)=24t﹣2t2(0≤t≤6),当t=3时,y=24×3﹣2×32=54.。
密云区2015-2016学年度第二学期期末初一数学试题参考答案11. 60︒ 12. 2(3)(3)x x +-13.选①,方程组中第一个方程是用含x 的代数式表示y ;选②,方程组中两个方程左边x 的系数相等,y 的系数相反.(第一问1分,第2问2分)14.9 15. 4.512y x yx -=⎧⎪⎨-=⎪⎩ 16.15 ,(1)(2)2n n -- (第一问1分,第2问2分)三、解答题 17.(1)解:79x y x y -=⎧⎨+=⎩①②①+②得:216x =,解得8.x =……………………………………………………………………………1分 把8.x =代入①解得:1y =……………………………………………………………………………………………………………2分∴ 方程组的解为81x y =⎧⎨=⎩……………………………………………………………………………………….3分 (2)解: 2536x y x y +=⎧⎨-=⎩①②由①得:52y x =-③将③代入②得:3(52)6x x --=,解得:3x =………………………………………………………………………………………………………….1分 将3x =代入③,解得1y =-…………………………………………………………………………….2分∴ 方程组的解为31x y =⎧⎨=-⎩……………………………………………………………………………………3分 18.计算(1) 32(1269)(3)x x x x -+÷-解:原式=2423x x -+-…………………………………………3分 (2)解:原式=21111()3-+- = 911-+=9……………………………………………………………….3分 19.分解因式:3269ab ab ab -+原式=2(69)ab b b -+…………………………………2分 =2(3)ab b - …………………………………..3分20.解不等式:2123x x --> ,并将解集在数轴上表示出来. 解:去分母,32(2)6x x -->…………………………..1分 解得,2x >………………………………………….2分-3-23210-121. 3223(1)6x x x x >+⎧⎨≥+-⎩①②解①得:1x > ………………………………………………1分解②得:3x ≤………………………………………………..2分 所以不等式组的解集为:13x <≤………………………….3分 不等式组的整数解为2,3.……………………………………4分. 22.解:2(2)87x x x +-+ =22487x x x +-+ =2247x x -+=22(2)7x x -+………………………………………………..2分223,x x -=∴ 原式=237⨯+=13………………………………………………………4分23.化简求值: 22()3()()()x y x y x y x y +-+-+- ,其中21,5x y ==. 解:原式=222222(2)3()(2)x xy y x y x xy y ++--+-+ =2222222332x xy y x y x xy y ++-++-+=225y x -…………………………………………………………3分 当21,5x y ==时,原式=222415()11555⨯-=-=-……………..4分24.解:设李老师每小时骑行x 千米,每小时慢跑y 千米……………………………………1分据题意,可列方程组为:25520y x x y +=⎧⎨-=⎩ …………………………………………………………2分解得255x y =⎧⎨=⎩……………………………………………………………………………………………………..3分答:李老师每小时骑行25千米…………………………………………………………………………4分 25.(1)m=30. (2)200.(3)请将统计图2补充完整. (4)810.(每问1分)26.(1)3221-……………………………………………………………………………1分(2)32312- ………………………………………………………………………………………………………2分(3)化简:2244881616()()()()()m n m n m n m n m n +++++.当m n ≠时,原式=3232m n m n--;当m n =时,原式=3132m . ……………………………………………….4分 27.补全解答过程:解:∵EF 与CD 交于点H ,(已知) ∴34∠=∠ (对顶角相等) ∵360∠=︒(已知)∴4∠=60︒ (等量代换)∵AB//CD ,EF 与AB 、CD 交于点G 、H (已知)∴4180HGB ∠+∠=︒(两直线平行,同旁内角互补)∴HGB ∠=120︒ . ∵GM 平分FGB ∠(已知) ∴1∠=60︒(角平分线的定义)(每空1分)28. 已知:如图,CD//AB ,CD//GF ,FA 与AB 交于点A ,FA 与CD 交于点E. 求证:1A C ∠=∠+∠.证明:CD//GF ,FA 与CD 交于点E (已知)∴ C GFC ∠=∠(两直线平行,内错角相等)…………………………………1分 1GFA GFC ∠=∠+∠ (已知)1GFA C ∴∠=∠+∠(等量代换)………………………………………………………2分CD//AB ,CD//GF ,(已知) ∴AB//GF (平行于同一直线的两直线平行)………………………………………….3分 ∴A GFA ∠=∠(两直线平行,内错角相等)1A C ∴∠=∠+∠ (等量代换)………………………………………………………….5分。
