新苏科版八年级数学上册每日一练:6.4用一次函数解决问题(1)
- 格式:doc
- 大小:84.50 KB
- 文档页数:1
6.4用一次函数解决问题【推本溯源】根据图像解决下列问题(收费问题)1.某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费45元;(2)当用水18立方米以上时,每立方米应交水费3元;(3)若小敏家某月交水费81元,则这个月用水量为多少立方米?【解答】解:(1)由图象可得,某月用水量为18立方米,则应交水费为45元,故答案为:45;(2)由图象可得,当用水18立方米以上时,每立方米应交水费(75﹣45)÷(28﹣18)=3(元),故答案为:3;(3)∵81>45,∴这个月用水量超过18立方米,∴这个月的用水量为:(81﹣45)÷3+18=30(立方米),即这个月用水量为30立方米(方案问题)2.某校长暑假将带领该校市级“三好学生”去北京旅游,甲旅行社说:“如果校长买全票一张,则其余的学生可享受半价优惠.”乙旅行社说:“包括校长在内全部按票价的六折优惠.”若全票价为240元,两家旅行社的服务质量相同.假如校长带领x名学生去旅游,甲、乙旅行社的收费分别为y甲,y乙元.(1)写出y甲,y乙与x的函数关系式.(2)三好学生人数在什么情况下,选择哪个旅行社合算?【答案】(1)24024050%·120240y x x =+⨯=+甲,()240160%144144y x x =⨯+⨯=+乙(2)当学生人数小于4人时,选择乙旅行社合算;当学生人数等于4人时,选择甲乙旅行社一样;当学生人数大于4人时,选择甲旅行社合算【分析】(1)根据题意直接得出该校向甲乙两家旅行社支付的旅游费y (元)与“三好学生”的人数x 人之间的关系式;(2)通过两家旅行社费用的比较即可得出结论.【详解】(1)解:由题意可知:24024050%·120240y x x =+⨯=+甲,()240160%144144y x x =⨯+⨯=+乙;(2)解:当y y >甲乙时,120240144144x x +>+,解得4x <,∴当学生人数小于4人时,选择乙旅行社合算;当y y =甲乙时,120240=144144x x ++,解得4x =,∴当学生人数等于4人时,选择甲乙旅行社一样;当y y <甲乙时,120240144144x x +<+,解得4x >,∴当学生人数大于4人时,选择甲旅行社合算.【点睛】本题考查一次函数和一元一次不等式的应用,明确题意,列出关系式是解题的关键.(行程问题)3.共享电动车是一种新理念下的交通工具:主要面向3~10km 的出行市场,现有A 、B 两种品牌的共享电动车,收费与骑行时间之间的函数关系如图所示,其中A 品牌收费方式对应y 1,B 品牌的收费方式对应y 2.(1)B品牌10分钟后,每分钟收费(2)写出A品牌的函数关系式为;(3)如果小明每天早上需要骑行A享电动车的平均行驶速度均为20km/h 牌的共享电动车更省钱呢?(4)直接写出两种收费相差1.4元时【答案】(1)0.1(2)y1=0.2x(x≥0)(3)A品牌(4)8分钟或34分钟因此,用一次函数解决问题,我们只需要分析问题的实际背景中包含的变量及对应关系,结合一次函数的解析式及图象,通过比较函数值的大小等,寻求解决问题的最佳方案,体会函数作为一种数学模型在分析解决实际问题中的重要作用.【解惑】50m的水,打开排水阀门开始放水后水池中的水量与放水时间有如下例1:一蓄水池中有3关系:A .5y x =-【答案】A【答案】1.5【分析】分别求出函数12y y ,的函数解析式,然后求出它们的交点坐标即可得到答案.【详解】解:设函数121540360y kx y k x =+=+,,∴10.95403604.53600k k +=⎧⎨+=⎩,∴220080k k =-⎧⎨=-⎩,∴1220054080360y x y x =-+=-+,,联立1220054080360y x y x =-+⎧⎨=-+⎩,解得 1.5240x y =⎧⎨=⎩,∴经过1.5分钟,他们途中到书店的距离相等,故答案为:1.5.【点睛】本题主要考查了一次函数的实际应用,正确求出对应的函数解析式是解题的关键.例5:A 城有肥料200吨,B 城有肥料300吨,现全部运往C ,D 两乡,从A 城往C ,D 两乡运送肥料的费用分别是每吨20元和25元,从B 城运往C ,D 两乡的运输费用分别是15元和24元,C 乡需240吨,D 乡需260吨,设A 城运往C 乡的肥料量为x 吨,总运费为y 元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)求出总运费最低的调运方案,最低运费是多少?【答案】(1)y 与x 的函数关系式为410040(0200)y x x =+≤≤(2)从A 城运往C 乡0吨,运往D 乡200吨;从B 城运往C 乡240吨,运往D 乡60吨,此时总运费最少,总运费最小值是10040元【分析】(1)设总运费为y 元,A 城运往C 乡的肥料量为x 吨,则运往D 乡的肥料量为()200x -吨;B 城运往C 、D 乡的肥料量分别为()240x -吨和()60x +吨,然后根据总运费和运输量的关系列出方程式,就可以求出解析式;(2)根据(1)的解析式,由一次函数的性质就看由求出结论.【详解】(1)解:设总运费为y 元,A 城运往C 乡的肥料量为x 吨,则运往D 乡的肥料量为()200x -吨;B 城运往C 、D 乡的肥料量分别为()240x -吨和[]300(240)(60)x x --=+吨,∴2025(200)15(240)24[300(240)]410040y x x x x x =+-+-+--=+,自变量x 的取值范围为0200x ≤≤,y ∴与x 的函数关系式为410040(0200)y x x =+≤≤.(2)解:由(1)知,410040(0200)y x x =+≤≤,∵40k =>,∴y 随x 的增大而增大,∴当0x =时,运费最少,最少为10040y =,∴从A 城运往C 乡0吨,运往D 乡200吨;从B 城运往C 乡240吨,运往D 乡60吨,此时总运费最少,总运费最小值是10040元.【点睛】本题考查了一次函数的解析式的运用,一次函数的性质的运用.解答时求出一次函数的解析式是关键【摩拳擦掌】1.(2023春·湖北黄冈·八年级统考期末)一次函数()12y k x k =++-的图象经过一、三、四象限,则k 的取值范围是()A .2k <B .1k >-C .12k -<<D .12k -<<且0k ≠【答案】C【分析】根据图象在坐标平面内的位置关系确定k 的取值范围,从而求解.【答案】50【分析】设上升40分时,两只气球位于同一高度米,然后分别根据两个气球上升的速度列出方程组,消掉【详解】解:设上升40分时,两只气球位于同一高度为y千米,(1)进水口单位时间内进水量是多少?出水口单位时间内出水量是多少?(2)求0点到3点这段时间水池内水量y 与时间x 的函数解析式及定义域;(3)试说明3点到4点和4点到6点这个时间段内进出水口的开放情况.【答案】(1)1(万立方米/时),2(万立方米/时)(2)2(03)y x x =≤≤(3)3点到4点时一只进水管进水,一只出水管出水;4点到6点时两只进水管进水,一只出水管出水【分析】(1)根据图甲,乙可知进水口的进水量,出水口的出水量,由此即可求解;(2)根据图丙,可知0点到3点只有进水管进水,由此即可求解;(3)根据图丙,从3点开始水量下降,到4点时保持不变,从4点到6点时水池水量保持不变,由此即可求解.【详解】(1)解:由图甲可知,当时间是1小时时,进水量为1万立方米,从图乙可知,当时间是1小时时,出水量为2万立方米,∴进水口单位时间内进水量是1(万立方米/时),出水口单位时间内出水量是2(万立方米/时).(2)解:0点到3点,则有(0,0),(3,6),根据图丙,设水量y 与时间x 的函数解析式为(0)y kx k =≠,∴36k =,则2k =,∴水量y 与时间x 的函数解析式为2y x =,定义域为03x ≤≤.(3)解:3点到4点,根据图丙得,(3,6),(4,5),设直线方程的解析式为11y k x b =+,∴11113645k b k b +=⎧⎨+=⎩,解方程组得,1119k b =-⎧⎨=⎩,∴3点到4点时的直线方程为9(34)y x x =-+≤≤,即一只进水管进水,一只出水管出水;(1)“龟兔再次赛跑”路程为米;(2)它们两个约定先出发(填“兔子”和“乌龟(3)乌龟跑完全程用了分钟,兔子跑完全程用了度是米/分.【答案】(1)1000(2)乌龟,40(3)60,10,503,100(2)由(1)1040000y x =-+,100k =-< ,y ∴随x 的增大而减小,又 10001500x ≤≤且x 是整数,∴当1000x =时,y 有最大值,最大值是1010004000030000-⨯+=(元),∴生产甲种吉祥物1000个,乙种吉祥物1000个,所获利润最大,最大为30000元.【点睛】本题主要考查了一次函数的应用和一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系,准确的解不等式是需要掌握的基本计算能力,要熟练掌握利用自变量的取值范围求最值的方法.