广西贵港市2017届中考数学总复习 第五单元 四边形 第20讲 平行四边形与多边形试题
- 格式:doc
- 大小:214.00 KB
- 文档页数:4
第21讲 矩形、菱形和正方形1.(2016·无锡)下列性质中,菱形具有而矩形不一定具有的是( C ) A .对角线相等 B .对角线互相平分 C .对角线互相垂直 D .邻边互相垂直 2.(2016·黔东南)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,若AB =2,∠ABC =60°,则BD 的长为( D ) A .2 B .3 C. 3 D .2 33.(2016·台湾)如图,有一平行四边形ABCD 与一正方形CEFG ,其中E 点在AD 上.若∠ECD=35°,∠AEF =15°,则∠B 的度数为( C )A .50°B .55°C .70°D .75°4.(2016·荆门)如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( B )A .△AFE ≌△DCEB .AF =12ADC .AB =AFD .BE =AD -DF5.(2016·绥化)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC =4,则四边形OCED 的周长为( B )A .4B .8C .10D .126.(2016·枣庄)如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于点H ,则DH 等于( A )A.245 B.125C .5D .4 7.(2016·龙东)如图,在平行四边形ABCD 中,延长AD 到点E ,使DE =AD ,连接EB ,EC ,DB.请你添加一个条件答案不唯一,如:CD =BE ,使四边形DBCE 是矩形.8.(2016·扬州)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,点E 为AD 的中点,若OE =3,则菱形ABCD 的周长为24.9.(2016·昆明)如图,E ,F ,G ,H 分别是矩形ABCD 各边的中点,AB =6,BC =8,则四边形EFGH 的面积是24.10.(2016·青岛)如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,CE =5,F 为DE 的中点.若△CEF 的周长为18,则OF 的长为3.5.11.(2016·云南)如图,菱形ABCD 的对角线AC 与BD 交于点O ,∠ABC ∶∠BAD =1∶2,BE ∥AC ,CE ∥BD. (1)求tan ∠DBC 的值;(2)求证:四边形OBEC 是矩形.解:(1)∵四边形ABCD 是菱形, ∴AD ∥BC ,∠DBC =12∠ABC.∴∠ABC +∠BAD=180°. 又∵∠ABC∶∠BAD=1∶2, ∴∠ABC =60°. ∴∠DBC =12∠ABC=30°.∴tan ∠DBC =tan30°=33. (2)证明:∵四边形ABCD 是菱形, ∴AC ⊥BD ,即∠BOC=90°. ∵BE ∥AC ,CE ∥BD , ∴BE ∥OC ,CE ∥OB.∴四边形OBEC 是平行四边形,且∠BOC=90°.∴四边形OBEC 是矩形.12.(2016·遵义)如图,在矩形ABCD 中,延长AB 至E ,延长CD 至F ,BE =DF ,连接EF ,与BC ,AD 分别相交于P ,Q 两点.(1)求证:CP =AQ ;(2)若BP =1,PQ =22,∠AEF =45°,求矩形ABCD 的面积.解:(1)证明:∵四边形ABCD 是矩形,∴∠A =∠ABC=∠C=∠ADC=90°,AB =CD ,AD =BC ,AB ∥CD ,AD ∥BC. ∴∠E =∠F.∵BE =DF ,∴AE =CF.在△CFP 和△AEQ 中,⎩⎪⎨⎪⎧∠C=∠A,CF =AE ,∠F =∠E,∴△CFP ≌△AEQ(ASA).∴CP =AQ.(2)∵AD∥BC,∴∠PBE =∠A=90°. ∵∠AEF =45°,∴△BEP ,△AEQ 是等腰直角三角形. ∴BE =BP =1,AQ =AE.∴PE =2BP = 2.∴EQ =PE +PQ =2+22=3 2. ∴AQ =AE =3. ∴AB =AE -BE =2.∵CP =AQ ,AD =BC ,∴DQ =BP =1. ∴AD =AQ +DQ =3+1=4. ∴S 矩形ABCD =AB·AD=2×4=8.13.(2016·菏泽)在▱ABCD 中,AB =3,BC =4,当▱ABCD 的面积最大时,下列结论正确的有( B ) ①AC =5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A .①②③B .①②④C .②③④D .①③④14.(2016·舟山)如图,矩形ABCD 中,AD =2,AB =3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( D )A. 5B.136 C .1 D.5615.(2016·张家界)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在E 处,EQ 与BC 相交于点F.若AD =8 cm ,AB =6 cm ,AE =4 cm.则△EBF 的周长是8 cm.16.(2016·株洲)已知正方形ABCD ,BC =3,点E ,F 分别是CB ,CD 延长线上的点,DF =BE ,连接AE ,AF ,过点A 作AH⊥ED 于H 点.(1)求证:△ADF≌△ABE;(2)若BE =1,求tan ∠AED 的值.解:(1)在正方形ABCD 中,∵AD =AB ,∠ADC =∠ABC=90°, ∴∠ADF =∠ABE=90°.在△ADF 与△ABE 中,⎩⎪⎨⎪⎧AD =AB ,∠ADF =∠ABE,DF =BE ,∴△ADF ≌△ABE.(2)过点A 作AH⊥DE 于点H ,在Rt △ABE 中,∵AB =BC =3,BE =1, ∴AE =10,ED =CD 2+CE 2=5.∴S △AED =12AD·BA=92,S △ADE =12DE·AH=92.解得AH =1.8.在Rt △AHE 中,∵AE =10,AH =1.8, ∴EH =2.6.∴tan ∠AED =AH EH =1.82.6=913.17.如图,在正方形ABCD 的边长为2,∠DAC 的平分线交DC 于点E ,点P ,Q 分别是AD 和AE 上的动点,则DQ +PQ。
2017 年广西贵港市中考数学试卷一、选择题:本大题共12 个小题,每题 3 分,共36 分 . 在每题给出的四个选项中,只.有一项为哪一项切合题目要求的1. 7 的相反数是()A. 7B.﹣ 7C.D.﹣)2.数据 3, 2, 4, 2, 5, 3,2 的中位数和众数分别是(A.2,3 B. 4,2 C.3,2 D.2, 23.如图是一个空心圆柱体,它的左视图是()A.B.C.D.4.以下二次根式中,最简二次根式是()A.B.C.D.5.以下运算正确的选项是()A. 3a2+a=3a3 B . 2a3?(﹣ a2) =2a5 C. 4a6+2a2=2a3D.(﹣ 3a)2﹣a2=8a26.在平面直角坐标系中,点P( m﹣ 3,4﹣ 2m)不行能在()A.第一象限 B .第二象限C.第三象限 D .第四象限7.以下命题中假命题是()A.正六边形的外角和等于360°B.位似图形必然相像C.样本方差越大,数据颠簸越小D.方程 x2+x+1=0 无实数根8.从长为 3,5,7,10 的四条线段中随意选用三条作为边,能构成三角形的概率是()A.B.C.D.19.如图,A,B,C,D 是⊙ O上的四个点, B 是的中点,M是半径OD上随意一点.若∠ BDC=40°,则∠ AMB的度数不行能是()A.45° B.60° C.75° D.85°10.将以下图的抛物线向右平移 1 个单位长度,再向上平移 3 个单位长度后,获取的抛物线分析式是()A. y=( x﹣1)2+1 B. y=( x+1)2+1 C. y=2( x﹣ 1)2+1D. y=2( x+1)2+111.如图,在Rt△ ABC中,∠ ACB=90°,将△ABC绕极点 C 逆时针旋转获取△A'B'C , M是BC的中点, P 是 A'B' 的中点,连结 PM.若 BC=2,∠BAC=30°,则线段 PM的最大值是()A.4B. 3C. 2D. 112.如图,在正方形ABCD中, O是对角线 AC与 BD的交点, M是 BC边上的动点(点M不与B,C 重合),CN⊥ DM,CN与 AB交于点 N,连结 OM,ON,MN.以下五个结论:①△ CNB≌△DMC;222②△ CON≌△ DOM;③△ OMN∽△ OAD;④ AN+CM=MN;⑤若 AB=2,则 S△OMN的最小值是,其中正确结论的个数是()A.2B. 3C.4D.5二、填空题(每题 3 分,满分18 分,将答案填在答题纸上)13.计算:﹣3﹣ 5=.14.中国的领水面积约为370 000km 2,将数370 000用科学记数法表示为.15.如图,AB∥ CD,点E 在AB 上,点 F 在CD上,假如∠CFE:∠ EFB=3: 4,∠ ABF=40°,那么∠BEF的度数为.16.如图,点P 在等边△ ABC的内部,且PC=6,PA=8,PB=10,将线段 PC绕点 C 顺时针旋转60°获取 P'C,连结 AP' ,则 sin ∠ PAP'的值为.17.如图,在扇形长为半径作交OAB中, C 是OB于点 E,若OA的中点,CD⊥OA,CD与交于点D,以OA=4,∠AOB=120°,则图中暗影部分的面积为O为圆心,OC的.(结果保存π)18.如图,过C( 2,1)作AC∥x轴, BC∥y轴,点A, B 都在直线y= ﹣ x+6上,若双曲线y=(x> 0)与△ ABC总有公共点,则k 的取值范围是.三、解答题(本大题共 8小题,共66 分 . 解答应写出文字说明、证明过程或演算步骤. )19.( 1)计算: | ﹣ 3|+ (+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣) +,此中 a=﹣ 2+ .20.尺规作图(不写作法,保存作图印迹):已知线段 a 和∠ AOB,点 M在 OB上(以下图).(1)在 OA边上作点 P,使 OP=2a;(2)作∠ AOB的均分线;(3)过点 M作 OB的垂线.21.如图,一次函数y=2x﹣ 4 的图象与反比率函数y=的图象交于A,B 两点,且点 A 的横坐标为 3.(1)求反比率函数的分析式;(2)求点 B 的坐标.22.在展开“经典阅读”活动中,某学校为认识全校学生利用课外时间阅读的状况,学校团委随机抽取若干名学生,检查他们一周的课外阅读时间,并依据检查结果绘制了以下尚不完整的统计表.依据图表信息,解答以下问题:频次散布表阅读时间频数频次(小时)(人)1≤ x< 2180.122≤ x< 3a m3≤ x< 4450.34≤ x< 536n5≤ x< 6210.14共计b1(1)填空: a=, b=,m=, n=;(2)将频数散布直方图增补完好(绘图后请标明相应的频数);(3)若该校由 3000 名学生,请依据上述检查结果,估量该校学生一周的课外阅读时间不足三小时的人数.23.某次篮球联赛初赛阶段,每队有10 场竞赛,每场竞赛都要分出输赢,每队胜一场得2分,负一场得 1 分,积分超出 15分才能获取参赛资格.(1)已知甲队在初赛阶段的积分为18 分,求甲队初赛阶段胜、负各多少场;(2)假如乙队要获取参加决赛资格,那么乙队在初赛阶段起码要胜多少场?24.如图,在菱形ABCD中,点 P 在对角线AC上,且 PA=PD,⊙ O是△ PAD的外接圆.(1)求证: AB是⊙ O的切线;(2)若 AC=8, tan ∠ BAC=,求⊙ O的半径.25.如图,抛物线y=a( x﹣ 1)(x﹣ 3)与 x 轴交于 A, B 两点,与y 轴的正半轴交于点C,其极点为D.(1)写出 C, D 两点的坐标(用含 a 的式子表示);(2)设 S△BCD: S△ABD=k,求 k 的值;(3)当△ BCD是直角三角形时,求对应抛物线的分析式.26.已知,在Rt△ ABC中,∠ ACB=90°, AC=4, BC=2, D 是 AC 边上的一个动点,将△ABD 沿 BD所在直线折叠,使点 A 落在点 P 处.(1)如图 1,若点 D 是 AC中点,连结PC.①写出 BP, BD的长;②求证:四边形 BCPD是平行四边形.(2)如图 2,若 BD=AD,过点 P作 PH⊥ BC交 BC的延伸线于点 H,求 PH的长.2017 年广西贵港市中考数学试卷参照答案与试题分析一、选择题:本大题共12 个小题,每题 3 分,共 36 分 . 在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1. 7 的相反数是()A. 7B.﹣ 7 C.D.﹣【考点】 14:相反数.【剖析】依据一个数的相反数就是在这个数前方添上“﹣”号,求解即可.【解答】解: 7 的相反数是﹣7,应选: B.2.数据 3, 2, 4, 2, 5, 3,2 的中位数和众数分别是()A.2,3 B. 4,2 C.3,2 D.2, 2【考点】 W5:众数; W4:中位数.【剖析】依据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大摆列:2, 2, 2, 3, 3, 4, 5,最中间的数是3,则这组数据的中位数是3;2 出现了3 次,出现的次数最多,则众数是2.