北师大版七年级数学(下册)期末水平测试卷2015学年度第二学期2015学年度第二学期期末测试A七年级数学第Ⅰ卷(选择题,共30分).,16. 如右上图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同), 假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于_______.三、解答题(第18、19、20题各8分,第17、21、22、23、24题各10分,计72分)17. 计算(10分)(1)(5分)()()23211+ 3.14++23⎛⎫⎪⎝⎭﹣﹣π-﹣﹣(2)(5分)先化简,再求值:22)())((2b a b a b a b ---++,其中3=-a ,21=b .18. 如图,直线m l ∥,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,则∠1+∠2的和是多少度?并证明你的结论.19. 如图,点B 在射线AE 上,∠CAE =∠DAE ,∠CBE =∠DBE .求证:AC=AD .20、某电视台的娱乐节目《周末大放送》有这样的翻牌游戏,数字的背面写有祝福与获奖金额数,游戏规则是:每次翻动正面一个数字,看看反面对应的内容,就可知是获奖金还是获得温馨祝福。
正面 反面(1)翻到奖金为1000元的概率是多少?(2)翻到奖金的概率是多少?(3)一选手准备在奇数中选择一个数字,他获得奖金的概率是多少?21. 在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物(1(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢? (3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?22. 如图(1),B 地在A 地的正东方向,某一时刻,乙车从B 地开往A 地,1小时后,甲车从A 地开往B 地,当甲车到达B 地的同时乙车也到达A 地. 如图(2),横轴x (小时)表示两车的行驶时间(从乙车出发的时刻开始计时),纵轴y (千米)表示两车与A 地的距离.问题:(1)A 、B 两地相距多少千米?(2)1l 和2l 两段线分别表示两车距A 地的距离y (千米)与行驶时间x (小时)之间的关系,请问哪一段表示甲车,哪一段表示乙车?(3)请问两车相遇时距A 地多少千米?23. 作图 (1)(4分)如图(1),把大小为4×4的正方形方格分割成两个全等图形(例如图1),请在下图中,沿着虚线画出两种不同的分法,把4×4的正方形方格分割成两个全等图形......(2)(3分)如图(2),∠AOB内部有两点M和N,请找出一点P,使得PM=PN,且点P到∠AOB两边的距离相等.(简单说明作图方法,保留作图痕迹)(3)(3分)如图(3),要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使A、B到它的距离之和最短,请在图中用点Q标出奶站应建地点.(简单说明作图方法,不用证明)24.资料:小球沿直线撞击水平格档反弹时(不考虑垂直撞击),撞击路线与水平格档所成的锐角等于..反弹路线与水平格档所成的锐角.以图(1)为例,如果黑球A沿从A到O方向在O点处撞击EF边后将沿从O到C方向反弹,根据反弹原则可知∠AOE=∠COF,即∠1=∠2.如图(2)和(3),EFGH是一个长方形的弹子球台面,有黑白两球A和B,小球沿直线撞击各边反弹时遵循资料中的反弹原则.(回答以下问题时将黑白两球均看作几何图形中的点,不考虑其半径大小)探究(1):黑球A沿直线撞击台边EF哪一点时,可以使黑球A经台边EF反弹一次后撞击到白球B?请在图(2)中画出黑球A的路线图,标出撞击点,并简单证明所作路线是否符合反弹原则,探究(2):黑球A沿直线撞击台边GH哪一点时,可以使黑球A先撞击台边GH反弹一次后,再撞击台边EF反弹一次撞击到白球B?请在图(3)中画出黑球A的路线图,标出黑球撞击GH边的撞击点,简单说明作法,不用证明.2013—2014学年第二学期期末测试A七年级(下)数学试卷 参考答案一、选择题答案(每小题3分,计30分)题号1 2 3 4 5 6 7 8 9 10 答案B D DC C BD A C C二、填空题答案(每小题3分,计18分) 第11题: 5101.2-⨯ 第12题: 135 第13题: 0第14题: 9 第15题: 12+=x y 第16题: 83三、解答题答案(第18、19各7分,20题8分,第17、21、22、23、24题各10分,计72分) 17.