【知不足】1.(2023春·全国·八年级专题练习)一水池蓄水320m ,打开阀门后每小时流出35m ,放水后池内剩余的水量Q ()3m 与放水时间t (时)的函数关系用图象表示为()A .B .C .D .【答案】D【分析】水池里的水,打开阀门后,会随着时间的延续,而随着减少.另外,池内剩下的水的立方数Q ()3m 与放水时间t (时)都应该是非负数.【详解】选项A ,图象显示,放水后池内剩下的水的立方数Q()3m 随着放水时间t (时)的延续而增长,选项错误;选项B ,图象显示,打开阀门后池内剩下的水的立方数Q 的量不变,选项错误;选项C ,图象显示,放水后池内剩下的水的立方数Q ()3m 随着放水时间t (时)的延续而减少,但是,池中原有的蓄水量超出了320m ,选项错误;选项D ,图象显示,放水后池内剩下的水的立方数Q()3m 随着放水时间t (时)的延续而减少,选项正确.故选D .【点睛】本题主要考查了一次函数图象的应用,注意图象所反映的信息.2.(2022秋·江苏·八年级专题练习)若直线y kx b =+经过第一、二、三象限,则下列结论正确的是()A .>0,>0k b B .>0,<0k b C .<0,>0k b D .<0,<0k b 【答案】A【分析】根据一次函数的增减性和与y 轴的交点与系数的关系求解即可.【详解】解:∵直线y =kx +b 经过第一、二、三象限,∴y 随x 的增大而增大,函数与y 轴交于正半轴,∴>0,>0k b .故选:A .【点睛】本题考查了一次函数的图像与性质,对于一次函数y kx b =+(k 为常数,k ≠0),当>0k 时,y 随x 的增大而增大;当0<k 时,y 随x 的增大而减小.当>0b ,图像与y 轴的正半轴相交,当<0b ,图像与y 轴的负半轴相交.3.(2023·黑龙江哈尔滨·哈尔滨市第四十九中学校校考一模)甲乙两车沿着公路从A 地前往B 地,汽车离开A 地的距离y (km )与时间t (h )的对应的关系如图所示.则下列结论错误的是()A .甲车的平均速度为60km/h .B .乙车的平均速度为100km/h .C .甲乙两车在10:00时相遇.D .乙比甲车先到达B 地.【答案】C【答案】①④⑤【分析】根据题意可得乙的总路程比甲少可得甲的速度为()186=20km/h 60÷,根据甲在中途加油的地点距博物馆()22060=6min ÷⨯,从而求出24a =,可得甲加油时共停车了=路程÷时间,可得甲全程的平均速度为()()3082=12km/h 60-÷,可判断④;用待定系数法确定y ⎧(1)求汽车修好后(DB 段)y 与(2)在距离西安()A 180千米的地方有一个服务区,求赵叔叔出发后多长时间到达服务区?【答案】(1)7560y x =-(2)3.2小时(1)甲快递员每天派送快递件;(2)求乙快递员工作时y 与x 之间的函数关系式:(3)求甲、乙两名快递员这10天派送快递的总数量.【答案】(1)60(2)50100y x =-(3)720件【分析】(1)甲的工作效率为:180360÷=(件/天);(2)甲8天共派送快递(83)60300-⨯=(件),可得乙的工作效率为50件/天,即可得乙快递员工作时y 与x 之间的函数关系式为50100y x =-,(28x ≤≤,x 为整数);(3)甲快递员这10天派送快递(103)60420-⨯=(件),乙快递员派送快递300件,即得甲、乙两名快递员这10天派送快递720件.【详解】(1)解:由图象可以看出,甲工作3天后停工3天,∴甲的工作效率为:180360÷=(件/天),故答案为:60;(2)当8x =时,甲派送快递(83)60300-⨯=(件),∴乙的工作效率为300(82)50÷-=(件/天),∴乙快递员工作时y 与x 之间的函数关系式为50(2)50100y x x =-=-,即50100y x =-,(28x ≤≤,x 为整数);(3)甲快递员派送快递(103)60420-⨯=(件),乙快递员派送快递300件,∴甲、乙两名快递员这10天派送快递的总数量是420300720+=(件),答:甲、乙两名快递员这10天派送快递720件.【点睛】本题考查一次函数的应用,解题是关键是读懂题意,能从图中获取有用信息.9.(2023春·云南昆明·八年级校考阶段练习)4月23日是“世界读书日”,甲、乙两书店在这一天举行了购书优惠活动:甲书店:所有书籍按标价8折出售;乙书店:一次购书标价总额不超过100元的按原价计费,超过100元的部分打6折.设小红同学当天购书标价总额为x 元,去甲书店付1y 元,去乙书店购书应付2y 元.(1)分别写出付款金额1y 、2y 与x 的关系式;(2)若小红当天购书的标价为120元,你帮小红算一下她去哪家书店买书更划算?【答案】(1)()10.80y x x =≥;()()201000.640100x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)甲书店【分析】(1)根据利润=A 型节能灯利润+B 型节能灯利润即可求解;(2)根据一次函数的性质即可求解.【详解】(1)解:由题意得()()5040433550y x x =-+-⨯-(),∴2400y x =+;(2)解:由题意得()4035501900x x +-≤,解得30x ≤,∵2400y x =+,∴y 随x 的增大而增大,∴30x =时,460y =答:该厂每天购买30盏A 型环保节能灯和20盏B 型两种环保节能灯,可使所获利润最大,最大利润为460元.【点睛】本题考查一次函数在实际问题中的应用.一元一次不等式的应用,根据题意建立一次函数模型是解题关键.【一览众山小】1.(2023春·山西吕梁·八年级校联考阶段练习)某公司市场营销部的个人收入与其每月的销售量成一次函数关系(如图),由图中给出的信息可知,营销人员月销售3万件的收入是()A .17000无B .18000元C .19000元D .20000元【答案】C 【分析】设y 与x 的函数关系式为y kx b =+,由图可知,函数经过点()04000,和点()1,9000,列方程组求解,即可求得函数关系式;当3x =时,代入函数关系式计算即可求得收入.【详解】设所求的函数关系式为:y kx b =+,∵函数图象过()04000,和()1,9000两点,A.甲队维修道路长度为700m,乙队所维修的道路长度为B.开工103天,甲、乙两队所维修道路长度相等C.开工2天,甲队比乙队多维修D.乙队每天的工作效率都比甲队每天的工作效率高【答案】27【分析】利用待定系数法求出CD(1)写出蚊香点燃后的剩余长度y (单位:cm)与点燃时间t (单位:h )之间的函数关系式;(2)该盘蚊香可使用多长时间?【答案】(1)10020y t=-(2)该盘蚊香可使用5h【分析】(1)根据蚊香的长等于蚊香的原长减去燃烧的长度用t 表示出y 即可;(2)当蚊香的长度y 为0时,即蚊香燃尽的时候求出相应的时间即可.【详解】(1)解:由题意可得,10020y t =-.(2)解:令0y =,即100200t -=,解得5ι=,所以该盘蚊香可使用5h .【点睛】本题考查了一次函数的应用及一次函数与一元一次方程的知识,解题时从实际问题中整理出函数模型并利用函数的知识解决实际问题.7.(辽宁省鞍山市2022-2023学年八年级下学期期末数学试题)高速公路上A ,B 两地相距760千米,一辆货车从A 地开往B 地,同时一辆客车从B 地开往A 地,已知货车的行驶速度为每小时90千米,客车的行驶速度为每小时100千米,设货车与B 地的距离为1y (单位:千米),客车与B 地的距离为2y (单位:千米);(1)分别写出1y ,2y 与出发时间x 的函数关系式;(2)若距离B 地400千米处有一服务区,两车均需要在此处加油和休息,请判断两车是否会同时进入服务区,并说明理由.【答案】(1)176090y x =-,2100y x=(2)两车会同时进入服务区,理由见详解【分析】(1)根据:货车与B 距离=760-x 小时行驶的路程,客车与B 距离=x 小时行驶的路程,即可求解;(2)当12400y y ==时,分别求出时间,即可求解.【详解】(1)解:由题意得170090y x =-,(2)根据a 、c 的值分别写出y 与x 的关系式即可;(3)把21y =代入函数关系式计算即可得解.【详解】(1)解:由表可知,1052a =÷=,()529521c ⨯+-=,解得 2.75c =.故答案为:2,2.75;(2)解:5x ≤时,2y x =;5x >时,()2.75525 2.75 3.75y x x =-+⨯=-,即 2.75 3.75y x =-;(3)解:2110y =>,则21 2.75 3.75x =-,解得9x =,答:该户6月份的用水量9立方米.【点睛】本题考查了一次函数的应用,理解收费=单价×数量并读懂图表信息是解题的关键.9.(2023春·重庆江津·八年级重庆市江津中学校校考阶段练习)如图,矩形ABCD 中,3AB =,4BC =,点P 从点A 出发,沿折线A →B →C →D 运动(不包含点A ,点D ).