应选: C.3.如图是一个空心圆柱体,它的左视图是()A.B.C.D.【考点】 U1:简单几何体的三视图.【剖析】依据从左侧看获取的图形是左视图,可得答案.【解答】解:从左侧看是三个矩形,中间矩形的左右两边是虚线,应选: B.)4.以下二次根式中,最简二次根式是(A. B. C. D.【考点】 74:最简二次根式.【剖析】检查最简二次根式的两个条件能否同时知足,同时知足的就是最简二次根式,不然就不是.【解答】解: A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故 A 切合题意;B、被开方数含能开得尽方的因数或因式,故 B 不切合题意;C、被开方数含分母,故 C 不切合题意;D、被开方数含能开得尽方的因数或因式,故D不切合题意;应选:A.5.以下运算正确的选项是()A. 3a2+a=3a3 B . 2a3?(﹣ a2) =2a5 C. 4a6+2a2=2a3D.(﹣ 3a)2﹣a2=8a2【考点】 49:单项式乘单项式;35:归并同类项;47:幂的乘方与积的乘方.【剖析】运用归并同类项,单项式乘以单项式,幂的乘方等运算法例运算即可.【解答】解: A.3a 2与 a 不是同类项,不可以归并,因此 A 错误;B.2a 3?(﹣ a2) =2×(﹣ 1)a5=﹣ 2a5,因此 B 错误;C.4a 6与 2a2不是同类项,不可以归并,因此C 错误;D.(﹣ 3a)2﹣a2=9a2﹣ a2=8a2,因此 D正确,应选 D.6.在平面直角坐标系中,点P( m﹣ 3,4﹣ 2m)不行能在()A.第一象限 B .第二象限C.第三象限 D .第四象限【考点】 D1:点的坐标.【剖析】分点P 的横坐标是正数和负数两种状况议论求解.【解答】解:①m﹣ 3> 0,即 m> 3 时,﹣ 2m<﹣ 6,4﹣ 2m<﹣ 2,因此,点P( m﹣ 3,4﹣ 2m)在第四象限,不行能在第一象限;②m﹣ 3< 0,即 m< 3 时,﹣ 2m>﹣ 6,4﹣ 2m>﹣ 2,点 P( m﹣ 3, 4﹣ 2m)能够在第二或三象限,综上所述,点 P 不行能在第一象限.应选 A.7.以下命题中假命题是()A.正六边形的外角和等于360°B.位似图形必然相像C.样本方差越大,数据颠簸越小D.方程 x2+x+1=0 无实数根【考点】 O1:命题与定理.【剖析】依据正确的命题是真命题,错误的命题是假命题进行剖析即可.【解答】解: A、正六边形的外角和等于360°,是真命题;B、位似图形必然相像,是真命题;C、样本方差越大,数据颠簸越小,是假命题;D、方程 x2+x+1=0 无实数根,是真命题;应选: C.8.从长为 3,5,7,10 的四条线段中随意选用三条作为边,能构成三角形的概率是()A.B.C.D.1【考点】 X6:列表法与树状图法;K6:三角形三边关系.【剖析】列举出全部等可能的状况数,找出能构成三角形的状况数,即可求出所求概率.【解答】解:从长为3, 5, 7, 10 的四条线段中随意选用三条作为边,全部等可能状况有:3, 5, 7; 3, 5, 10; 3, 7,10; 5, 7, 10,共 4 种,此中能构成三角形的状况有:3, 5, 7; 5, 7, 10,共 2 种,则 P(能构成三角形) = = ,应选 B9.如图,A,B,C,D 是⊙ O上的四个点, B 是的中点,M是半径OD上随意一点.若∠ BDC=40°,则∠ AMB的度数不行能是()A.45° B.60° C.75° D.85°【考点】 M5:圆周角定理;M4:圆心角、弧、弦的关系.【剖析】依据圆周角定理求得∠AOB的度数,则∠AOB的度数必定不小于∠AMB的度数,据此即可判断.【解答】解:∵ B 是的中点,∴∠ AOB=2∠BDC=80°,又∵ M是 OD上一点,∴∠ AMB≤∠ AOB=80°.则不切合条件的只有85°.应选 D.10.将以下图的抛物线向右平移 1 个单位长度,再向上平移 3 个单位长度后,获取的抛物线分析式是()A. y=( x﹣1)2+1 B. y=( x+1)2+1 C. y=2( x﹣ 1)2+1D. y=2( x+1)2+1【考点】 H6:二次函数图象与几何变换.【剖析】依据平移规律,可得答案.【解答】解:由图象,得y=2x 2﹣ 2,由平移规律,得y=2( x﹣ 1)2+1,应选: C.11.如图,在Rt△ ABC中,∠ ACB=90°,将△ABC绕极点 C 逆时针旋转获取△A'B'C , M是BC的中点, P 是 A'B' 的中点,连结 PM.若 BC=2,∠BAC=30°,则线段 PM的最大值是()A.4B. 3C.2D.1【考点】 R2:旋转的性质.【剖析】如图连结PC.思想求出PC=2,依据 PM≤ PC+CM,可得 PM≤3,由此即可解决问题.【解答】解:如图连结PC.在 Rt △ ABC中,∵∠ A=30°, BC=2,∴AB=4,依据旋转不变性可知, A′ B′=AB=4,∴A′P=PB′,∴PC= A′B′=2,∵CM=BM=1,又∵ PM≤ PC+CM,即 PM≤ 3,∴PM的最大值为3(此时 P、C、 M共线).应选 B.12.如图,在正方形ABCD中, O是对角线 AC与 BD的交点, M是 BC边上的动点(点M不与B,C 重合),CN⊥ DM,CN与 AB交于点 N,连结 OM,ON,MN.以下五个结论:①△ CNB≌△DMC;222,其②△ CON≌△ DOM;③△ OMN∽△ OAD;④ AN+CM=MN;⑤若 AB=2,则 S△OMN的最小值是中正确结论的个数是()A.2B. 3C.4D.5【考点】 S9:相像三角形的判断与性质;KD:全等三角形的判断与性质;LE:正方形的性质.【剖析】依据正方形的性质,挨次判断△ CNB≌△ DMC,△ OCM≌△ OBN,△ CON≌△ DOM,△ OMN ∽△ OAD,依据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD中, CD=BC,∠ BCD=90°,∴∠ BCN+∠DCN=90°,又∵ CN⊥ DM,∴∠ CDM+∠DCN=90°,∴∠ BCN=∠CDM,又∵∠ CBN=∠DCM=90°,∴△ CNB≌△ DMC( ASA),故①正确;依据△ CNB≌△ DMC,可得 CM=BN,又∵∠ OCM=∠OBN=45°, OC=OB,∴△ OCM≌△ OBN( SAS),∴OM=ON,∠ COM=∠ BON,∴∠ DOC+∠COM=∠ COB+∠ BPN,即∠ DOM=∠ CON,又∵ DO=CO,∴△ CON≌△ DOM( SAS),故②正确;∵∠ BON+∠BOM=∠ COM+∠BOM=90°,∴∠ MON=90°,即△MON是等腰直角三角形,又∵△ AOD是等腰直角三角形,∴△ OMN∽△ OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,222又∵ Rt △ BMN中, BM+BN=MN,222∴AN+CM=MN,故④正确;∵△ OCM≌△ OBN,∴四边形BMON的面积 =△ BOC的面积 =1,即四边形BMON的面积是定值1,∴当△ MNB的面积最大时,△MNO的面积最小,设 BN=x=CM,则 BM=2﹣ x,∴△ MNB的面积 = x( 2﹣x) =﹣x2+x ,∴当 x=1 时,△ MNB的面积有最大值,此时 S△OMN的最小值是1﹣=,故⑤正确;综上所述,正确结论的个数是 5 个,应选: D.二、填空题(每题 3 分,满分18 分,将答案填在答题纸上)13.计算:﹣ 3﹣ 5=﹣8.【考点】 1A:有理数的减法.【剖析】依占有理数的减法运算法例进行计算即可得解.【解答】解:﹣3﹣ 5=﹣ 8.故答案为:﹣ 8.14.中国的领水面积约为370 000km 2,将数 370 000 用科学记数法表示为3.7 × 105.【考点】 1I :科学记数法—表示较大的数.【剖析】科学记数法的表示形式为a× 10n的形式,此中1≤ |a| < 10,n 为整数.确立n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值大于 10 时, n 是正数;当原数的绝对值小于 1 时, n 是负数.确立 a× 10n( 1≤|a | < 10, n 为整数)中 n 的值,因为 370 000 有 6 位,因此能够确立 n=6﹣ 1=5.【解答】解: 370 000=3.7 ×105,故答案为: 3.7 × 105.15.如图, AB∥ CD,点 E 在 AB 上,点 F 在 CD上,假如∠ CFE:∠ EFB=3: 4,∠ABF=40°,那么∠ BEF的度数为 60° .【考点】 JA:平行线的性质.【剖析】先依据平行线的性质,获取∠CFB的度数,再依据∠CFE:∠ EFB=3: 4 以及平行线的性质,即可得出∠BEF的度数.【解答】解:∵AB∥CD,∠ ABF=40°,∴∠ CFB=180°﹣∠ B=140°,又∵∠ CFE:∠ EFB=3: 4,∴∠ CFE= ∠ CFB=60°,∵AB∥ CD,∴∠ BEF=∠CFE=60°,故答案为: 60°.16.如图,点P 在等边△ ABC的内部,且PC=6,PA=8,PB=10,将线段 PC绕点 C 顺时针旋转60°获取 P'C,连结 AP' ,则 sin ∠ PAP'的值为.【考点】 R2:旋转的性质;KK:等边三角形的性质;T7:解直角三角形.【剖析】连结 PP′,如图,先利用旋转的性质得 CP=CP′=6,∠PCP′=60°,则可判断△ CPP′为等边三角形获取 PP′=PC=6,再证明△ PCB≌△ P′CA 获取 PB=P′A=10,接着利用勾股定理的逆定理证明△ APP′为直角三角形,∠ APP′=90°,而后依据正弦的定义求解.【解答】解:连结 PP′,如图,∵线段 PC绕点 C 顺时针旋转60°获取 P'C ,∴CP=CP′=6,∠ PCP′=60°,∴△ CPP′为等边三角形,∴PP′=PC=6,∵△ ABC为等边三角形,∴CB=CA,∠ ACB=60°,∴∠ PCB=∠P′CA,在△ PCB和△ P′CA 中,∴△ PCB≌△ P′CA,∴PB=P′A=10,∵62+82=102,222∴PP′ +AP=P′A,∴△ APP′为直角三角形,∠∴sin ∠PAP′===故答案为.APP′=90°,.17.如图,在扇形OAB中, C 是 OA的中点, CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB 于点E,若OA=4,∠AOB=120°,则图中暗影部分的面积为π +2.(结果保存π)【考点】 MO:扇形面积的计算;KG:线段垂直均分线的性质.【剖析】连结 OD、 AD,依据点 C为 OA的中点可得∠ CDO=30°,既而可得△ ADO为等边三角形,求出扇形 AOD的面积,最后用扇形 AOB的面积减去扇形 COE的面积,再减去 S 空白ADC即可求出暗影部分的面积.【解答】解:连结O、 AD,∵点 C 为 OA的中点,∴∠ CDO=30°,∠ DOC=60°,∴△ ADO为等边三角形,∴S 扇形AOD==π ,∴S 暗影 =S扇形AOB﹣ S 扇形COE﹣( S 扇形AOD﹣ S△COD)=﹣﹣(π ﹣× 2×2)=π ﹣π ﹣π +2=π +2 .故答案为π +2 .18.如图,过C( 2,1)作AC∥x轴, BC∥y轴,点A, B 都在直线y= ﹣ x+6上,若双曲线y=(x> 0)与△ ABC总有公共点,则k 的取值范围是2≤ k≤9.【考点】 G8:反比率函数与一次函数的交点问题.【剖析】把 C 的坐标代入求出k≥ 2,解两函数构成的方程组,依据根的鉴别式求出k≤9,即可得出答案.【解答】解:当反比率函数的图象过 C 点时,把C的坐标代入得:k=2× 1=2;把 y=﹣ x+6 代入 y= 得:﹣ x+6= ,x2﹣6x +k=0,△=(﹣ 6)2﹣4k=36 ﹣4k ,∵反比率函数y=的图象与△ ABC有公共点,∴36﹣ 4k≥0,k≤ 9,即 k 的范围是 2≤ k≤ 9,故答案为: 2≤ k≤ 9.三、解答题(本大题共 8小题,共66 分 . 解答应写出文字说明、证明过程或演算步骤. )19.( 1)计算: | ﹣ 3|+ (+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣) +,此中 a=﹣ 2+ .【考点】 6D:分式的化简求值; 2C:实数的运算; 6E:零指数幂; 6F:负整数指数幂;T5:特别角的三角函数值.【剖析】( 1)依据零指数幂的意义、特别角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,而后将 a 的值代入即可求出答案.【解答】解:( 1)原式 =3+1﹣(﹣ 2)2﹣2× =4﹣ 4﹣1=﹣ 1(2)当 a=﹣ 2+原式=+===7+520.尺规作图(不写作法,保存作图印迹):已知线段 a 和∠ AOB,点 M在 OB上(以下图).(1)在 OA边上作点 P,使 OP=2a;(2)作∠ AOB的均分线;(3)过点 M作 OB的垂线.【考点】 N3:作图—复杂作图.【剖析】( 1)在 OA上截取 OP=2a即可求出点P 的地点;(2)依据角均分线的作法即可作出∠AOB的均分线;(3)以 M为圆心,作一圆与射线 OB交于两点,再以这两点分别为圆心,作两个相等半径的圆交于 D 点,连结MD即为 OB的垂线;【解答】解:( 1)点 P 为所求作;(2) OC为所求作;(3) MD为所求作;21.