(第(1)小题5分,第(2)小题5分) (1)原式=1(2)解:原式=)2(222222b ab a b a b +---+ =2222222b ab a b a b -+--+=ab 2 ……………………(4分) 当 3=-a ,21=b 时,原式=3- ……………………(5分满) 18.解:o4521=+∠∠ ……………………(只写结论给2分) 证明:过点B 作直线n 平行于直线m∵m l ∥,m n ∥; ∴n l ∥ ∴32∠∠=,41∠∠=;又∵o 4543=+∠∠ ∴o4521=+∠∠ ………(7分满) 【注】:其他证明方法只要正确也给分.19.证明:∵∠ABC+∠CBE=180°,∠ABD+∠DBE=180°,∠CBE=∠DBE ,∴∠ABC=∠ABD , ………(2分)在△ABC 和△ABD 中, ………(5分)∴△ABC ≌△ABD (ASA ), ………(6分) ∴AC=AD . ………(7分满)20.(第(1)题2分,(2)(3)题各3分,共8分)(1)91 (2)94 (3)5321. (第(1)(2)题各4分,第(3)题2分,共10分)(1)上表反映了弹簧的长度y 与所挂物体质量x 之间的关系;所挂物体质量x 是自变量,弹簧的长度y 是因变量.(2)当所挂物体重量为3千克时,弹簧长24 cm ;不挂重物时,弹簧长18 cm. (3)当所挂重物为7千克时,弹簧长32 cm.22. (第(1)(2)题各2分,第(3)题6分,共10分) (1)A 、B 两地相距400千米.(2)线段1l 表示甲车距A 地的距离与行驶时间的关系,线段2l 表示乙车距A 地的距离与行驶时间的关系. (3)本题有多种解法,这里给出的是用方程解答的一种方法,其他解法只要正确也给分.解: 设两车相遇时距A 地x 千米,由图象知甲车的速度为100千米/小时,乙车速度为80千米/小时,然后根据题意可列方程为804001100x x -=+ 得:91600=x 答:两车相遇时距A 地91600千米.23. (第(1)题4分,第(2)(3)题各3分,共10分) (1)画法如图,这里给出的是4种参考答案,还有其他画法,只要画出两种正确的即可.(2)先连接MNAOB 的平分线交MN 的垂直平分线于点P ,交点P (3)如图,以直线m 为对称轴作点B 的对称点B ′,连接B ′A 交直线m于点Q ,点Q 即为奶站所建位置.24. (第(1)题6分,第(2)题4分,共10分)(1)作法:如图以直线EF 为对称轴作点B 的对称点B ′,连接B ′A 交EF 于点P ,连接PB , 则点P 为撞击点,AP 和PB 为黑球A 的路线.证明:证法一:B ′和B 关于直线EF 对称,点P 在EF 上,所以B ′P 和BP 也关于EF 对称 ∵∠2和∠3是对应角∴∠2=∠3参考答案第2页(共4页)又∵∠1=∠3 (对顶角相等)∴∠1=∠2,即符合反弹原则证法二:B′和B关于直线EF对称,所以EF垂直平分线段B′B (根据对称性质)∵点P在EF上∴PB=P B′(线段垂直平分线上的点到线段两端的距离相等)∴△PB B′是等腰三角形又∵PE⊥B′B∴∠2=∠3 (三线合一)剩下的步骤同证法一.………………(本问作图2分,作法2分,证明2分,共6分)(2)以直线EF为对称轴作点B的对称点B′,再以GH为对称轴作点B′的对称点M,连接AM交GH于点S,连接B′S交EF于点T,连接TB.则点S为GH边的撞击点,AS、ST、TB为黑球A的路线.………………(本问作图2分,作法2分)。
2010-2023历年北京市密云县七年级下学期期末考试数学试卷(带解析)第1卷一.参考题库(共20题)1.将正整数依次按下表规律排成4列,根据表中的排列规律,数2014应在( )A.第672行第1列B.第672行第4列C.第671行第1列D.第671行第4列2.数学课老师提出这样一个问题:已知如图,直线AB//CD,直线EF与直线AB交于G,与直线CD交于H,且GN平分 ,求证:.下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充完整.证明:(已知)(_________________________)AB//CD,EF与AB、CD分别交于G、H(已知)( __________________________ )是的平分线,(已知)_______ (角平分线定义)(已证)(_________________)_______________________(已证)(等量代换)3.若,下列等式一定成立的是A.B.C.D.4.是一个完全平方式,则 =___________.5.因式分解(1)(2)6.直线AB与CD相交于点O,OE CD,垂足为O.若,则的大小为A.B.C.D.7.阅读学习:数学中有很多等式可以用图形的面积来表示.如图1,它表示,(1)观察图2,请你写出之间的关系________________________.(2)小明用8个一样大的长方形,(长为a,宽为b),拼成了如图甲乙两种图案,图案甲是一个正方形,图案甲中间留下了一个边长为2的正方形;图形乙是一个长方形.则="___________"8.不等式的解集在数轴上表示正确的是9.解不等式,并写出它的非负整数解.10.如图,把一个含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠2= 23°,那么∠1的度数是___________.11. =___________.12.