设点P 运动的路程为x ,其中APD △的面积为y ,(1)直接写出y 与x 之间的函数关系式,注明x 的取值范围,并在图2所示的平面直角坐标系中画出这个函数的图像;(2)观察函数图像填空:①该函数图像_________轴对称图形(填“是”或“不是”);(2)由函数图像可知,①该函数图像是轴对称图形;②当37x ≤≤时,该函数取得最大值为6;③当y 随x 的增大而增大时,自变量x 的取值范围为03x <≤;故答案为:①是;②37x ≤≤,6;③03x <≤(3)当03x <≤时,4y =时,24=x ,解得2x =,符合题意;当710x <<时,4y =时,2024x -=,解得8x =,符合题意;∴当4y =时,x 的值为2或8.故答案为:2或8【点睛】此题考查了函数解析式、从函数图像获取信息、求自变量的值等知识,读懂题意,正确求出函数解析式是解题的关键.10.(2022秋·陕西咸阳·八年级统考期中)公交是一种绿色的出行方式,今年某县全面开通环保电动公交车.公交车在每天发车前需先将蓄电池充满,然后立即开始不间断运行.为保障行车安全,当蓄电池剩余电量低于20kw h ⋅时,需停止运行.在充电和运行过程中,蓄电池的电量y (单位:kw h ⋅)与时间(单位:h )之间的关系如图所示.已知当该电动公交车运行时,y 与x 的函数表达式为15y x b =+.(1)该电动公交车每小时充电量为________kw h ⋅;(2)当该电动公交车运行时,求y 关于x 的函数表达式;(3)当蓄电池的电量为65kw h ⋅时,求该电动公交车运行了多长时间?【答案】(1)30(2)15275y x =-+(3)9h【分析】(1)根据点()5,200与()0,50的含义列式计算即可;(1)求直线BC的函数关系式;(1)点P 在AB 上运动的时间为s ,在CD 上运动的速度为为2cm .(2)求出点P 在CD 上运动时S 与t 之间的函数解析式.(3)当t 为何值时,APD △的面积为210cm .【答案】(1)6,2,18(2)()9061215S t t =-≤≤(3)当t 为10s 40s 210cm(1)求直线AB的函数表达式.(2)求四边形OACD的面积.【答案】(1)334y x =-+(2)7 2【点睛】该题主要考查了一次函数解析式的求法以及一次函数表与图形面积计算,键是掌握函数待定系数法求解解析式.。
苏科版八年级数学上册第六章一次函数一次函数行程问题专题练习一次函数行程问题1.快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y (千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案.2.某个周末,小丽从家去园博园参观,同时妈妈参观结束从园博园回家,小丽刚到园博园就发现要下雨,于是立即按原路返回,追上妈妈后,两人一同回家(小丽和妈妈始终在同一条笔直的公路上行走)如图是两人离家的距离y(米)与小丽出发的时间x(分)之间的函数图象,请根据图象信息回答下列问题:(1)求线段BC的解析式;(2)求点F的坐标,并说明其实际意义;(3)与按原速度回家相比,妈妈提前了几分钟到家?并直接写出小丽与妈妈何时相距800米.3.某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为________件,图中d值为________.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?4. 如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A 出发,沿A→B→C→D 路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒dcm.图②是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.(1)参照图②,求a、b及图②中的c值;(2)求d的值;(3)设点P离开点A的路程为y1(cm),点Q到点A还需走的路程为y2(cm),请分别写出动点P、Q改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P、Q相遇时x的值.(4)当点Q出发秒时,点P、点Q在运动路线上相距的路程为25cm.【课堂练习】1.有一科技小组进行了机器人行走性能试验,在试验场地有A.B. C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A. B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是___米,甲机器人前2分钟的速度为___米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为___米/分;(4)求A. C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米。
《用一次函数解决问题》解答题专题练习1.星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h.爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km.设爸爸骑行时间为x(h).(1)请分别写出爸爸的骑行路程y1(km)、李玉刚同学和妈妈的乘车路程y2(km)与x (h)之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家.2.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.3.甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是km/h;(2)当1≤x≤5时,求y关于x的函数解析式;乙(3)当乙与A地相距240km时,甲与A地相距km.4.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?5.某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:原进价(元/张)零售价(元/张)成套售价(元/套)餐桌 a 270 500元餐椅a﹣110 70已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值;(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(2)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(2)中的最大利润少了2250元.请问本次成套的销售量为多少?6.根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.7.公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.表一:租用甲种货车的数量/辆 3 7 x 租用的甲种货车最多运送机器的数量/台135租用的乙种货车最多运送机器的数量/台150表二:租用甲种货车的数量/辆 3 7 x租用甲种货车的费用/元2800租用乙种货车的费用/元280(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.8.暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?9.小李是某服装厂的一名工人,负责加工A,B两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A型服装1件可得20元,加工B型服装1件可得12元.已知小李每天可加工A型服装4件或B型服装8件,设他每月加工A型服装的时间为x天,月收入为y元.(1)求y与x的函数关系式;(2)根据服装厂要求,小李每月加工A型服装数量应不少于B型服装数量的,那么他的月收入最高能达到多少元?10.都匀某校准备组织学生及家长代表到桂林进行社会实践活动,为便于管理,所有人员必须乘坐同一列高铁,高铁单程票价格如表所示,二等座学生票可打7.5折,已知所有人员都买一等座单程火车票需6175元,都买二等座单程火车票需3150元;如果家长代表与教师的人数之比为2:1.运行区间票价起点站终点站一等座二等座都匀桂林95(元)60(元)(1)参加社会实践活动的老师、家长代表与学生各有多少人?(2)由于各种原因,二等座单程火车票只能买x张(x<参加社会实践的总人数),其余的须买一等座单程火车票,在保证所有人员都有座位的前提下,请你设计最经济的购票方案,并写出购买单程火车票的总费用y与x之间的函数关系式.(3)在(2)的方案下,请求出当x=30时,购买单程火车票的总费用.11.