如图,一次函数y=2x﹣ 4 的图象与反比率函数y=的图象交于A,B 两点,且点 A 的横坐标为 3.(1)求反比率函数的分析式;(2)求点 B 的坐标.【考点】 G8:反比率函数与一次函数的交点问题.【剖析】( 1)把 x=3 代入一次函数分析式求得 A 的坐标,利用待定系数法求得反比率函数解析式;(2)解一次函数与反比率函数分析式构成的方程组求得 B 的坐标.【解答】解:( 1)把 x=3 代入 y=2x﹣ 4 得 y=6﹣ 4=2,则 A 的坐标是( 3, 2).把( 3, 2)代入 y=得k=6,则反比率函数的分析式是y=;(2)依据题意得2x﹣ 4=,解得 x=3 或﹣ 1,把 x=﹣ 1 代入 y=2x ﹣ 4 得 y=﹣6,则 B的坐标是(﹣1,﹣ 6).22.在展开“经典阅读”活动中,某学校为认识全校学生利用课外时间阅读的状况,学校团委随机抽取若干名学生,检查他们一周的课外阅读时间,并依据检查结果绘制了以下尚不完整的统计表.依据图表信息,解答以下问题:频次散布表阅读时间频数频次(小时)(人)1≤ x< 2180.122≤ x< 3a m3≤ x< 4450.34≤ x< 536n5≤ x< 6210.14共计b1(1)填空: a=30 , b=150 , m= 0.2, n= 0.24;(2)将频数散布直方图增补完好(绘图后请标明相应的频数);(3)若该校由 3000 名学生,请依据上述检查结果,估量该校学生一周的课外阅读时间不足三小时的人数.【考点】 V8:频数(率)散布直方图;V5:用样本预计整体;V7:频数(率)散布表.b=150,再根【剖析】( 1)依据阅读时间为 1≤ x< 2 的人数及所占百分比可得,求出总人数据频次、频数、总人数的关系即可求出 m、 n、 a;(2)依据数据将频数散布直方图增补完好即可;(3)由总人数乘以时间不足三小时的人数的频次即可.【解答】解:( 1) b=18÷ 0.12=150 (人),∴n=36÷ 150=0.24 ,∴m=1﹣ 0.12 ﹣ 0.3 ﹣0.24 ﹣ 0.14=0.2 ,∴a=0.2 × 150=30;故答案为: 30, 150, 0.2 , 0.24 ;(2)以下图:(3) 3000×( 0.12+0.2 ) =960(人);即估量该校学生一周的课外阅读时间不足三小时的人数为960 人.23.某次篮球联赛初赛阶段,每队有10 场竞赛,每场竞赛都要分出输赢,每队胜一场得2分,负一场得 1 分,积分超出 15分才能获取参赛资格.(1)已知甲队在初赛阶段的积分为18 分,求甲队初赛阶段胜、负各多少场;(2)假如乙队要获取参加决赛资格,那么乙队在初赛阶段起码要胜多少场?【考点】 C9:一元一次不等式的应用; 8A:一元一次方程的应用.【剖析】( 1)设甲队胜了x 场,则负了(10﹣ x)场,依据每队胜一场得 2 分,负一场得1分,利用甲队在初赛阶段的积分为18 分,从而得出等式求出答案;(2)设乙队在初赛阶段胜 a 场,依据积分超出15 分才能获取参赛资格,从而得出答案.【解答】解:( 1)设甲队胜了x 场,则负了(10﹣ x)场,依据题意可得:2x+10﹣ x=18,解得: x=8,则 10﹣ x=2,答:甲队胜了8 场,则负了 2 场;(2)设乙队在初赛阶段胜 a 场,依据题意可得:2a+( 10﹣ a)≥ 15,解得: a≥ 5,答:乙队在初赛阶段起码要胜 5 场.24.如图,在菱形ABCD中,点 P 在对角线AC上,且 PA=PD,⊙ O是△ PAD的外接圆.(1)求证: AB是⊙ O的切线;(2)若 AC=8, tan ∠ BAC=,求⊙ O的半径.【考点】 ME:切线的判断与性质;L8:菱形的性质;T7:解直角三角形.【剖析】( 1)连结 OP、 OA, OP交 AD于 E,由 PA=PD得弧 AP=弧 DP,依据垂径定理的推理得OP⊥ AD,AE=DE,则∠ 1+∠OPA=90°,而∠ OAP=∠ OPA,因此∠ 1+∠OAP=90°,再依据菱形的性质得∠1=∠2,因此∠2+∠OAP=90°,而后依据切线的判断定理获取直线AB与⊙O相切;(2)连结 BD,交 AC于点 F,依据菱形的性质得 DB与 AC相互垂直均分,则 AF=4,tan ∠ DAC= ,获取 DF=2 ,依据勾股定理获取 AD= =2 ,求得 AE= ,设⊙ O的半径为 R,则 OE=R﹣,OA=R,依据勾股定理列方程即可获取结论.【解答】解:( 1)连结 OP、 OA, OP交 AD于 E,如图,∵PA=PD,∴弧 AP=弧 DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°,∵OP=OA,∴∠ OAP=∠OPA,∴∠ 1+∠OAP=90°,∵四边形ABCD为菱形,∴∠ 1=∠ 2,∴∠ 2+∠OAP=90°,∴OA⊥ AB,∴直线 AB与⊙ O相切;(2)连结 BD,交 AC于点 F,如图,∵四边形 ABCD为菱形,∴DB与 AC相互垂直均分,∵AC=8, tan ∠ BAC=,∴AF=4, tan ∠ DAC== ,∴DF=2,∴AD==2,∴A E= ,在 Rt △ PAE中, tan ∠ 1==,∴PE=,设⊙ O的半径为R,则 OE=R﹣,OA=R,在 Rt △ OAE中,∵222OA=OE+AE,∴R2=( R﹣)2+() 2,∴R=,即⊙ O的半径为.25.如图,抛物线y=a( x﹣ 1)(x﹣ 3)与 x 轴交于 A, B 两点,与y 轴的正半轴交于点C,其极点为D.(1)写出 C, D 两点的坐标(用含 a 的式子表示);(2)设 S△BCD: S△ABD=k,求 k 的值;(3)当△ BCD是直角三角形时,求对应抛物线的分析式.【考点】 HF:二次函数综合题.【剖析】( 1)令 x=0 可求得 C 点坐标,化为极点式可求得D点坐标;(2)令 y=0 可求得 A、B 的坐标,联合 D 点坐标可求得△ABD的面积,设直线CD交 x 轴于点 E,由 C、 D坐标,利用待定系数法可求得直线CD的分析式,则可求得 E 点坐标,从而可表示出△ BCD的面积,可求得k 的值;22(3)由 B、 C、 D 的坐标,可表示出BC、BD 和分别利用勾股定理可获取对于 a 的方程,可求得2CD,分∠ CBD=90°和∠ CDB=90°两种状况,a 的值,则可求得抛物线的分析式.【解答】解:(1)在 y=a( x﹣ 1)( x﹣ 3),令 x=0 可得 y=3a,∴C( 0, 3a),∵y=a( x﹣1)( x﹣ 3) =a( x2﹣4x+3) =a( x﹣ 2)2﹣a,∴D( 2,﹣ a);(2)在 y=a( x﹣ 1)( x﹣ 3)中,令 y=0 可解得 x=1 或 x=3,∴A( 1, 0), B( 3,0),∴AB=3﹣ 1=2,∴S△ABD= × 2×a=a,如图,设直线 CD交 x 轴于点 E,设直线 CD分析式为 y=kx+b ,把 C、 D 的坐标代入可得,解得∴直线 CD分析式为y=﹣ 2ax+3a,令 y=0 可解得∴E(,0),∴BE=3﹣=x=,,∴S△BCD=S△BEC+S△BED=××(3a+a)=3a,∴S△BCD: S△ABD=( 3a): a=3,∴k=3;(3)∵ B(3, 0), C( 0, 3a), D( 2,﹣ a),222222222222∴BC=3 +( 3a)=9+9a , CD=2 +(﹣ a﹣3a) =4+16a, BD=( 3﹣ 2) +a =1+a ,∵∠ BCD<∠ BCO<90°,∴△ BCD为直角三角形时,只好有∠CBD=90°或∠ CDB=90°两种状况,①当∠ CBD=90°时,则有222222BC+BD=CD,即 9+9a +1+a =4+16a,解得 a=﹣ 1(舍去)或 a=1,此时抛物线分析式为y=x 2﹣ 4x+3;222222(舍去)或 a=,②当∠ CDB=90°时,则有 CD+BD=BC,即 4+16a +1+a =9+9a ,解得 a=﹣此时抛物线分析式为 y=x2﹣2x+;综上可知当△ BCD是直角三角形时,抛物线的分析式为y=x 2﹣ 4x+3 或 y=x2﹣2 x+.26.已知,在 Rt △ ABC中,∠ ACB=90°, AC=4, BC=2, D 是 AC 边上的一个动点,将△ ABD 沿 BD所在直线折叠,使点 A 落在点 P 处.(1)如图 1,若点 D 是 AC中点,连结PC.①写出 BP, BD的长;②求证:四边形BCPD是平行四边形.(2)如图 2,若 BD=AD,过点 P 作 PH⊥ BC交 BC的延伸线于点 H,求 PH的长.【考点】 LO:四边形综合题.【剖析】( 1)①分别在 Rt △ ABC, Rt △BDC中,求出 AB、BD即可解决问题;②想方法证明 DP∥ BC, DP=BC即可;(2)如图 2 中,作 DN⊥ AB 于 N,PE⊥ AC于 E,延伸 BD交 PA于 M.设 BD=AD=x,则 CD=4﹣ x,在 Rt △ BDC中,可得x2 =( 4﹣ x)2+22,推出x=,推出DN==,由△BDN∽△BAM,可得=,由此求出AM,由△ ADM∽△ APE,可得=,由此求出AE=,可得EC=AC﹣ AE=4﹣=由此即可解决问题.【解答】解:( 1)①在∴AB==2,∵AD=CD=2,∴BD==2,Rt △ ABC中,∵BC=2, AC=4,由翻折可知, BP=BA=2.②如图 1 中,∵△ BCD是等腰直角三角形,∴∠ BDC=45°,∴∠ ADB=∠BDP=135°,∴∠ PDC=135°﹣ 45°=90°,∴∠ BCD=∠PDC=90°,∴DP∥ BC,∵ PD=AD=BC=2,∴四边形BCPD是平行四边形.(2)如图 2 中,作 DN⊥ AB于 N, PE⊥AC于 E,延伸 BD交 PA于 M.设 BD=AD=x,则 CD=4﹣ x,222在 Rt △ BDC中,∵ BD=CD+BC,222∴x =( 4﹣ x) +2 ,∴x=,∵DB=DA, DN⊥ AB,∴BN=AN=,在 Rt △ BDN中, DN= 由△ BDN∽△ BAM,可得==,,∴=,∴A M=2,∴A P=2AM=4,由△ ADM∽△ APE,可得=,∴= ,∴A E= ,∴EC=AC﹣ AE=4﹣=,易证四边形PECH是矩形,∴P H=EC= .。
广西省贵港市2017年中考数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 7的相反数是( )A .7B .7-C .17D .17-2.数据3,2,4,2,5,3,2的中位数和众数分别是 ( )A .2,3B .4,2C .3,2D .2,23. 如图是一个空心圆柱体,它的左视图是( )A .B .C .D .4. 下列二次根式中,最简二次根式是( )A .2-B .12 C.15 D .2a5. 下列运算正确的是( )A .2333a a a +=B .()32522a a a -=C. 623422a a a += D .()22238a a a --=6. 在平面直角坐标系中,点()3,42P m m -- 不可能在( )A .第一象限B .第二象限 C. 第三象限 D .第四象限7. 下列命题中假命题是( )A .正六边形的外角和等于360B .位似图形必定相似C.样本方差越大,数据波动越小 D .方程210x x ++=无实数根8. 从长为3,5,7,10 的四条线段中任意选取三条作为边,能构成三角形的概率是( )A .14B .12 C.34D .1 9. 如图,,,,A B C D 是O 上的四个点,B 是AC 的中点,M 是半径OD 上任意一点,若40BDC ∠= ,则AMB ∠的度数不可能是( )A .45B .60 C. 75 D .8510. 将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 ( )A .()211y x =-+B .()211y x =++C.()2211y x =-+ D .()2211y x =++11. 如图,在R t A B C ∆中,90ACB ∠= ,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,P 是''A B 的中点,连接PM ,若230BC BAC =∠=,,则线段PM 的最大值是 ( )A .4B .3 C.2 D .112. 如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与,B C 重合),,CN DM CN ⊥与AB 交于点N ,连接,,OM ON MN .下列五个结论:①CNB DMC ∆≅∆ ;②CON DOM ∆≅∆ ;③OMN OAD ∆≅∆ ;④222AN CM MN += ;⑤若2AB =,则OMN S ∆的最小值是12,其中正确结论的个数是 ( )A .2B .3 C. 4 D .5第Ⅱ卷(共90分)二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:35--= .14.中国的领水面积为2370000km ,把370000用科学记数法表示为 .15.如图,AB CD ,点E 在AB 上,点F 在CD 上,如果:3:4,40CFE EFB ABF ∠∠=∠= ,那么BEF ∠的度数为 .16.如图,点P 在等边ABC ∆的内部,且6,8,10PC PA PB ===,将线段PC 绕点C 顺时针旋转60得到'P C ,连接'AP ,则sin 'PAP ∠的值为 .17. 如图,在扇形OAB 中,C 是OA 的中点,,CD OA CD ⊥ 与AB 交于点D ,以O 为圆心,OC 的长为半径作CE 交OB 于点E ,若4,120OA AOB =∠=,则图中阴影部分的面积为 .