北京市2014年5月1日至5月14日这14天的最低气温情况统计如下:最低气温(℃)7891011131417天数11123141则北京市2014年5月1日至5月14日这14天最低气温的众数和中位数分别是A.11,10.5B.11,11C.14,10.5D.14,1113.先化简后求值已知,求代数式的值.14.(1) (2)15.PM2.5是指大气中直径小于或等于2.5(0.0000025)的颗粒物,含有大量有毒、有害物质,也称可入肺颗粒物.将0.0000025用科学记数法表示为A.B.C.D.16.列方程组或不等式解应用题在数字化校园建设工程中,某学校计划购进一批笔记本电脑和台式机,经过市场调研得知如下信息:购买1台笔记本和2台台式机需付费1.4万元;购买2台笔记本和1台台式机需付费1.3万元.(1)求购买一台笔记本和一台台式机各需多少钱(单位:万元)?(2)根据学校实际情况,计划购进笔记本和台式机共20台.其中,台式机至少10台,笔记本至少8台.请你通过计算求出有几种购买方案,说明哪种费用最低. 17.解不等式组 ,并将不等式组的解集在数轴上表示.18.用代入法解方程组19.已知如图:E、F分别在DC、AB延长线上.,,.(1)求证:DC//AB.(2)求的大小.20.为了解同学对体育活动的喜爱情况,某校设计了“你最喜欢的体育活动是哪一项(仅限一项)”的调查问卷.该校对本校学生进行随机抽样调查,以下是根据调查数据得到的统计图的一部分.请根据以上信息解答以下问题:(1)该校对多少名学生进行了抽样调查?(2) ①请补全图1并标上数据②图2中x =______.(3)若该校共有学生900人,请你估计该校最喜欢跳绳项目的学生约有多少人?第1卷参考答案一.参考题库1.参考答案:B.试题分析:每行有3列,奇数开始的从左边开始排列,偶数开始的从右边开始排列.每行的最后都是3的倍数.2014÷3=671……1,所以数2014应在第672行第4列.故选B.考点:规律型:数字的变化类.2.参考答案:对顶角相等,两直线平行,同位角相等,,等量代换,∠4=.试题分析:根据题目提供的解题过程,补充完整即可.试题解析:(已知)(对顶角相等)AB//CD,EF与AB、CD分别交于G、H(已知)(两直线平行,同位角相等)是的平分线,(已知)(角平分线定义)(已证)(等量代换)∠4=(已证)(等量代换)考点:1.平行线的性质2.角平分线的性质.3.参考答案:C.试题分析:A.,故该选项错误;B.,故该选项错误;C.,该选项正确;D.,故该选项错误.故选C.考点:1.同底数幂乘法;2.同底数幂除法;3.幂的乘方.4.参考答案:36.试题分析:根据多项式是完全平方式的特征即可写出m的值. 试题解析:∵是完全平方式∴x2-12x+m=x2-2×x×6+62m=36.考点:完全平方式.5.参考答案:(1)a(a+b)(a-b);(2)2m(m-3)2.试题分析:(1)先提取公因式a后,再用平方差公式分解即可;(2)先提取公因式2m,再用完全平方公式分解即可.试题解析:(1)原式=a(a2-b2)="a(a+b)(a-b);"(2)原式=2m(m2-6mn+9m2)=2m(m-3)2.考点:因式分解---提公因式法与公式法综合运用.6.参考答案:A.试题分析:∵OE⊥CD∴∠EOD=90°又∵∠EOB=130°∴∠DOB=130°-90°=40°∴∠AOC=∠DOB=40°故选A.考点:对顶角.7.参考答案:(1)(a+b)2=(a-b)2+4ab;(2)4.试题分析:(1)利用图形面积关系得出等式即可;(3)利用图形面积之间关系得出即可求出.试题解析:(1)由图形的面积可得出:(a+b)2=(a-b)2+4ab;(2)=22=4.考点:整式的混合运算.8.参考答案:C.试题分析:解不等式2x-3>1得:x>2在数轴上表示为:故选C.考点:1.解一元一次不等式;2.在数轴上表示一元一次不等式的解集.9.参考答案:0,1,2.10.参考答案:22°.试题分析:根据题意知:∠1=∠3,而∠3+∠2=45°且∠2=23°,从而可求出∠1的度数.试题解析:如图:根据题意知:∠1=∠3∠3,而∠3+∠2=45°且∠2=23°,∴∠3=22°即:∠1=22°.考点:平行线的性质.11.参考答案:6.试题分析:根据负整数指数幂和零次幂的意义分别进行计算再求和即可得出答案.试题解析:原式=5+1=6.考点:1.负整数指数幂;2.零次幂.12.参考答案:D.试题分析:最低气温中14℃出现次数最多,因此众数是14℃;天数共有14天,中位数是第7天和第8天的平均数为(11+11)÷2=11.故选D.考点:1.众数;2.中位数.13.参考答案:6.试题分析:先反代数式变形为:2(x2-5x)-8,再把代入,即可求值.试题解析:原式=3(x2-2x-3)-(x2+4x+4)+1=3x2-6x-9-x2-4x-4+1=2x2-10x-8=2(x2-5x)-8把代入上式得:原式=2×7-8=6.考点:1.完全平方公式;2.求代数式的值.14.参考答案:(1);(2);试题分析:(1)用被除式的每一项分别除以除式,然后把所得的商相加即可;(2)先用完全平方公式和平方差公式把括号展开,再合并同类项即可求出结果.