我省某苹果基地销售优质苹果,该基地对需要送货且购买量在kg﹣5000kg(含kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用0元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.12.某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;(3)小明家5月份用水26吨,则他家应交水费多少元?13.某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有A,B型两种客车,它们的载客量和租金如表所示:A型客车B型客车载客量(人/辆)45 28租金(元/辆)400 250经测算,租用A,B型客车共13辆较为合理,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的代数式填写下表:车辆数(辆)载客量(人)租金(元)A型客车x 45x 400xB型客车13﹣x(2)采用怎样的租车方案可以使总的租车费用最低,最低为多少?14.我州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料表明:甲、乙两种鱼苗的成活率为80%,90%(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?15.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为km/h,H点坐标.(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?16.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如表所示:(教师按成人票价购买,学生按学生票价购买).运行区间成人票价(元/张)学生票价(元/张)出发站终点站一等座二等座二等座南靖厦门26 22 16若师生均购买二等座票,则共需1020元.(1)参加活动的教师有人,学生有人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x人,购买一、二等座票全部费用为y 元.①求y关于x的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?17.为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/吨)甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;(2)求出最低费用,并说明费用最低时的调配方案.18.某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元.由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额y(万元)与月份x(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本p(万元)与销售额y(万元)之间函数关系的图象图2中线段AB所示.(1)求经销成本p(万元)与销售额y(万元)之间的函数关系式;(2)分别求该公司3月,4月的利润;(3)问:把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额﹣经销成本)19.荔枝是深圳的特色水果,小明的妈妈先购买了2千克桂味和3千克糯米糍,共花费90元;后又购买了1千克桂味和2千克糯米糍,共花费55元.(每次两种荔枝的售价都不变)(1)求桂味和糯米糍的售价分别是每千克多少元;(2)如果还需购买两种荔枝共12千克,要求糯米糍的数量不少于桂味数量的2倍,请设计一种购买方案,使所需总费用最低.20.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.21.(列方程(组)及不等式解应用题)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.22.一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据:120 130 (180)销售单价x(元/kg)每天销量y(kg)100 95 (70)设y与x的关系是我们所学过的某一种函数关系.(1)直接写出y与x的函数关系式,并指出自变量x的取值范围;(2)当销售单价为多少时,销售利润最大?最大利润是多少?23.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,设购进甲种花卉x盆,全部销售后获得的利润为W 元,求W与x之间的函数关系式;(3)在(2)的条件下,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?24.A城有某种农机30台,B城有该农机40台,现要将这些农机全部运往C,D两乡,调运任务承包给某运输公司.已知C乡需要农机34台,D乡需要农机36台,从A城往C,D两乡运送农机的费用分别为250元/台和200元/台,从B城往C,D两乡运送农机的费用分别为150元/台和240元/台.(1)设A城运往C乡该农机x台,运送全部农机的总费用为W元,求W关于x的函数关系式,并写出自变量x的取值范围;(2)现该运输公司要求运送全部农机的总费用不低于16460元,则有多少种不同的调运方案?将这些方案设计出来;(3)现该运输公司决定对A城运往C乡的农机,从运输费中每台减免a元(a≤200)作为优惠,其它费用不变,如何调运,使总费用最少?25.甲、乙两车从A城出发前往B城,在整个行程中,两车离开A城的距离y与t的对应关系如图所示:(1)A、B两城之间距离是多少千米?(2)求乙车出发多长时间追上甲车?(3)直接写出甲车出发多长时间,两车相距20千米.26.下表是世界人口增长趋势数据表:年份x 1960 1974 1987 1999 201030 40 50 60 69人口数量y(亿)(1)请你认真研究上面数据表,求出从1960年到2010年世界人口平均每年增长多少亿人;(2)利用你在(1)中所得到的结论,以1960年30亿人口为基础,设计一个最能反映人口数量y关于年份x的函数关系式,并求出这个函数的解析式;(3)利用你在(2)中所得的函数解析式,预测2020年世界人口将达到多少亿人.27.某公司有A型产品40件,B型产品60件,分配给甲、乙两个商店销售,其中70件给甲店,30件给乙店,且全部售出,两种产品的利润如表所示:A型产品利润B型产品利润甲店200元/件170元/件乙店160元/件150元/件(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求x的取值范围.(2)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品每件的利润仍高于甲店B型产品每件的利润,其它利润不变,问该公司如何设计分配方案,可使得总利润最大?28.某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A、B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:每台甲型收割机的租金每台乙型收割机的租金A地区1800元1600元B地区1600元1200元(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.29.甲、乙两组同学玩“两人背夹球”比赛,即:每组两名同学用背部夹着球跑完规定的路程,若途中球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲组两位同学掉了球;乙组两位同学则顺利跑完.设比赛距出发点用y表示,单位是米;比赛时间用x表示,单位是秒.两组同学比赛过程用图象表示如下.(1)这是一次米的背夹球比赛,获胜的是组同学;(2)请直接写出线段AB的实际意义;(3)求出C点坐标并说明点C的实际意义.30.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B 型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?参考答案与解析1.(2016•滨州)星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h.爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km.设爸爸骑行时间为x(h).(1)请分别写出爸爸的骑行路程y1(km)、李玉刚同学和妈妈的乘车路程y2(km)与x (h)之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家.