(结果保留π)18. 如图,过()2,1C 作AC x 轴,BC y 轴,点,A B 都在直线6y x =-+上,若双曲线()0k y x x =>与ABC ∆总有公共点,则k 的取值范围是 .三、解答题 (本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19. (1)计算:()201352cos602π-⎛⎫-++--- ⎪⎝⎭; (2)先化简,在求值:21142111a a a a +⎛⎫-+ ⎪-+-⎝⎭ ,其中22a =-+ . 20. 尺规作图(不写作法,保留作图痕迹):已知线段a 和AOB ∠,点M 在OB 上(如图所示).(1)在OA 边上作点P ,使2OP a = ;(2)作AOB ∠的平分线;(3)过点M 作OB 的垂线.21. 如图,一次函数24y x =- 的图象与反比例函数k y x= 的图象交于,A B 两点,且点A 的横坐标为3 .(1)求反比例函数的解析式;(2)求点B 的坐标.22. 在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时) 频数 (人) 频率12x ≤< 180.12 23x ≤< a m34x ≤< 450.345x ≤< 36n 56x ≤< 210.14 合计 b 1频数分布直方图(1)填空:a = ,b = ,m = ,n = ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.23. 某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分, 负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?24. 如图,在菱形ABCD 中,点P 在对角线AC 上,且PA PD =,O 是PAD ∆的外接圆.(1)求证:AB 是O 的切线;(2)若28,tan ,2AC BAC =∠=求O 的半径. 25.如图,抛物线()()13y a x x =--与x 轴交于 ,A B 两点,与y 轴的正半轴交于点C ,其顶点为D .(1)写出,C D 两点的坐标(用含a 的式子表示);(2)设:BCD ABD S S k ∆= ,求k 的值;(3)当BCD ∆是直角三角形时,求对应抛物线的解析式.26. 已知,在Rt ABC ∆中,90,4,2,ACB AC BC D ∠===是AC 边上的一个动点,将ABD ∆沿BD 所在直线折叠,使点A 落在点P 处.(1)如图1,若点D 是AC 中点,连接PC . ①写出,BP BD 的长;②求证:四边形BCPD 是平行四边形.(2)如图2,若BD AD =,过点P 作PH BC ⊥交BC 的延长线于点H ,求PH 的长.随州市2017年初中毕业升学考试数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2-的绝对值是( ) A .2B .2-C .12D .12-2.下列运算正确的是( ) A .336a a a +=B .222()a b a b -=- C .326()a a -= D .1226a a a ÷=3.如图是某几何体的三视图,这个几何体是( )A .圆锥B .长方体C .圆柱D .三棱柱4.一组数据2,3,5,4,4的中位数和平均数分别是( ) A .4和3.5B .4和3.6C .5和3.5D .5和3.65.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是( )A .两点之间线段最短B .两点确定一条直线C .垂线段最短D .经过直线外一点,有且只有一条直线与这条直线平行6.如图,用尺规作图作AOC AOB ∠=∠的第一步是以点O 为圆心,以任意长为半径画弧①,分别交OA 、OB 于点E 、F ,那么第二步的作图痕迹②的作法是( )A .以点F 为圆心,OE 长为半径画弧B .以点F 为圆心,EF 长为半径画弧C .以点E 为圆心,OE 长为半径画弧D .以点E 为圆心,EF 长为半径画弧7.小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( )A .203011010585x y x y +=⎧⎨+=⎩B .201011030585x y x y +=⎧⎨+=⎩C .205110301085x y x y +=⎧⎨+=⎩D .520110103085x y x y +=⎧⎨+=⎩8.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数()n 和芍药的数量规律,那么当11n =时,芍药的数量为( )A .84株B .88株C .92株D .121株9.对于二次函数223y x mx =--,下列结论错误的是( ) A .它的图象与x 轴有两个交点 B .方程223x mx -=的两根之积为3- C .它的图象的对称轴在y 轴的右侧D .x m <时,y 随x 的增大而减小10.如图,在矩形ABCD 中,AB BC <,E 为CD 边的中点.将ADE ∆绕点E 顺时针旋转180︒,点D 的对应点为C ,点A 的对应点为F ,过点E 作ME AF ⊥交BC 于点M ,连接AM 、BD 交于点N .现有下列结论:①AM AD MC =+;②AM DE BM =+;③2DE AD CM =⋅;④点N 为ABM ∆的外心. 其中正确结论的个数为( )A .1个B .2个C .3个D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分18分,将答案填在答题纸上)11.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为 .12.“抛掷一枚质地均匀的硬币,正面向上”是 事件(从“必然”、“随机”、“不可能”中选一个). 13.如图,已知AB 是O 的弦,半径OC 垂直AB ,点D 是O 上一点,且点D 与点C 位于弦AB 两侧,连接AD 、CD 、OB ,若70BOC ∠=︒,则ADC ∠= 度.14.在ABC ∆中,6AB =,5AC =,点D 在边AB 上,且2AD =,点E 在边AC 上,当AE = 时,以A 、D 、E 为顶点的三角形与ABC ∆相似.15.如图,AOB ∠的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点(3,0)N 是OB 上的一定点,点M 是ON 的中点,30AOB ∠=︒,要使PM PN +最小,则点P 点的坐标为 .16.在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地.在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C地的距离y (km )与甲车行驶时间()t h 之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km ;③乙车出发527h 时,两车相遇;④甲车到达C 地时,两车相距40km .其中正确的是 (填写所有正确结论的序号).三、解答题 (本大题共9题,共72.解答应写出文字说明、证明过程或演算步骤.)17.计算:2021()(2017)(3)|2|3π---+---. 18.解分式方程:2311xx x x +=--. 19.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x =的图象于点B ,32AB =.(1)求反比例函数的解析式;(2)若11(,)P x y 、22(,)Q x y 是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.20.风电已成为我国继煤电、水电之后的第三大电源.风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A 处测得塔杆顶端C 的仰角是55︒,沿HA 方向水平前进43米到达山底G 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、H 在同一直线上)的仰角是45︒.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG 为10米,BG HG ⊥,CH AH ⊥,求塔杆CH 的高.(参考数据:tan55 1.4︒≈,tan350.7︒≈,sin550.8︒≈,sin350.6︒≈)21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x 表示成绩,单位:分).A 组:7580x ≤<;B 组:8085x ≤<;C 组:8590x ≤<;D 组:9095x ≤<;E 组:95100x ≤<,并绘制如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有 名,请补全频率分布直方图;(2)扇形统计图中,C 组对应的圆心角是多少度?E 组人数占参赛选手的百分比是多少?(3)学校准备组成8人的代表队参加市级决赛,E 组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.如图,在Rt ABC ∆中,90C ∠=︒,AC BC =,点O 在AB 上,经过点A 的O 与BC 相切于点D ,交AB 于点E .(1)求证:AD 评分BAC ∠;(2)若1CD =,求图中阴影部分的面积(结果保留π).23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (115x ≤<)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF 经过点C ,连接DE 交AF 于点M ,观察发现:点M 是DE 的中点.下面是两位学生有代表性的证明思路: 思路1:不需作辅助线,直接证三角形全等; 思路2:不证三角形全等,连接BD 交AF 于点H .、 ……请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的条件下,当135ABE ∠=︒时,延长AD 、EF 交于点N ,求AMNE的值;(3)在(2)的条件下,若AF k AB =(k 为大于2的常数),直接用含k 的代数式表示AMMF的值.25.在平面直角坐标系中,我们定义直线y ax a =-为抛物线2y ax bx c =++(a 、b 、c 为常数,0a ≠)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”. 已知抛物线223432333y x x =--+与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将ACM ∆以AM 所在直线为对称轴翻折,点C 的对称点为N ,若AMN ∆为该抛物线的“梦想三角形”,求点N 的坐标;。
FH PACBED考数学复习二十——四边形与平行四边形一、中考要求:1.探索并了解多边形的内角和与外角和公式,了解正多边形的概念;掌握多边形的内角和定理与外角和定理;了解n 边形的对角线的条数公式。
2.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。
3.掌握平行四边形的定义、性质和判定方法(从边、角、对角线三个方面);知道平行四边形是中心对称图形,具备不稳定性,4.会用平行四边形的性质与判定解决简单的问题。
二、知识要点:1.一般地,由n 条不在同一直线上的线段 连结组成的平面图形称为n 边形,又称为多边形。
2.如果多边形的各边都 ,各内角也都 ,则称这个多边形为正多边形。
3.连结多边形不相邻的两个顶点的线段叫做多边形的 。
4.n 边形的内角和为 。
正n 边形的一个内角是 。
5.任意多边形的外角和为 。
正n 边形的一个外角是 。
6.从n 边形的一个顶点可引 条对角线,n 边形一共有 条对角线。
7.当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个 角时,这几个多边形就能拼成一个平面图形。
两种图形的平面镶嵌:正三角形可以与边长相等的 镶嵌。
8.平行四边形的定义两组对边分别 的四边形叫做平行四边形。
9.平行四边形的性质(1)边: (2)角: (3)对角线: (4)对称性:10.两条平行线间的距离: 11.平行四边形的识别从边考虑⎪⎩⎪⎨⎧ ⎪⎭⎪⎬⎫ 是平行四边形。
从角考虑: (4)两组对角 的四边形是平行四边形。
说说此判定的证明方法:从对角线考虑(5)对角线 的四边形是平行四边形。