试题解析:(1)原式==;(2)原式==.考点:1.多项式除以单项式;(2)完全平方公式;(3)平方差公式.15.参考答案:D.试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.所以:0.0000025表示为:.故选D.考点:科学记数法——表示较小的数.16.参考答案:(1)一台笔记本电脑的价格为0.4万元,每台台式机的价格为0.5万元.(2)有三种方案,购买12台台式机,8台笔记本费用最低.试题分析:(1)先设每台笔记本x万元,每台台式机y万元,根据购买1台笔记本和2台台式机需付费1.4万元;购买2台笔记本和1台台式机需付费1.3万元列出方程组,求出x ,y的值即可;(2)先根据台式机至少10台,笔记本至少8台,得出购买方案,再根据每台笔记本电脑的价格和每台台式机的价格,算出总费用,再进行比较,即可得出最省钱的方案.试题解析:(1)设每台笔记本电脑的价格为x万元,每台台式机的价格为y万元,根据题意得:解得:答:购买一台笔记本电脑的价格为0.4万元,每台台式机的价格为0.5万元. (2)有三种方案:方案一:购买10台台式机,10台笔记本;总费用为:10×0.4+10×0.5=9万元.方案二:购买11台台式机,9台笔记本;总费用为:11×0.4+9×0.5=8.9万元.方案三:购买12台台式机,8台笔记本;总费用为:12×0.4+8×0.5=8.8万元.由此可知方案三费用最低.考点:二元一次方程组的应用.17.参考答案:1≤x≤3,数轴上表示见解析.试题分析:先把每个不等式的解集求出来,取它们的公共部分即为不等式组的解集,然后在数轴上表示出来即可.试题解析:解不等式①得:x≥1;解不等式②得:x≤3,所以,不等式组的解集为:1≤x≤3在数轴上表示为:考点:1.解一元一次不等式组;2.在数轴上表示不等式组的解集.18.参考答案:试题分析:先把方程①2x-8变形为y=2x-8,代入方程②消去y,求出x的值,再求出y的值即可.试题解析:方程①2x-8变形为y=2x-8,代入方程②得:3x+2(2x-8)=3解得:x=把x=代入y=2x-8得:y=-8=所以方程组的解为:考点:用代入法解二元一次方程组19.参考答案:(1)证明见解析,(2)60°试题分析:(1)由知,而,所以得,从而DC∥AB.(2)由(1)知:,而,从而可求的大小.试题解析:(1)∵∴又∵∴∴DC∥AB.(2)由(1)知:,∵∴∴.考点:平行线的判定与性质.20.参考答案:(1)50;(2)补图见解析,30;(3)90.试题分析:(1)用喜欢羽毛球运动的人数除以所占比例,即可得出总人数.(2).先用总人数减去已知人数即可求出其它的人数进行补图;然后用其它人数除以总人数即可求出x的值;(3)用样本估计总体即可求解.试题解析:(1)10÷20%=50(人)(2)其它的人数=50-10-5-20=15(人).补图如下:x%=15÷50×100%=30%,所以:x=30.(3)900×10%=90(人)因此,该校最喜欢跳绳项目的学生约有90人.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.。
北师大版七年级下册数学期末考试试卷和答案乙 乙 七年级数学(下)期末考试卷一、填空题(把你认为正确的答案填入横线上,每小题 3 分,共 30 分)1、计算(x - 1)(x + 1) =。
2、如图,互相平行的直线是。
3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = 。
4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是。
aA乙Ab12乙 2乙乙BC乙 3乙乙B 乙乙乙乙乙5、汽车司机在观后镜中看到后面一辆汽车的车牌号为,则这辆车的实际牌照是。
6、如图,∠1 =∠2 ,若△ABC≌△DCB ,则添加的条件可以是 。
7、将一个正△的纸片剪成 4 个全等的小正△,再将其中的一个按同样的方法剪成 4 个更小的正△,…如此下去,结果如下表:所 剪 次 数 1 2 3 4 … n正三角形个数471013…an则a n =。
8、已知 x 2 - kx + 1是一个完全平方式,那么 k 的值为。
4 9、近似数 25.08 万精确到位,有位有效数字,用科学计数法表示为。
10、两边都平行的两个角,其中一个角的度数是另一个角的 3 倍少 20°,这两个角的度数分别是。