【分析】(1)根据速度乘以时间等于路程,可得函数关系式,(2)根据描点法,可得函数图象;(3)根据图象,可得答案.【解答】解;(1)由题意,得y1=20x (0≤x≤2)y2=40(x﹣1)(1≤x≤2);(2)由题意得;(3)由图象可得李玉刚和妈妈乘车和爸爸骑行同时到达老家.【点评】本题考查了一次函数图象,利用描点法是画函数图象的关键.2.(2016•齐齐哈尔)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是70米,甲机器人前2分钟的速度为95米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为60米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.【分析】(1)结合图象得到A、B两点之间的距离,甲机器人前2分钟的速度;(2)根据题意求出点F的坐标,利用待定系数法求出EF所在直线的函数解析式;(3)根据一次函数的图象和性质解答;(4)根据速度和时间的关系计算即可;(5)分前2分钟、2分钟﹣3分钟、4分钟﹣7分钟三个时间段解答.【解答】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x分钟相距28米,由题意得,60x+70﹣95x=28,解得,x=1.2,前2分钟﹣3分钟,两机器人相距28米时,35x﹣70=28,解得,x=2.8.4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),则直线GH的方程为y=﹣x+,当y=28时,解得x=4.6,答:两机器人出发1.2分或2.8分或4.6分相距28米.【点评】本题考查的是一次函数的综合运用,掌握待定系数法求一次函数解析式、正确列出一元一次方程、灵活运用数形结合思想是解题的关键.3.(2016•吉林)甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示.(1)甲的速度是60km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距220km.【分析】(1)根据图象确定出甲的路程与时间,即可求出速度;关于x的函数解析式即可;(2)利用待定系数法确定出y乙(3)求出乙距A地240km时的时间,加上1,再乘以甲的速度即可得到结果.【解答】解:(1)根据图象得:360÷6=60km/h;=kx+b,(2)当1≤x≤5时,设y乙把(1,0)与(5,360)代入得:,解得:k=90,b=﹣90,=90x﹣90;则y乙(3)∵乙与A地相距240km,且乙的速度为360÷(5﹣1)=90km/h,∴乙用的时间是240÷90=h,则甲与A地相距60×(+1)=220km,故答案为:(1)60;(3)220【点评】此题考查了一次函数的应用,弄清图象中的数据是解本题的关键.4.(2016•连云港)环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x (天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?【分析】(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得出方程组,解方程组即可;②当x>3时,设y=,把(3,4)代入求出m的值即可;(2)令y==1,得出x=12<15,即可得出结论.【解答】解:(1)分情况讨论:①当0≤x≤3时,设线段AB对应的函数表达式为y=kx+b;把A(0,10),B(3,4)代入得,解得:,∴y=﹣2x+10;②当x>3时,设y=,把(3,4)代入得:m=3×4=12,∴y=;综上所述:当0≤x≤3时,y=﹣2x+10;当x>3时,y=;(2)能;理由如下:令y==1,则x=12<15,故能在15天以内不超过最高允许的1.0mg/L.【点评】本题考查了扬州市的应用、反比例函数的应用;根据题意得出函数关系式是解决问题的关键.5.(2016•达州)某家具商场计划购进某种餐桌、餐椅进行销售,有关信息如表:原进价(元/张)零售价(元/张)成套售价(元/套)餐桌 a 270 500元餐椅a﹣110 70已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.(1)求表中a的值;(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?(3)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(2)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(2)中的最大利润少了2250元.请问本次成套的销售量为多少?【分析】(1)根据餐桌和餐椅数量相等列出方程求解即可;(2)设购进餐桌x张,餐椅(5x+20)张,销售利润为W元.根据购进总数量不超过200张,得出关于x的一元一次不等式,解不等式即可得出x的取值范围,再根据“总利润=成套销售的利润+零售餐桌的利润+零售餐椅的利润”即可得出W关于x的一次函数,根据一次函数的性质即可解决最值问题;(3)设本次成套销售量为m套,先算出涨价后每张餐桌及餐椅的进价,再根据利润间的关系找出关于m的一元一次方程,解方程即可得出结论.【解答】解:(1)由题意得=,解得a=150,经检验,a=150是原分式方程的解;(2)设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元.由题意得:x+5x+20≤200,解得:x≤30.∵a=150,∴餐桌的进价为150元/张,餐椅的进价为40元/张.依题意可知:W=x•(500﹣150﹣4×40)+x•(270﹣150)+(5x+20﹣x•4)•(70﹣40)=245x+600,∵k=245>0,∴W关于x的函数单调递增,∴当x=30时,W取最大值,最大值为7950.故购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.(3)涨价后每张餐桌的进价为160元,每张餐椅的进价为50元,设本次成套销售量为m套.依题意得:(500﹣160﹣4×50)m+(30﹣m)×(270﹣160)+(170﹣4m)×(70﹣50)=7950﹣2250,即6700﹣50m=5700,解得:m=20.答:本次成套的销售量为20套.【点评】本题考查了一次函数的应用、解一元一次不等式、一次函数的性质及解一元一次方程,解题的关键是:(1)由数量相等得出关于a的分式方程;(2)根据数量关系找出W关于x的函数解析式;(3)根据数量关系找出关于m的一元一次方程.本题属于中档题,难度不大,但较繁琐,解决该题型题目时,根据数量关系找出函数关系式(方程或方程组)是关键.6.(2016•绍兴)根据卫生防疫部门要求,游泳池必须定期换水,清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t (h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.。
6.4 用一次函数解决问题(1)(教案)【教学目标】1、能根据实际问题中变量之间的关系,确定一次函数的表达式,通过一次函数表述数量及其关系的过程,体会模型思想;2、能用一次函数及其一次方程和一次不等式等知识综合解决实际问题.【教学重点】根据实际问题建立函数模型【教学难点】综合一次方程和一次不等式等知识综合解决实际问题【教学过程】引例:(课本P155)名闻遐迩的玉龙雪山,位于云南省丽江城北,由12座山峰组成,主峰海拔5596米,远眺玉龙雪山,在海拔4500米处,有一条黑白分明的分界线——雪线,雪线以上是银光闪烁的冰雪世界,雪线以下是草木葱葱的原始深林.由于气候变暖等原因,2002~2007年间,玉龙雪山的雪线平均每年上升约10米,假设雪线的高度按此速度不断变化,几年后玉龙雪山的雪线将由现在的海拔4500米退至山顶而消失?情景的引入是为了让学生以丽江美景玉龙雪山为问题背景,通过两个变量的分析,引导学生建立一次函数的模型,从而利用一次函数的相关知识解决实际问题.在解答方法上,可以有不同的解法,鼓励学生发散思维,找到不同的解决途径,同时也为问题的解决作准备.活动1、(课本P155问题1)某工厂生产某种产品,已知该工厂正常运转的固定资本为每天12000元,生产该产品的原料成本为每件900元.(1)写出每天的生产成本(包括固定成本于原料成本)与产量之间的函数表达式;(2)如果每件产品的出厂价为1200元,那么每天生产多少件产品,该工厂才有赢利?学生读题,找清数量关系,即该产品每天的生产成本由两部分构成,一部分是固定成本,这是一个与产量无关的常量;另一部分是原料成本,它随产量的变化而变化.通过探索活动,让学生进一步明确题中的数量关系,通过文字语言的分析,正确找出不等关系.体验在处理一个实际问题面前,数学所具有的价值和魅力,培养学生的应用意识.