三、典例剖析:例1.如图,已知在□ABCD 中,E 、F 是对角线BD 上的两点,BE =DF ,点G 、H 分别在BA 和DC 的延长线上,且AG =CH ,连接GE 、EH 、HF 、FG . 求证:四边形GEHF 是平行四边形.例2.如图,在平行四边形ABCD 中,E 、F 分别是边AD 、BC 的中点,AC 分别交BE 、DF 于点M 、N . 给出下列 结论:①△ABM ≌△CDN ;②AM =31AC ;③DN =2NF ; ④S △AMB =21S △ABC .其中正确的结论是 (只填序号).例3.已知四边形ABCD 的对角线AC 与BD 交于点O ,给出下列四个论断 ① OA =OC ② AB =CD ③ ∠BAD =∠DCB ④ AD ∥BC请你从中选择两个论断作为条件,以“四边形ABCD 为平行四边形”作为结论,完成下列各题: ①构造一个真命题...: ; ②构造一个假命题...: , 举反例加以说明 . 例4.如图,在△ABC 中,AB =AC =5,BC =6,动点P 从点A 出发沿AB 向点B 移动,(点P 与点A 、B 不重合),作PD //BC 交AC 于点D ,在DC 上取点E ,以DE 、DP 为邻边作平行四边形PFED ,使点F 到PD 的距离16FH PD =,连接BF ,设AP x =(1)△ABC 的面积等于NMFEDBA(1)两组对边 的四边形 (2)两组对边 的四边形 (3)一组对边 且 的四边形(2)设△PBF 的面积为y ,求y 与x 的函数关系,并求y 的最大值;(3)当BP =BF 时,求x 的值随堂演练:1.图中是一个五角星图案,中间部分的五边形ABCDE 是一个正五边形, 则图中∠ABC 的度数是 .2.如果只用一种正多边形进行镶嵌,那么在下列的正多边形中, 不能镶嵌成一个平面的是( ).A .正三角形B .正方形C .正五边形D .正六边形 3.一个多边形内角和是,则这个多边形是( ) A .六边形B .七边形C .八边形D .九边形4.在平行四边形ABCD 中,点1A ,2A ,3A ,4A 和1C ,2C ,3C ,4C 分别是AB 和CD 的五等分点,点1B ,2B 和1D ,2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 的面积为( ) A .2B .35C .53D .155.边长为的正六边形的面积等于( ) A .B .C .D .6.如图,在周长为20cm 的□ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为7.下列四种边长均为a 的正多边形中,能与边长为a 的正三角形作平面镶嵌的正多边形有1080a 243a 2a 2233a 233a A BCDEABCDOED D 1D 2 AA 1 A 2 A 3 A 4B 1B 2 CC 2 13 4 B()①正方形②正五边形③正六边形④正八边形A.4种B.3种C.2种D.1种8.如图,在□ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为.9.如图,在平行四边形ABCD中,DB=DC、65=∠A,CE⊥BD于E,则=∠BCE.10. 如图是对称中心为点的正八边形.如果用一个含角的直角三角板的角,借助点(使角的顶点落在点处)把这个正八边形的面积等分.那么的所有可能的值有()A.2个B.3个C.4个D.5个11. 问题背景(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空:四边形DBFE的面积S=,△EFC的面积1S=,△ADE的面积2S=.探究发现(2)在(1)中,若BF a=,FC b=,DE与BC间的距离为h.请证明2124S S S=.拓展迁移(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用..(2.)中的结论....求△ABC的面积.O45O O nnB CD GFE图2AB CDFE图1A36214.四边形一条对角线所在直线上的点,如果到这条对角线的两端点的距离不相等,但到另一对角线的两个端点的距离相等,则称这点为这个四边形的准等距点.如图l,点P为四边形ABCD对角线AC所在直线上的一点,PD=PB,PA≠PC,则点P为四边形ABCD的准等距点.(1)如图2,画出菱形ABCD的一个准等距点.(2)如图3,作出四边形ABCD的一个准等距点(尺规作图,保留作图痕迹,不要求写作法).(3)如图4,在四边形ABCD中,P是AC上的点,PA≠PC,延长BP交CD于点E,延长DP交BC于点F,且∠CDF=∠CBE,CE=CF.求证:点P是四边形AB CD的准等距点.图1中考数学复习作业二十1.如图下面对图形的判断正确的是( )A .非对称图形B .既是轴对称图形,又是中心对称图形C .是轴对称图形,非中心对称图形D .是中心对称图形,非轴对称图形 2.如图所示,顺次连接矩形ABCD 各边中点,得到菱形EFGH , 这个由矩形和菱形所组成的图形( ) A .是轴对称图形但不是中心对称图形 B .是中心对称图形但不是轴对称图形C .既是轴对称图形又是中心对称图形D .没有对称性3.只用下列正多边形地砖中的一种,能够铺满地面的是( ) A .正十边形 B .正八边形 C .正六边形 D .正五边形4.A 、B 、C 、D 在同一平面内,从①AB ∥CD ;②AB =CD ;③BC ∥AD ;④BC =AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有 ( )A .3种B .4种C .5种D .6种5.平行四边形ABCD 中,AB =3,BC =5,∠B 的平分线把长边分成两条线段之比是( )A .3:2B .3:1C .4:2D .4:16.如果平行四边形的一条边长是4,一条对角线长是10,那么它的另一条对角线的长m 的取值范围是( )A .6<m <14B .1<m <9C .3<m <7D .2<m <18 7.三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使 点C 落在ABC 内(如图),若∠1=20°,则∠2的度数为。
中考数学总复习《平行四边形的判定与性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图在四边形ABCD中AB=CD,对角线AC、BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF、CE,若DE=BF,则下列结论不一定正确的是()A.CF=AE B.OE=OFC.△CDE为直角三角形D.四边形ABCD是平行四边形2.如图四边形ABCD中AB∥CD,∥B=∥D点E为BC延长线上一点,连接AE,AE交CD于点H,∥DCE的平分线交AE于点G.若AB=2AD=10,点H为CD的中点,HE=6,则AC的值为()A.9B.√97C.10D.3 √103.如图在Rt∥ABC中∥ACB=90°,分别以AB、AC为腰向外作等腰直角三角形∥ABD和∥ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是()A.AC B.AB C.BC D.AB4.如图在菱形ΑΒCD中∠Α=60∘,AD=8,F是ΑΒ的中点.过点F作FΕ⊥ΑD,垂足为Ε.将ΔΑΕF沿点Α到点Β的方向平移,得到ΔΑ′Ε′F ′.设Ρ、Ρ′分别是ΕF、Ε′F ′的中点,当点Α′与点Β重合时,四边形ΡΡ′CD的面积为()A.28√3B.24√3C.32√3D.32√3−85.下列说法中错误的是()A.平行四边形的对角线互相平分B.对角线互相垂直的四边形是菱形C.菱形的对角线互相垂直D.对角线互相平分的四边形是平行四边形6.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD7.如图点A是直线l外一点,在l上取两点B,C,分别以A,C为圆心,BC,AB的长为半径作弧,两弧交于点D,分别连接AB,AD,CD,若∥ABC+∥ADC=120°,则∥A的度数是()A.100°B.110°C.120°D.125°8.如图在∥ABC中AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则∥BED与∥DFC的周长的和为()A.34B.32C.22D.209.如图在平面直角坐标系中点A(1,5),B(4,1),C(m,−m),D(m−3,−m+4),当四边形ABCD 的周长最小时,则m 的值为().A.√2B.32C.2D.310.如图分别在四边形ABCD的各边上取中点E,F,G,H,连接EG,在EG上取一点M,连接HM,过F作FN∥HM,交EG于N,将四边形ABCD中的四边形①和②移动后按图中方式摆放,得到四边形AHM′G′和AF′N′E,延长M′G′,N′F′相交于点K,得到四边形MM′KN′.下列说法中错误的是()A.S四边形MM′KN′=S四边形ABCD B.HM=NFC.四边形MM′KN′是平行四边形D.∠K=∠AHM′11.如图,已知∥ABC与∥CDA关于点O成中心对称,过点O任作直线EF分别交AD,BC于点E,F,则下则结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD 是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤∥AOE与∥COF成中心对称.其中正确的个数为()A.2B.3C.4D.512.如图P为平行四边形ABCD内一点,过点P分别作AB、AD的平行线交平行四边形于E、F、G、H四点,若S四边形AHPE=3,S四边形PFCG=5,则S∥PBD为()A.0.5B.1C.1.5D.2二、填空题13.如图在平行四边形ABCD中点E,F分别在BC,AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).14.如图在Rt△ABC中AC=2√3,BC=2,点P是斜边AB上任意一点,D是AC的中点,连接PD并延长,使DE=PD.以PE,PC为边构造平行四边形PCQE,则对角线PQ的最小值为.15.如图▱ABCD中∥BAD=120°,E、F分别在CD和BC的延长线上,AE∥BD,EF∥BC,EF=5√3,则AB的长是16.如图在∥ABC中∥ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD= 13BD,连接DM、DN、MN.若AB=6,则DN=.17.若AC=10,BD=8,那么当AO=DO=时,四边形ABCD是平行四边形。
2017年广西贵港市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是( )A.7B.﹣7C.D.﹣2.数据3,2,4,2,5,3,2的中位数和众数分别是( )A.2,3B.4,2C.3,2D.2,23.如图是一个空心圆柱体,它的左视图是( )A.B.C.D.4.下列二次根式中,最简二次根式是( )A.B.C.D.5.下列运算正确的是( )A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a26.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限7.下列命题中假命题是( )A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是( )A.B.C.D.19.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是( )A.45°B.60°C.75°D.85°10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是( )A.y=(x﹣1)2+1B.y=(x+1)2+1C.y=2(x﹣1)2+1D.y=2(x+1)2+111.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是( )A.4B.3C.2D.112.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是( )A.2B.3C.4D.5二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= .14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为 .15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为 .16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为 .17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC 的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为 .(结果保留π)18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是 .三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣)+,其中a=﹣2+.20.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.21.如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2180.12 2≤x<3a m 3≤x<4450.3 4≤x<536n 5≤x<6210.14合计b1(1)填空:a= ,b= ,m= ,n= ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD 沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长. 2017年广西贵港市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是( )A.7B.