二、选择题(把你认为正确的答案的序号填入刮号内,每小题 3 分,共 24 分)11、下列各式计算正确的是( )A . a 2 + a 2 =a 4B. a -1 ÷ a = 1a 2C. (3x )2 = 6x 2D. (x + y )2 = x 2 + y 212、在“妙手推推推”游戏中,主持人出示了一个 9 位数 ,让参加者猜商品价格,被猜的价格是一个 4 位数,也就是这个 9 4 连在一起的所有 4 位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )A.19B.1 6C.1 5D.1 313、一列火车由甲市驶往相距 600㎞的乙市,火车的速度是 200㎞/时,火车离乙市的距离 s (单位:㎞)随行驶110°70°70°mn2 5 7 6 5 1 4 8 9北师大版七年级下册数学期末考试试卷和答案北师大版七年级下册数学期末考试试卷和答案时间 t (单位:小时) 变化的关系用图表示正确的是()14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是( )AB C15、教室的面积约为 60m ²,它的百万分之一相当于()A. 小拇指指甲盖的大小 C. 课桌面的大小B. 数学书封面的大小D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD=( )A. 110°B. 115°C.125°D. 130°AE 17、平面上 4 条直线两两相交,交点的个数是()C18、如图,点 E 是 BC 的中点,AB ⊥BC , DC⊥BC ,AE 平分∠BAD,下列结论:AB① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD=AB +CD ,E四个结论中成立的是( )A. ① ② ④B. ① ② ③ DCC. ②③ ④D.① ③ ④第 2 页 共 4 页B FDA. 1 个或 4 个B. 3 个或 4 个C. 1 个、4 个或 6 个D. 1 个、3 个、4 个或 6 个)DOE( ) 三、解答题(共 66 分)19、计算(每小题 4 分,共 12 分) (1) (-1)-2 - 2 2011 ⨯ (- 3)2012(2) a - b = 3, ab = 10, 求a 2 + b 2的值332(3)〔(x + 2 y )2 - (x - y )(x + 2 y ) - 5 y 2 〕÷( 2 y )20、(6 分) 某地区现有果树 24000 棵,计划今后每年栽果树 3000 棵。
密云区2015—2016学年第二学期初一期末数学试卷一、选择题(本题共30分,每小题3分)1.下列计算结果正确的是()A. 236.a a a= B. 236()a a= C. 329()a a= D.623a a a÷=2.下列调查中,适合用普查方法的是()A.了解中央电视台《春节联欢晚会》的收视率B.了解游客对密云区鱼王美食节的满意度C.了解某次航班乘客随身携带物品情况D.了解某地区饮用水矿物质含量情况3.不等式组21xx>-⎧⎨<⎩的解集在数轴上表示正确的是()4.化简2343.()32x y x-的结果为()A. 33x y- B. 33x y C. 332x y- D. 332x y5.32xy=⎧⎨=⎩是方程10mx y+-=的一组解,则m的值()A.13B.12C.12- D.13-6.如图,将三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为()A. 30︒B. 40︒C. 50︒D. 60︒7.利用右图中图形面积关系可以解释的公式是()A.222()2a b a ab b+=++B. 222()2a b a ab b-=-+C. 22()()a b a b a b+-=-D. 2333()()a b a ab b a b+-+=+21bbaa8. 如图所示,过直线l 外一点A 作l 的平行线可以按以下的步骤完成:一贴:用三角板的最长边紧贴着直线l ,即使得最长边所在的直线与直线l 重合; 二靠:用一个直尺紧靠着三角板的一条较短的边; 三移:按住三角板,沿着直尺移动到合适的位置,使得三角板的最长边所在的直线经过点A ;四画:沿着三角板最长边所在的直线画出一条直线,这就是经过点A 和l 平行的直线.这样作图依据的原理是( )A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,内错角相等9.某校为了解学生每周体育锻炼时间情况,随机抽取了20名同学进行调查,结果如下:时间(小时)5 6 7 8 9 人数351011则这些同学每周体育锻炼时间的平均数和中位数是( ) A.6.6,10 B.7,7 C.6.6,7 D.7,1010.五月初五端午节这天,妈妈让小明去超市买豆沙馅和蛋黄鲜肉馅的粽子.豆沙馅的每个卖2元,蛋黄鲜肉馅的每个卖3元,两种的粽子至少各买一个,买粽子的总钱数不能超过15元.则不同的购买方案的个数为( )A.11B.12C.13D.14二、填空题(本题共18分,每小题3分)11.已知130∠=︒,1∠与2∠互为余角,则2∠的度数为______________. 12.因式分解:2218x -=__________________.13.有三个关于,x y 的方程组:①2135y x x y =-⎧⎨+=⎩ ②15x y x y +=⎧⎨-=⎩ ③235576x y x y +=⎧⎨-=⎩请你写出其中一个你认为容易求解的方程组的序号:___________,说明你选择的这个容易求解的方程组的特征_________________. 14. 若26x x m ++ 是一个完全平方式,则m 的值为_____________.15.《孙子算经》是中国古代重要的数学著作.