练习1、已知A 、B 两家旅行社分别推出家庭旅游优惠活动,两家旅行社的票价均为90元/人,但优惠办法不同,A 旅行社的优惠方法是:全家有一人购全票,其余的半价优惠;B 旅行社的优惠方法是:每人均按32票价优惠,你将选择哪家旅行社?通过练习巩固知识的运用,培养学生用函数的观点分析问题和解决问题的能力.活动2、为节约能源,某市将调整电价,规定:每户居民每月用电量不超过100度,每度电价为0.50元,超过100度的,超出部分每度电价为1.00元.(1)写出调整电价后某户居民按月应交的电费y(元)与用电量x(度)之间的函数表达式;(2)甲、乙两户居民某月所交电费分别为40元和70元,这两户居民该月各用电多少度?分段函数是指自变量在不同的取值范围内,其关系式(或图像)也不同的函数,分段函数的应用解答时需要分段讨论,在现实生活中存在许多需分段计费的实际问题.进行必要的延伸和拓展,提升学生的解题能力.练习2、(课本P156练习2)某市出租车收费标准:不超过3千米计费为7.0元,3千米后按2.4元/千米计费.(1)当路程表显示1.5km 和7km 时,应分别付费多少元?(2)写出车费 y (元)与路程 x (千米)之间的函数表达式;(3)小亮乘出租车出行,付费19元,计算小亮乘车的路程.拓展应用:(课本P159第2题)如图,公路上有A 、B 、C 三个汽车站,一辆汽车8:00从离A 站10千米的P 地出发,向C 站匀速行驶,15分钟后离A 站30千米,(1)设出发x 小时后,汽车离A 站y 千米,写出y 与x 之间的函数表达式;(2)当汽车行驶到离A 站250千米的B 站时,接到通知要在12:00前赶到离B 站60千米的C 站,汽车按原速行驶,能否准时到达?如果能,那么汽车何时到达C 站?随堂练习:1、(课本P156问题2)在人才招聘会上,某公司承诺:录用后第一年得月工资为2000元,在以后的一定时间内,每年的月工资比上一年的月工资增加300元.(1)某人在该公司连续工作n 年,写出他第n 年的月工资 y 与n 的函数表达式.(2)他第5 年的年收入能否超过40000元?2、(课本P159、3)某电信公司推出甲、乙两种收费方式供手机用户选择:甲种方式每月收月租费8元,每分钟通话费为0.2元;乙种方式不收月租费,每分钟通话费为0.3元,试根据通话时间的多少选择合适的付费方式.小结思考: 通过本节课的学习,你有哪些收获,你还有哪些困惑?本节课我们从生活中的问题出发,将实际问题转化为数学问题,建立了一次函数的模型,从而解决实际问题.学生尝试对知识方法进行归纳、提炼、总结,形成理性的认识,内化数学的方法和经验.试对所学知识进行反思、归纳和总结.会对知识进行提炼,体会数学的思想和应用,将感性的认识升华为理性的认识... . . B C P A。
2022-2023学年苏科版八年级数学上册《6.4用一次函数解决问题》解答题专题提升训练(附答案)1.小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米,小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y1(米),y2(米)与小明出发的时间x(分)的函数关系如图所示.(1)图中a=,b=;(2)小明上山的速度米/分;小明下山的速度米/分;爸爸上山的速度米/分.(3)小明的爸爸下山所用的时间.2.小李、小王两人从学校出发去图书馆,小李步行一段时间后,小王骑电动车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与小李出发时间t(分)之间的函数关系如图所示.(1)请直接写出小李、小王两人的前行速度;(2)请直接写出小李、小王两人前行的路程y1(米),y2(米)与小李出发时间t(分)之间的函数关系式;(3)求小王出发多长时间,两人的路程差为240米.3.小刚家、学校、图书馆依次在一条直线上,小刚骑自行车匀速从学校到图书馆,到达图书馆还完书后,再以相同的速度原路返回家中,小刚离家的距离y(m)与他所用的时间x(min)的函数关系如图所示.(1)求小刚从图书馆返回家的过程中,y与x之间的关系式;(2)小刚出发35分钟时,他离家有多远?4.如图,甲、乙两人分别从同一公路上的A、B两地同时出发骑车前往c地,两人行驶的路程y(km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A、B两地相距km,乙骑车的速度是km/h;(2)求甲在0≤x≤6的时间段内的函数关系式;(3)在0≤x≤6的时间段内,当x(h)为何值时甲、乙两人相距5千米.5.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地.如图,线段OA 表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)货车的速度是km/h;轿车提速后的速度是km/h;(2)轿车到达乙地后,货车距乙地千米;(3)线段CD对应的函数解析式为;(4)货车从甲地出发后小时与轿车相遇.6.某移动通讯公司开设了两类通讯业务,A类收费标准为不管通话时间多长,使用者都应缴50元月租费,然后每通话1分钟,付0.4元;B类收费标准为用户不缴月租费,每通话1分钟,付话费0.6元,若一个月通讯x分钟,两种方式的费用分别为y A和y B元.(1)分别写出y A,y B与x之间的函数关系式;(2)某人估计一个月内通话时间为300分钟,应选哪种移动通讯方式合算些?请书写计算过程;(3)李师傅用的是A卡,他计算了一下,若是用B卡,他本月的话费将会比现在多100元,请算一下本月李师傅实际的话费是多少元?7.已知A、B两地相距120km,甲、乙两人沿同一条道路从A地到B地.l1、l2分别表示甲、乙两人离开A地的距离S(km)与时间t(h)之间的关系.请根据图象填空:(1)大约在甲出发h后,两人相遇,这时他们离B地km;(2)甲的速度是km/h;乙的速度是km/h;(3)l1对应的表达式为:,l2对应的表达式为:.8.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.(1)甲车出发小时后,乙车才出发;(2)甲车的速度为km/h,乙车的速度为km/h;(3)甲、乙两车经过小时后第一次相遇;(4)当t为何值时,甲、乙两车相距20千米.(直接写出t的值)9.随着春节临近,某儿童游乐场推出了甲、乙两种消费卡,其中,甲为按照次数收费,乙为收取办卡费用以后每次打折收费.设消费次数为x时,所需费用为y元,且y与x的函数关系如图所示.根据图中信息,解答下列问题.(1)分别求出选择这两种卡消费时,y关于x的函数表达式;(2)求出入园多少次时,两者花费一样?费用是多少?(3)洋洋爸准备了240元,请问选择哪种划算?10.甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示.(1)a的值是,甲的速度是km/h.(2)求线段EF所表示的y与x的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?11.某商品共200吨,经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并且按这三种方式销售,计划每吨的平均售价及成本如下表:销售方式批发零售储藏后销售售价/(元/吨)300045005500成本/(元/吨)200030003500若经过一段时间,商品按计划全部售出获得的总利润为y(元),其中零售x(吨),且零售量是批发量的一半.(1)求y与x之间的函数关系式;(2)由于受条件限制,经冷库储藏售出的商品数量最多为80吨,求该生产基地按计划全部售完商品获得的最大利润.12.为了传承中华优秀传统文化,增强文化自信,某中学举办了以“争做时代先锋少年”为主题的演讲比赛,并为获奖的同学颁发奖品.张老师去商店购买甲、乙两种笔记本作为奖品,已知该商店甲种笔记本的单价为5元/个,乙种笔记本的单价为3元/个,张老师准备购买甲、乙两种笔记本共100个.因张老师购买的数量多,实际付款时按原价的九折付款.设张老师购买x个甲种笔记本,购买这两种笔记本所需费用为y元.(1)求y与x之间的关系式;(2)若本次购买甲种笔记本的数量不少于乙种笔记本数量的3倍,为了使所花费用最低,应如何购买?最低费用是多少元?13.“中国海带之乡”霞浦县今年又迎来一个丰收年.某海带养殖专业村为保障养殖户收益,联系了村海带加工厂,收购养殖户每天收割的鲜海带.该加工厂主要以加工干海带和盐渍海带两种方式处理每天收购的30吨鲜海带,工厂现有12名工人,每位工人在同一天中只能选择一种加工方式.若生产干海带,每人每天可加工2吨鲜海带,每吨可获利250元;若加工盐渍海带,每人每天可加工0.6吨鲜海带,每吨可获利600元;每天加工不完的鲜海带直接续给鲍鱼养殖场作饲料.若安排所有的工人都加工干海带,则加工厂当天可获利6300元.(1)求加工不完的鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利多少元;(2)根据市场销售情况,该加工厂决定生产干海带的人数不超过盐渍海带人数的2倍.