﹣7C.D.﹣【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:7的相反数是﹣7,故选:B.2.数据3,2,4,2,5,3,2的中位数和众数分别是( )A.2,3B.4,2C.3,2D.2,2【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:2,2,2,3,3,4,5,最中间的数是3,则这组数据的中位数是3;2出现了3次,出现的次数最多,则众数是2.故选:C.3.如图是一个空心圆柱体,它的左视图是( )A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.4.下列二次根式中,最简二次根式是( )A.B.C.D.【考点】74:最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.5.下列运算正确的是( )A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】运用合并同类项,单项式乘以单项式,幂的乘方等运算法则运算即可.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选D.6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.7.下列命题中假命题是( )A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根【考点】O1:命题与定理.【分析】根据正确的命题是真命题,错误的命题是假命题进行分析即可.【解答】解:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是( )A.B.C.D.1【考点】X6:列表法与树状图法;K6:三角形三边关系.【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【解答】解:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)==,故选B9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是( )A.45°B.60°C.75°D.85°【考点】M5:圆周角定理;M4:圆心角、弧、弦的关系.【分析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.【解答】解:∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是( )A.y=(x﹣1)2+1B.y=(x+1)2+1C.y=2(x﹣1)2+1D.y=2(x+1)2+1【考点】H6:二次函数图象与几何变换.【分析】根据平移规律,可得答案.【解答】解:由图象,得y=2x2﹣2,由平移规律,得y=2(x﹣1)2+1,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是( )A.4B.3C.2D.1【考点】R2:旋转的性质.【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是( )A.2B.3C.4D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB的面积有最大值,此时S△OMN的最小值是1﹣=,故⑤正确;综上所述,正确结论的个数是5个,故选:D.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= ﹣8 .【考点】1A:有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣3﹣5=﹣8.故答案为:﹣8.14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为 3.7×105 .【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于370 000有6位,所以可以确定n=6﹣1=5.【解答】解:370 000=3.7×105,故答案为:3.7×105.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为 60° .【考点】JA:平行线的性质.【分析】先根据平行线的性质,得到∠CFB的度数,再根据∠CFE:∠EFB=3:4以及平行线的性质,即可得出∠BEF的度数.【解答】解:∵AB∥CD,∠ABF=40°,∴∠CFB=180°﹣∠B=140°,又∵∠CFE:∠EFB=3:4,∴∠CFE=∠CFB=60°,∵AB∥CD,∴∠BEF=∠CFE=60°,故答案为:60°.16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为 .【考点】R2:旋转的性质;KK:等边三角形的性质;T7:解直角三角形.【分析】连接PP′,如图,先利用旋转的性质得CP=CP′=6,∠PCP′=60°,则可判定△CPP′为等边三角形得到PP′=PC=6,再证明△PCB≌△P′CA得到PB=P′A=10,接着利用勾股定理的逆定理证明△APP′为直角三角形,∠APP′=90°,然后根据正弦的定义求解.【解答】解:连接PP′,如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB和△P′CA中,∴△PCB≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠PAP′===.故答案为.17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为 π+2 .(结果保留π)【考点】MO:扇形面积的计算;KG:线段垂直平分线的性质.【分析】连接OD、AD,根据点C为OA的中点可得∠CDO=30°,继而可得△ADO为等边三角形,求出扇形AOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白ADC 即可求出阴影部分的面积.【解答】解:连接O、AD,∵点C为OA的中点,∴∠C DO=30°,∠DOC=60°,∴△ADO为等边三角形,∴S扇形AOD==π,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形AOD﹣S△COD)=﹣﹣(π﹣×2×2)=π﹣π﹣π+2=π+2.故答案为π+2.18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是 2≤k≤9 .【考点】G8:反比例函数与一次函数的交点问题.【分析】把C的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.【解答】解:当反比例函数的图象过C点时,把C的坐标代入得:k=2×1=2;把y=﹣x+6代入y=得:﹣x+6=,x2﹣6x+k=0,△=(﹣6)2﹣4k=36﹣4k,∵反比例函数y=的图象与△ABC有公共点,∴36﹣4k≥0,k≤9,即k的范围是2≤k≤9,故答案为:2≤k≤9.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣)+,其中a=﹣2+.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案.【解答】解:(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1(2)当a=﹣2+原式=+===7+520.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.【考点】N3:作图—复杂作图.【分析】(1)在OA上截取OP=2a即可求出点P的位置;(2)根据角平分线的作法即可作出∠AOB的平分线;(3)以M为圆心,作一圆与射线OB交于两点,再以这两点分别为圆心,作两个相等半径的圆交于D点,连接MD即为OB的垂线;【解答】解:(1)点P为所求作;(2)OC为所求作;(3)MD为所求作;21.如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把x=3代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标.【解答】解:(1)把x=3代入y=2x﹣4得y=6﹣4=2,则A的坐标是(3,2).把(3,2)代入y=得k=6,则反比例函数的解析式是y=;(2)根据题意得2x﹣4=,解得x=3或﹣1,把x=﹣1代入y=2x﹣4得y=﹣6,则B的坐标是(﹣1,﹣6).22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2180.12 2≤x<3a m 3≤x<4450.3 4≤x<536n 5≤x<6210.14合计b1(1)填空:a= 30 ,b= 150 ,m= 0.2 ,n= 0.24 ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据阅读时间为1≤x<2的人数及所占百分比可得,求出总人数b=150,再根据频率、频数、总人数的关系即可求出m、n、a;(2)根据数据将频数分布直方图补充完整即可;(3)由总人数乘以时间不足三小时的人数的频率即可.【解答】解:(1)b=18÷0.12=150(人),∴n=36÷150=0.24,∴m=1﹣0.12﹣0.3﹣0.24﹣0.14=0.2,∴a=0.2×150=30;故答案为:30,150,0.2,0.24;(2)如图所示:(3)3000×(0.12+0.2)=960(人);即估算该校学生一周的课外阅读时间不足三小时的人数为960人.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)设甲队胜了x场,则负了(10﹣x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】解:(1)设甲队胜了x场,则负了(10﹣x)场,根据题意可得:2x+10﹣x=18,解得:x=8,则10﹣x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10﹣a)≥15,解得:a≥5,答:乙队在初赛阶段至少要胜5场.24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.【考点】ME:切线的判定与性质;L8:菱形的性质;T7:解直角三角形.【分析】(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O 相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.【解答】解:(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°,∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°,∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分,∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=,在Rt△PAE中,tan∠1==,∴PE=,设⊙O的半径为R,则OE=R﹣,OA=R,在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半径为.25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.【考点】HF:二次函数综合题.【分析】(1)令x=0可求得C点坐标,化为顶点式可求得D点坐标;(2)令y=0可求得A、B的坐标,结合D点坐标可求得△ABD的面积,设直线CD交x轴于点E,由C、D坐标,利用待定系数法可求得直线CD的解析式,则可求得E点坐标,从而可表示出△BCD的面积,可求得k的值;(3)由B、C、D的坐标,可表示出BC2、BD2和CD2,分∠CBD=90°和∠CDB=90°两种情况,分别利用勾股定理可得到关于a的方程,可求得a的值,则可求得抛物线的解析式.【解答】解:(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,∴C(0,3a),∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,∴D(2,﹣a);(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∴S△ABD=×2×a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C、D的坐标代入可得,解得,∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x=,∴E(,0),∴BE=3﹣=∴S△BCD=S△BEC+S△BED=××(3a+a)=3a,∴S△BCD:S△ABD=(3a):a=3,∴k=3;(3)∵B(3,0),C(0,3a),D(2,﹣a),∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,∵∠BCD<∠BCO<90°,∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣(舍去)或a=,此时抛物线解析式为y=x2﹣2x+;综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y=x2﹣2x+.