在《孙子算经》中里有这样一道题:今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译成白话文:“现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x 尺,绳子的长度为y 尺.则可列出方程组为:________________________________. Al16. 杨辉是我国南宋时期杭州人,在他1261年所著的《详解九章算法》一书中,辑录了如下所示的三角形数表,被后人称为“杨辉三角”:按照上面的规律,第7行的第2个数是_______;第n 行(3n ≥)的第3个数是________(用含n 的代数式表示).三、解答题(本题共42分,其中17题、18题各6分,19题、20题各3分,21~26题每题4分)17.解方程组(1)79x y x y -=⎧⎨+=⎩ (2)2536x y x y +=⎧⎨-=⎩18.计算(1) 32(1269)(3)x x x x -+÷- (2) 201()(5)|1|3----+-19.分解因式:3269ab ab ab -+20.解不等式:2123x x --> ,并将解集在数轴上表示出来. 543210-1-221.求不等式组3223(1)6x x x x >+⎧⎨≥+-⎩ 的整数解.22.已知223,x x -= 求2(2)87x x x +-+的值.23.化简求值: 22()3()()()x y x y x y x y +-+-+- ,其中21,5x y ==.24.列方程(组)解应用题星期天,李老师进行 “铁人两项”周末有氧健身运动.李老师先慢跑1小时,然后再骑行2小时.两项运动的总路程是55千米,其中李老师骑行比慢跑每小时快20千米.求李老师每小时骑行多少千米?2016年北京市春季学期初中开放性科学实践活动共上线1009个活动项目,资源单位为学生提供了三种预约方式:自主选课、团体约课、送课到校,其中少年创学院作为首批北京市开放性科学实践平台入选单位,在2015年下半年就已经分别为北京教育学院附属丰台实验学校分校、清华大学附属中学永丰学校、北京市八一中学、中国人民大学附属中学等多所学校提供送课到校服务,并以高质量的创客课堂赢得大家的认可.全市初一学生可以通过网络平台进行开放性科学实践平台选课,活动项目包括六个领域,A:自然与环境,B:健康与安全,C:结构与机械,D:电子与控制,E:数据与信息,F:能源与材料.某区为了解学生自主选课情况,随机抽取了初一部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:(1)扇形统计图中m值为________________.(2)这次被调查的学生共有________人.(3)请将统计图2补充完整.(4)该区初一共有学生2700人,根据以上信息估计该区初一学生中选择电子与控制的人数.小明遇到下面一个问题: 计算248(21)(21)(21)(21)++++.经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:248(21)(21)(21)(21)++++=248(21)(21)(21)(21)(21)+-+++ =2248(21)(21)(21)(21)-+++ =448(21)(21)(21)-++ =88(21)(21)-+=1621-请你根据小明解决问题的方法,试着解决以下的问题: (1)24816(21)(21)(21)(21)(21)+++++=____________. (2)24816(31)(31)(31)(31)(31)+++++=_____________. (3)化简:2244881616()()()()()m n m n m n m n m n +++++.四、解答题(本题共10分,每题各5分) 27.补全解答过程:已知如图,//,AB CD EF 与AB 、CD 交于点G 、H. GM 平分FGB ∠ .360∠=︒,求1∠的度数. 解:∵EF 与CD 交于点H ,(已知) ∴34∠=∠ (_____________) ∵360∠=︒(已知)∴4∠=60︒ (______________)∵AB//CD ,EF 与AB 、CD 交于点G 、H (已知) ∴4180HGB ∠+∠=︒(_________________) ∴HGB ∠=_________. ∵GM 平分FGB ∠(已知)∴1∠=_____︒ (角平分线的定义)28. 已知:如图,CD//AB ,CD//GF ,FA 与AB 交于点A ,FA 与CD 交于点E.求证:1A C ∠=∠+∠.G1FED CBA43MH G 21FEDC BA密云区2015-2016学年度第二学期期末初一数学试题参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 B CACDBABCD二、填空题11. 60︒ 12. 2(3)(3)x x +-13.选①,方程组中第一个方程是用含x 的代数式表示y ;选②,方程组中两个方程左边x 的系数相等,y 的系数相反.(第一问1分,第2问2分)14.9 15. 4.512y x yx -=⎧⎪⎨-=⎪⎩ 16.15 ,(1)(2)2n n -- (第一问1分,第2问2分)三、解答题 17.