问加工厂如何安排工人,可使每天生产的利润最大?最大利润是多少元?14.学校计划组织七年级学生到“万州三峡移民纪念馆”参加“追寻先辈足迹,传承三峡精神”的活动.在此活动中,若每位老师带队14名学生,则还有10名学生没有老师带队;若每位老师带队15名学生,就有一位老师少带6名学生.(1)参加此次活动的老师和学生各多少名?(2)现计划租用两种客车共8辆,一辆甲型客车可以载35人,租金400元,一辆乙型客车可以载30人,租金320元.计划此次活动的租金总费用不超过3000元,学校共有哪几种租车方案?最少租车费用是多少?15.一条笔直的公路上依次有A、B、C三地,甲车从A地驶往C地,乙车从A地驶往B地,两车同时出发并以各自的速度匀速行驶.乙车中途因汽车故障停下来修理,修好后立即以原速的两倍继续前进到达B地;如图是甲、乙两车与A地的距离y(千米)与出发时间x(小时)之间的大致图象.(1)求B、C两地之间的距离;(2)什么时候乙追上甲;(3)当两车相距40千米时,甲车行驶了多长时间.16.复课第一天,马小虎同学从家出发,骑车匀速前往学校上学,出发几分钟后,爸爸发现马小虎的健康卡落在家里,于是骑车沿相同的路线匀速去追马小虎.爸爸刚出发2分钟,马小虎也发现自己健康卡落在家里,立刻原路原速骑车返回,2分钟后马小虎遇到爸爸,爸爸把健康表给马小虎后立即原路原速返家中,马小虎继续原路原速赶往学校.马小虎与爸爸相距的路程y(米)与马小虎出发的时间x(分)之间的关系如图所示(爸爸给马小虎健康卡的时间忽略不计).(1)马小虎出发分钟后,爸爸追上他.(2)求马小虎骑车的速度.(3)若爸爸到家4分钟后,马小虎才到学校,求马小虎家到学校的路程.17.如图,直线与x轴、y轴分别交于A、B两点,OM⊥AB于点M,点P 为直线l上不与点A、B重合的一个动点.(1)求线段OM的长;(2)当△BOP的面积是3时,求点P的坐标;(3)当点P在线段AB上且△BOP的面积为3时,在x轴上是否存在点Q,使得△OPQ 是以OP为腰的等腰三角形,若存在,请直接写出Q点的坐标,若不存在,请说明理由.18.如图1,在平面直角坐标系中,一次函数y=3x+6分别与x轴和y轴交于点C和点B,已知A(6,0),(1)写出点B,点C的坐标和△ABC的面积;(2)直线l经过A、B两点,求直线AB的解析式;(3)点D是在直线AB上的动点,是否存在动点D,使得?若存在,求出点D的坐标;若不存在,请说明理由;(4)如图2,P为A点右侧x轴上的一动点,以P为直角顶点、BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?如果不变,请求出它的坐标;如果变化,请说明理由.19.如图所示,在平面直角坐标系中,直线y=x+1与y=﹣x+3分别交x轴于点B和点C,点D是直线y=﹣x+3与y轴的交点.(1)求点B、C、D的坐标;(2)设M(x,y)是直线y=x+1上一点,当△BCM的面积为10时,求点M的坐标;(3)线段CD上是否存在点P,使△CBP为等腰三角形,如果存在,直接写出P点的坐标;如果不存在,请说明理由.20.问题提出:如图1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD ⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;问题探究:如图2,在平面直角坐标系中,一次函数y=x+1与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,求点C的坐标;问题解决:古城西安已经全面迎来地铁时代!继西安地铁2号线于2011年9月16日通车试运行以来,共有八条线路开通运营,极大促进了西安市的交通运输,目前还有多条线路正在修建中.如图3,地铁某线路原计划按OA﹣AB的方向施工,由于在AB方向发现一处地下古建筑,地铁修建须绕开此区域.经实地勘测,若将AB段绕点A顺时针或逆时针方向旋转45°至AC或AD方向,则可以绕开此区域.已知OA长为1千米,以点O为原点,OA所在直线为x轴,1千米为单位长度,建立平面直角坐标系,且射线AB与直线y=﹣2x平行,请帮助施工队计算出AC和AD所在直线的解析式.参考答案1.解:(1)由图象可以得到,a=8,b=280,故答案为:8,280;(2)由图象可以得出爸爸上山的速度是:280÷8=35(米/分),小明上山的速度为:400÷8=50(米/分),小明下山的速度是:400÷(24﹣8)=25(米/分),故答案为:50,25,35;(3)∵小明从下山到与爸爸相遇用的时间是:(400﹣280)÷(35+25)=2分,∵小明与爸爸相遇后,和爸爸一起以原下山速度返回出发地,∴小明的爸爸下山所用的时间:24﹣8﹣2=14(分).故答案为:14.2.解:(1)由图象得出小李步行720米,需要9分钟,所以小李的运动速度为:720÷9=80(米/分),当第15分钟时,小王运动15﹣9=6(分钟),运动距离为:15×80=1200(m),∴小王的运动速度为:1200÷6=200(米/分);(2)根据题意得y1=80t,y2=200(t﹣9)=200t﹣1800;(3)当相遇前两人的路程差为240米时,得y1﹣y2=240,即80t﹣(200t﹣1800)=240,解得t=13,当相遇前两人的路程差为240米时,得y2﹣y1=240,即(200t﹣1800)﹣80t=240,解得t=17,∴小王出发13分钟或17分钟时,两人的路程差为240米.3.解:(1)由题意得,小刚家与学校的距离为3000m,小刚骑自行车的速度为:(5000﹣3000)÷10=200(m/min),小刚从图书馆返回家的时间:5000÷200=25(min),总时间:25+20=45(min),设小刚从图书馆返回家的过程中,y与x的函数表达式为y=kx+b,把(20,5000),(45,0)代入得:,解得,∴y=﹣200x+9000(20≤x≤45);(2)小刚出发35分钟时,即当x=35时,y=﹣200×35+9000=2000.答:他离家2000m.4.解:(1)由图象可得,A、B两地相距20km,乙骑车的速度是(30﹣20)÷2=10÷2=5(km/h),故答案为:20,5;(2)设甲在0≤x≤6时,y与x之间的函数关系式是y=kx,∵点(6,60)在该函数图象上,∴6k=60,解得k=10,即甲在0≤x≤6时,y与x之间的函数关系式是y=10x;(3)设乙在0≤x≤6时,y与x之间的函数关系式是y=ax+b,∵点(2,30),(6,50)在函数图象上,∴,解得,即乙在0≤x≤6时,y与x之间的函数关系式是y=5x+20;相遇之前两人相距5km,则(5x+20)﹣10x=5,解得x=3;相遇之后且甲到达C地之前相距5km,则10x﹣(5x+20)=5,解得x=5;答:当乙行驶3小时或5小时时甲、乙两人相距5千米.5.解:(1)货车的速度为300÷5=60(km/h);轿车提速后的速度为=110(km/h).故答案为:60,110;(2)从图象上看轿车比货车早0.5h到达乙地,∴轿车到达乙地后,货车距乙地有0.5×60=30(千米),故答案为:30;(3)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5),故答案为:y=110x﹣195;(4)设OA段函数解析式为y=mx,代入A(50,300),得5m=300,解得m=60,∴OA段函数解析式为y=60x;联立方程组,得,解得,故货车从甲地出发后3.9小时与轿车相遇.故答案为:3.9.6.解:(1)由题意可得,y A=0.4x+50,y B=0.6x;(2)当x=300时,y A=0.4×300+50=170,y B=0.6×300=180,∵170<180,∴某人估计一个月内通话时间为300分钟,应选A种移动通讯方式合算些;(3)设本月李师傅实际的话费是a元,,解得a=350,答:本月李师傅实际的话费是350元.7.解:(1)由图象可知,大约在甲出发3﹣2=1(h)后,两人相遇,这时他们离B地120﹣30=90(km);故答案为:1,90;(2)甲的速度是30÷(3﹣2)=30(km/h),乙的速度是30÷3=10(km/h),故答案为:30,10;(3)设l1对应的表达式为s=kt+b,将(3,30),(6,120)代入得:,解得,∴l1对应的表达式为:s=30t﹣60,设l2对应的表达式为s=k't,将(3,30)代入得:30=3k',解得k'=10,∴l2对应的表达式为s=10t,故答案为:s=30t﹣60,s=10t.8.解:(1)由图象可直接得出:甲车出发1小时后,乙车才出发;故答案为:1;(2)由图象可知,甲车的速度为240÷5=48(km/h),乙车的速度为240÷(4﹣1)=80(km/h);故答案为:48;80;(3)甲所在的直线为y=48x,乙所在的直线为:y=80x﹣80,令48x=80x﹣80,解得x=2.5,故答案为:2.5;(4)当乙车开始行驶前,令48x=20,解得x=,符合题意,当甲、乙两车相遇前,48x﹣(80x﹣80)=20,解得x=,符合题意,当甲、乙两车相遇后,80x﹣80﹣48x=20,解得x=,符合题意,当乙到达目的地后,48x+20=240,解得x=,符合题意.