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD 沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.【考点】LO:四边形综合题.【分析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②想办法证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,可得x2=(4﹣x)2+22,推出x=,推出DN==,由△BDN∽△BAM,可得=,由此求出AM,由△ADM∽△APE,可得=,由此求出AE=,可得EC=AC﹣AE=4﹣=由此即可解决问题.【解答】解:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB==2,∵AD=CD=2,∴BD==2,由翻折可知,BP=BA=2.②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD=AD=BC=2,∴四边形BCPD是平行四边形.(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,∵BD2=CD2+BC2,∴x2=(4﹣x)2+22,∴x=,∵DB=DA,DN⊥AB,∴BN=AN=,在Rt△BDN中,DN==,由△BDN∽△BAM,可得=,∴=,∴AM=2,∴AP=2AM=4,由△ADM∽△APE,可得=,∴=,∴AE=,∴EC=AC﹣AE=4﹣=,易证四边形PECH是矩形,∴PH=EC=.。
2017年广西贵港市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是()A.7 B.﹣7 C.D.﹣2.数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3 B.4,2 C.3,2 D.2,23.如图是一个空心圆柱体,它的左视图是()A. B.C. D.4.下列二次根式中,最简二次根式是()A. B. C.D.5.下列运算正确的是()A.3a2+a=3a3 B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a26.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.下列命题中假命题是()A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.19.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45° B.60° C.75° D.85°10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+111.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.112.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.5二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= .14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为.16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为.(结果保留π)18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣)+,其中a=﹣2+.20.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.21.如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2 18 0.122≤x<3 a m3≤x<4 45 0.34≤x<5 36 n5≤x<6 21 0.14合计 b 1(1)填空:a= ,b= ,m= ,n= ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD 沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.2017年广西贵港市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是()A.7 B.﹣7 C.D.﹣【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:7的相反数是﹣7,故选:B.2.数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3 B.4,2 C.3,2 D.2,2【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:2,2,2,3,3,4,5,最中间的数是3,则这组数据的中位数是3;2出现了3次,出现的次数最多,则众数是2.故选:C.3.如图是一个空心圆柱体,它的左视图是()A. B.C. D.【考点】U1:简单几何体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.4.下列二次根式中,最简二次根式是()A. B. C.D.【考点】74:最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.5.下列运算正确的是()A.3a2+a=3a3 B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】运用合并同类项,单项式乘以单项式,幂的乘方等运算法则运算即可.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选D.6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】D1:点的坐标.【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.7.下列命题中假命题是()A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根【考点】O1:命题与定理.【分析】根据正确的命题是真命题,错误的命题是假命题进行分析即可.【解答】解:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.1【考点】X6:列表法与树状图法;K6:三角形三边关系.【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【解答】解:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)==,故选B9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45° B.60° C.75° D.85°【考点】M5:圆周角定理;M4:圆心角、弧、弦的关系.【分析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.【解答】解:∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1【考点】H6:二次函数图象与几何变换.【分析】根据平移规律,可得答案.【解答】解:由图象,得y=2x2﹣2,由平移规律,得y=2(x﹣1)2+1,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1【考点】R2:旋转的性质.【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN ∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB的面积有最大值,此时S△OMN的最小值是1﹣=,故⑤正确;综上所述,正确结论的个数是5个,故选:D.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= ﹣8 .【考点】1A:有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣3﹣5=﹣8.故答案为:﹣8.14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为 3.7×105.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于370 000有6位,所以可以确定n=6﹣1=5.【解答】解:370 000=3.7×105,故答案为:3.7×105.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为60°.【考点】JA:平行线的性质.【分析】先根据平行线的性质,得到∠CFB的度数,再根据∠CFE:∠EFB=3:4以及平行线的性质,即可得出∠BEF的度数.【解答】解:∵AB∥CD,∠ABF=40°,∴∠CFB=180°﹣∠B=140°,又∵∠CFE:∠EFB=3:4,∴∠CFE=∠CFB=60°,∵AB∥CD,∴∠BEF=∠CFE=60°,故答案为:60°.16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.【考点】R2:旋转的性质;KK:等边三角形的性质;T7:解直角三角形.【分析】连接PP′,如图,先利用旋转的性质得CP=CP′=6,∠PCP′=60°,则可判定△CPP′为等边三角形得到PP′=PC=6,再证明△PCB≌△P′CA得到PB=P′A=10,接着利用勾股定理的逆定理证明△APP′为直角三角形,∠APP′=90°,然后根据正弦的定义求解.【解答】解:连接PP′,如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB和△P′CA中,∴△PCB≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠AP P′=90°,∴sin∠PAP′===.故答案为.17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为π+2.(结果保留π)【考点】MO:扇形面积的计算;KG:线段垂直平分线的性质.【分析】连接OD、AD,根据点C为OA的中点可得∠CDO=30°,继而可得△ADO为等边三角形,求出扇形AOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白ADC即可求出阴影部分的面积.【解答】解:连接O、AD,∵点C为OA的中点,∴∠C DO=30°,∠DOC=60°,∴△ADO为等边三角形,∴S扇形AOD==π,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形AOD﹣S△COD)=﹣﹣(π﹣×2×2)=π﹣π﹣π+2=π+2.故答案为π+2.18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是2≤k≤9 .【考点】G8:反比例函数与一次函数的交点问题.【分析】把C的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.【解答】解:当反比例函数的图象过C点时,把C的坐标代入得:k=2×1=2;把y=﹣x+6代入y=得:﹣x+6=,x2﹣6x+k=0,△=(﹣6)2﹣4k=36﹣4k,∵反比例函数y=的图象与△ABC有公共点,∴36﹣4k≥0,k≤9,即k的范围是2≤k≤9,故答案为:2≤k≤9.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣)+,其中a=﹣2+.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案.【解答】解:(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1(2)当a=﹣2+原式=+===7+520.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.【考点】N3:作图—复杂作图.