(1)解:79x y x y -=⎧⎨+=⎩①②①+②得:216x =,解得8.x =……………………………………………………………………………1分把8.x =代入① 解得:1y =……………………………………………………………………………………………………………2分∴ 方程组的解为81x y =⎧⎨=⎩……………………………………………………………………………………….3分 (2)解: 2536x y x y +=⎧⎨-=⎩①②由①得:52y x =-③将③代入②得:3(52)6x x --=,解得:3x =………………………………………………………………………………………………………….1分将3x =代入③,解得1y =-…………………………………………………………………………….2分∴ 方程组的解为31x y =⎧⎨=-⎩……………………………………………………………………………………3分 18.计算(1) 32(1269)(3)x x x x -+÷-解:原式=2423x x -+-…………………………………………3分 (2)解:原式=21111()3-+- = 911-+=9……………………………………………………………….3分 19.分解因式:3269ab ab ab -+原式=2(69)ab b b -+…………………………………2分 =2(3)ab b - …………………………………..3分20.解不等式:2123x x --> ,并将解集在数轴上表示出来. 解:去分母,32(2)6x x -->…………………………..1分 解得,2x >………………………………………….2分-3-23210-121. 3223(1)6x x x x >+⎧⎨≥+-⎩①②解①得:1x > ………………………………………………1分解②得:3x ≤………………………………………………..2分 所以不等式组的解集为:13x <≤………………………….3分 不等式组的整数解为2,3.……………………………………4分. 22.解:2(2)87x x x +-+ =22487x x x +-+ =2247x x -+=22(2)7x x -+………………………………………………..2分223,x x -= ∴ 原式=237⨯+=13………………………………………………………4分 23.化简求值: 22()3()()()x y x y x y x y +-+-+- ,其中21,5x y ==. 解:原式=222222(2)3()(2)x xy y x y x xy y ++--+-+ =2222222332x xy y x y x xy y ++-++-+=225y x -…………………………………………………………3分 当21,5x y ==时,原式=222415()11555⨯-=-=-……………..4分 24.解:设李老师每小时骑行x 千米,每小时慢跑y 千米……………………………………1分 据题意,可列方程组为:25520y x x y +=⎧⎨-=⎩ …………………………………………………………2分解得255x y =⎧⎨=⎩……………………………………………………………………………………………………..3分 答:李老师每小时骑行25千米…………………………………………………………………………4分 25.(1)m=30. (2)200.(3)请将统计图2补充完整. (4)810.40图23060203020E F D C B A 605040302010O 项目所属领域人数(每问1分)26.(1)3221-……………………………………………………………………………1分32312- ………………………………………………………………………………………………………2分 (3)化简:2244881616()()()()()m n m n m n m n m n +++++. 当m n ≠时,原式=3232m n m n--; 当m n =时,原式=3132m . ……………………………………………….4分27.补全解答过程:解:∵EF 与CD 交于点H ,(已知)∴34∠=∠ (对顶角相等)∵360∠=︒(已知)∴4∠=60︒ (等量代换)∵AB//CD ,EF 与AB 、CD 交于点G 、H (已知)∴4180HGB ∠+∠=︒(两直线平行,同旁内角互补) ∴HGB ∠=120︒ .∵GM 平分FGB ∠(已知)∴1∠=60︒(角平分线的定义)(每空1分)28. 已知:如图,CD//AB ,CD//GF ,FA 与AB 交于点A ,FA 与CD 交于点E.求证:1A C ∠=∠+∠.证明:CD//GF ,FA 与CD 交于点E (已知)∴ C GFC ∠=∠(两直线平行,内错角相等)…………………………………1分1GFA GFC ∠=∠+∠ (已知)1GFA C ∴∠=∠+∠(等量代换)………………………………………………………2分 CD//AB ,CD//GF ,(已知)∴AB//GF (平行于同一直线的两直线平行)………………………………………….3分 ∴A GFA ∠=∠(两直线平行,内错角相等)1A C ∴∠=∠+∠ (等量代换)………………………………………………………….5分G 1FE D C BA 43M H G 21F E D CB A。