【分析】(1)在OA上截取OP=2a即可求出点P的位置;(2)根据角平分线的作法即可作出∠AOB的平分线;(3)以M为圆心,作一圆与射线OB交于两点,再以这两点分别为圆心,作两个相等半径的圆交于D点,连接MD即为OB的垂线;【解答】解:(1)点P为所求作;(2)OC为所求作;(3)MD为所求作;21.如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把x=3代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标.【解答】解:(1)把x=3代入y=2x﹣4得y=6﹣4=2,则A的坐标是(3,2).把(3,2)代入y=得k=6,则反比例函数的解析式是y=;(2)根据题意得2x﹣4=,解得x=3或﹣1,把x=﹣1代入y=2x﹣4得y=﹣6,则B的坐标是(﹣1,﹣6).22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2 18 0.122≤x<3 a m3≤x<4 45 0.34≤x<5 36 n5≤x<6 21 0.14合计 b 1(1)填空:a= 30 ,b= 150 ,m= 0.2 ,n= 0.24 ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据阅读时间为1≤x<2的人数及所占百分比可得,求出总人数b=150,再根据频率、频数、总人数的关系即可求出m、n、a;(2)根据数据将频数分布直方图补充完整即可;(3)由总人数乘以时间不足三小时的人数的频率即可.【解答】解:(1)b=18÷0.12=150(人),∴n=36÷150=0.24,∴m=1﹣0.12﹣0.3﹣0.24﹣0.14=0.2,∴a=0.2×150=30;故答案为:30,150,0.2,0.24;(2)如图所示:(3)3000×(0.12+0.2)=960(人);即估算该校学生一周的课外阅读时间不足三小时的人数为960人.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)设甲队胜了x场,则负了(10﹣x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】解:(1)设甲队胜了x场,则负了(10﹣x)场,根据题意可得:2x+10﹣x=18,解得:x=8,则10﹣x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10﹣a)≥15,解得:a≥5,答:乙队在初赛阶段至少要胜5场.24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.【考点】ME:切线的判定与性质;L8:菱形的性质;T7:解直角三角形.【分析】(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.【解答】解:(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°,∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°,∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分,∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=,在Rt△PAE中,tan∠1==,∴PE=,设⊙O的半径为R,则OE=R﹣,OA=R,在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半径为.25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.【考点】HF:二次函数综合题.【分析】(1)令x=0可求得C点坐标,化为顶点式可求得D点坐标;(2)令y=0可求得A、B的坐标,结合D点坐标可求得△ABD的面积,设直线CD交x轴于点E,由C、D坐标,利用待定系数法可求得直线CD的解析式,则可求得E点坐标,从而可表示出△BCD的面积,可求得k的值;(3)由B、C、D的坐标,可表示出BC2、BD2和CD2,分∠CBD=90°和∠CDB=90°两种情况,分别利用勾股定理可得到关于a的方程,可求得a的值,则可求得抛物线的解析式.【解答】解:(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,∴C(0,3a),∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,∴D(2,﹣a);(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∴S△ABD=×2×a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C、D的坐标代入可得,解得,∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x=,∴E(,0),∴BE=3﹣=∴S△BCD=S△BEC+S△BED=××(3a+a)=3a,∴S△BCD:S△ABD=(3a):a=3,∴k=3;(3)∵B(3,0),C(0,3a),D(2,﹣a),∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,∵∠BCD<∠BCO<90°,∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣(舍去)或a=,此时抛物线解析式为y=x2﹣2x+;综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y=x2﹣2x+.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD 沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.【考点】LO:四边形综合题.【分析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②想办法证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,可得x2=(4﹣x)2+22,推出x=,推出DN==,由△BDN∽△BAM,可得=,由此求出AM,由△ADM∽△APE,可得=,由此求出AE=,可得EC=AC﹣AE=4﹣=由此即可解决问题.【解答】解:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB==2,∵AD=CD=2,∴BD==2,由翻折可知,BP=BA=2.②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD=AD=BC=2,∴四边形BCPD是平行四边形.(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,∵BD2=CD2+BC2,∴x2=(4﹣x)2+22,∴x=,∵DB=DA,DN⊥AB,∴BN=AN=,在Rt△BDN中,DN==,由△BDN∽△BAM,可得=,∴=,∴AM=2,∴AP=2AM=4,由△ADM∽△APE,可得=,∴=,∴AE=,∴EC=AC﹣AE=4﹣=,易证四边形PECH是矩形,∴PH=EC=.。
第五单元 四边形
第20讲 平行四边形与多边形
1.(2016·长沙)六边形的内角和是( B )
A .540°
B .720°
C .900°
D .360°
2.(2016·衢州)如图,在▱ABCD 中,M 是BC 延长线上的一点,若∠A=135°,则∠MCD 的度数是( A ) A .45° B .55° C .65° D .75°
3.(2016·株洲)已知四边形ABCD 是平行四边形,对角线AC ,BD 交于点O ,E 是BC 的中点,以下说法错误的是( D ) A .OE =1
2DC B .OA =OC
C .∠BOE =∠OBA
D .∠OB
E =∠OCE
4.(2016·丹东)如图,在▱ABCD 中,BF 平分∠ABC,交AD 于点F ,CE 平分∠BCD,交AD 于点E ,AB =6,E F =2,则BC 长为( B )
A .8
B .10
C .12
D .14
5.(2015·绵阳)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为( D )
A .6
B .12
C .20
D .24
6.(2016·泉州)十边形的外角和是360°.
7.(2016·江西)如图所示,在▱ABCD 中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为50°.
8.(2016·邵阳)如图所示,四边形ABCD 的对角线相交于点O ,若AB∥CD,请添加一个条件AD ∥BC(写一个即可),使四边形ABCD 是平行四边形.
9.(2016·资阳)如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB=36°.
10.(2016·十堰)如图,在▱ABCD 中,AB =213 cm ,AD =4 cm ,AC ⊥BC ,则△DBC 比△ABC 的周长长4 cm.
11.(2016·温州)如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F. (1)求证:△ADE≌△FCE;
(2)若∠BAF=90°,BC =5,EF =3,求CD 的长.
解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD.
∴∠DAE =∠F,∠D =∠ECF. ∵E 是CD 的中点,∴DE =CE. 在△ADE 和△FCE 中,⎩⎪⎨⎪
⎧∠DAE=∠F,∠D =∠ECF,DE =CE ,
∴△ADE ≌△FCE(AAS).
(2)∵△ADE≌△FCE,∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF=90°. 在▱ABCD 中,AD =BC =5,
∴DE =AD 2
-AE 2
=52
-32
=4. ∴CD =2DE =8.
12.(2016·菏泽)如图,点O 是△ABC 内一点,连接OB ,OC ,并将AB ,OB ,OC ,AC 的中点D ,E ,F ,G 依次连接,得到四边形DEFG.
(1)求证:四边形DEFG 是平行四边形;
(2)若M 为EF 的中点,OM =3,∠OBC 和∠OCB 互余,求DG 的长度.
解:(1)证明:∵D,G 分别是AB ,AC 的中点, ∴DG ∥BC ,DG =1
2
BC.
∵E ,F 分别是OB ,OC 的中点,
∴EF ∥BC ,EF =1
2
BC.
∴DG =EF ,DG ∥EF.
∴四边形DEFG 是平行四边形. (2)∵∠OBC 和∠OCB 互余, ∴∠OBC +∠OCB=90°. ∴∠BOC =90°.
∵M 为EF 的中点,OM =3, ∴EF =2OM =6.
由(1)有四边形DEFG 是平行四边形, ∴DG =EF =6.
13.(2016·福州)平面直角坐标系中,已知▱ABCD 的三个顶点坐标分别是A(m ,n),B(2,-1),C(-m ,-n),则点D 的坐标是( A )
A .(-2,1)
B .(-2,-1)
C .(-1,-2)
D .(-1,2)
14.如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE⊥AB,垂足E 在线段AB 上,连接EF ,CF ,则下列结论中一定成立的是( C )
①∠DCF =1
2
∠BCD;②EF=CF ;③S △BEC =2S △CEF ;④∠DFE=3∠AEF.
A .①②
B .②③④
C .①②④
D .①②③④
15.(2016·常德)如图,把平行四边形ABC D 折叠,使点C 与点A 重合,这时点D 落在点D 1,折痕为EF ,若∠BAE =55°,则∠D 1AD =55°.
16.(2016·永州)如图,四边形ABCD 为平行四边形,∠BAD 的平分线AE 交CD 于点F ,交BC 的延长线于点E. (1)求证:BE =CD ;
(2)连接BF ,若BF⊥AE,∠BEA =60°,AB =4,求平行四边形ABCD 的面积.
解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB =CD. ∴∠AEB =∠DAE.
∵AE 是∠BAD 的平分线, ∴∠BAE =∠DAE. ∴∠BAE =∠AEB. ∴AB =BE.∴BE=CD.
(2)∵AB=BE ,∠BEA =60°, ∴△ABE 是等边三角形.
∴AE =AB =4. ∵BF ⊥AE , ∴AF =EF =2.
∴BF =AB 2
-AF 2
=42
-22
=2 3. ∵AD∥BC,
∴∠D =∠ECF,∠DAF =∠E. 在△ADF 和△ECF 中, ⎩⎪⎨⎪
⎧∠D=∠ECF,∠DAF =∠E,AF =EF ,
∴△ADF ≌△ECF(AAS). ∴S △ADF =S △ECF .
∴S ▱ABCD =S △ABE =12AE·BF=1
2×4×23=4 3.
17.在▱ABCD 中,BC 边上的高为4,AB =5,AC =25,则▱ABCD 的周长等于12或20.。