∴当t的值为或或或,甲、乙两车相距20千米.9.解:(1)设y甲=k1x,根据题意得4k1=80,解得k1=20,∴y甲=20x;设y乙=k2x+80,根据题意得:12k2+80=200,解得k2=10,∴y乙=10x+80;(2)解方程组解得:,∴出入园8次时,两者花费一样,费用是160元;(3)当y=240时,y甲=20x=240,∴x=12;当y=240时,y乙=10x+80=240,解得x=16;∵12<16,∴选择乙种更合算.10.解:(1)∵线段DE代表乙车在途中的货站装货耗时半小时,∴a=4+0.5=4.5(小时),∴甲车的速度==60(千米/小时);故答案为:4.5;60;(2)设乙开始的速度为v千米/小时,则4v+(7﹣4.5)(v﹣50)=460,解得v=90(千米/小时),∴4v=360,∴D(4,360),E(4.5,360),设直线EF的解析式为y=kx+b,把E(4.5,360),F(7,460)代入得:,解得,∴线段EF所表示的y与x的函数关系式为y=40x+180(4.5≤x≤7);(3)∵60×=40,∴C(0,40),设线段CF的解析式为y=kx+40,根据题意得:7k+40=460,解得k=60,∴线段CF的解析式为y=60x+40,∵甲乙两车距离不超过10km时,车载通话机可以进行通话,由,解得1≤x≤,由,解得≤x≤7,∴两车在行驶过程中可以通话的总时长为:(﹣1)+(7﹣)=(小时).11.解:(1)设零售x吨,则批发2x吨,储藏后销售(200﹣x﹣2x)吨,根据题意得:y=2x(3000﹣2000)+x(4500﹣3000)+(200﹣3x)(5500﹣3500)=﹣2500x+400000;即y=﹣2500x+400000;(2)∵冷库储藏售出的商品数量最多为80吨,∴200﹣3x≤80,∴x≥40,,∵y=﹣2500x+400000中,﹣2500<0,∴y的值随x的值增大而减小,∴当x=40时,y最大值=﹣2500×40+400000=300000(元);答:该生产基地按计划全部售完商品获得的最大利润为300000元.12.解:(1)设张老师购买x个甲种笔记本,则购买(100﹣x)个乙种笔记本,由题意可得:y=5×0.9x+3×0.9(100﹣x)=1.8x+270.即y与x之间的关系式为y=1.8x+270;(2)由(1)知:y=1.8x+270,∴y随x的增大而增大,∵甲种笔记本的数量不少于乙种笔记本数量的3倍,∴x≥3(100﹣x),解得x≥75.∴当x=75时,y取得最小值,此时y=405,100﹣x=25,答:购买75个甲种笔记本、25个乙种笔记本,所花费用最低,最低费用是405元.13.解:(1)设加工不完的鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利x元,根据题意得:12×2×250+(30﹣12×2)x=6300,解得x=50,答:加工不完的鲜海带直接卖给鲍鱼养殖场作饲料,每吨可获利50元;(2)设生产盐渍海带的m人,每天生产的利润是w元,则生产干海带的(12﹣m)人,∵生产干海带的人数不超过盐渍海带人数的2倍,∴12﹣m≤2m,解得m≥4,根据题意得:w=0.6m×600+2(12﹣m)×250+50[30﹣0.6m﹣2(12﹣m)]=﹣70m+6300,∵﹣70<0,∴当m=4时,w取最大值,最大值为﹣70×4+6300=6020(元),此时12﹣m=8,答:生产盐渍海带的4人,生产干海带的8人,可使每天生产的利润最大,最大利润是6020元.14.解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得.答:参加活动的老师有16人,学生有234人;(2)设租甲种车型n辆,依题意得,解这个不等式组得:2≤n≤5.5,∵n为正整数,∴n=2,3,4,5,即学校共有一下四种租车方案:方案①:2辆甲车,6辆乙车;方案②:3辆甲车,5辆乙车;方案③:4辆甲车,5辆乙车;方案④:5辆甲车,3辆乙车;设租车费用为W元,则W=400n+320(8﹣n)=80n+2560,∵80>0,∴W随n的增大而增大,∴当n=2时费用最低,最少费用为W=160+2560=2720(元).答:学校共有四种租车方案,最少费用为2720元.15.解:(1)乙前面的速度为:100÷2=50(千米/小时),乙后来的速度为:50×2=100(千米/小时),BC=360﹣100﹣100×(4.8﹣2.8)=60(千米),答:B、C两地之间的距离为60千米;(2)甲的速度为:360÷6=60(千米/小时),设乙t小时追上甲,根据题意得60t=100+100(t﹣2.8),解得t=4.5,答:出发后4.5小时乙追上甲;(3)当0<x≤2时,两车距离小于40,①当2<x≤2.8时,设甲距离A地的距离y(千米)与出发时间x(小时)之间的关系式为y=k1x,代入(6,360)可得k1=60,∴y=60x,60x﹣100=40,解得x=;②当2.8<x≤4.8时,由(1)可得,A、B两地之间的距离为:360﹣60=300(km),设乙与A地距离与出发时间x之间的函数关系式为y=k2x+b,代入(2.8,100)和(4.8,300),得,解得,∴y=100x﹣180,解方程100x﹣180﹣60x=40得x=5.2(不合题意,舍去),解方程60x﹣(100x﹣180)=40得x=3.5;③当x>4.8时,解方程60x=360﹣20得x=.答:当两车相距40千米时,甲车行驶了小时或3.5小时或小时.16.解:(1)由题意可知,当y=0时,x=10,所以马小虎出发10分钟后,爸爸追上他.故答案为:10;(2)由题意得,2400÷6=400(米/分钟),即马小虎骑车的速度为400米/分钟;(3)∵由题意可知,相遇4分钟后,爸爸到家,∴相遇后马小虎又骑行了8分钟才到学校,2400+2×400﹣2×400+8×400=5600(米),答:马小虎家到学校的路程为5600米.17.解:(1)对于直线y=﹣x+3,令x=0,则y=3,令y=0,则﹣x+3=0,解得:x=4,∴点A、B的坐标分别是(4,0),(0,3),∴OA=4,OB=3,∴AB===5,∵S△OAB=AB•OM,∴OM=;(2)过P作PC⊥y轴于C,如图1,∴S△BOP=OB•PC=3,∴PC=2,∴点P的横坐标为2或﹣2,∴P(2,)或(﹣2,);(3)存在,理由如下:∵P点在线段AB上,∴P(2,),设Q(x,0),∴OP=,OQ=|x|,PQ=,当OP=OQ时,|x|=,解得x=或x=﹣,∴Q(,0)或(﹣,0);当OP=PQ时,=,解得x=0(舍)或x=4,∴Q(4,0);综上所述:Q点坐标为(,0)或(﹣,0)或(4,0).18.解:(1)对于y=3x+6,令x=0,则y=6,故点B(0,6),令y=3x+6=0,解得:x=﹣2,故点C(﹣2,0);则△ABC的面积=×AC×OB=×(6+2)×6=24;(2)设直线AB的表达式为y=kx+b(k≠0),则,解得:,故直线AB的表达式为y=x+6;(3)存在,理由:∵,∴|y D|=|y B|=3,即|x+6|=3,解得:x=3或9,故点D的坐标为(3,3)或(9,﹣3);(4)K点的位置不发生变化,理由:设点P的坐标为(t,0),过点Q作QH⊥x轴于点H,∵∠BPO+∠QPH=90°,∠PBO+∠BPO=90°,∴∠QPH=∠PBO,在Rt△BOP和Rt△PHQ中,,∴△BOP≌△PHQ(AAS),∴PH=BO=6,QH=OP=t,则点Q的坐标为(t+6,t),设直线AQ的表达式为y=mx+n,则,解得,故点K的坐标为(0,﹣6).19.解:(1)y=x+1中当y=0时,x=﹣1,∴B(﹣1,0),y=﹣x+3中y=0时,则x=4,x=0时,则y=3,∴C(4,0),D(0,3);(2)∵B(﹣1,0),C(4,0),∴BC=5,∵M(x,y),∴S△BCM=×5×|x+1|,∵△BCM的面积为10,∴×5×|x+1|=10,解得x=3或x=﹣5,∴M(3,4)或(﹣5,﹣4);(3)线段CD上存在点P,使△CBP为等腰三角形,理由如下:设P(t,﹣t+3)(0≤t≤4),∴BP=,CP=,当BC=BP时,=5,解得t=4(舍)或t=﹣(舍),∴此时不存在P点满足题意;当BC=CP时,=5,解得t=0或t=8(舍),∴P(0,3);当BP=CP时,=,解得t=,∴P(,);综上所述:P点坐标为(0,3)或(,).20.问题提出:证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥ED,BE⊥ED,∴∠BEC=∠ADC=90°,∴∠BCE+∠CBE=90°,∴∠ACD=∠CBE,∵AC=BC,∴△BEC≌CDA(SAS);问题探究:解:过C点作CD⊥x轴交于点D,∵∠BAC=90°,CD⊥x轴,BO⊥x轴,AC=AB,由问题提出可得△CAD≌△ABO(SAS),∴CD=OA,AD=BO,∵y=x+1与x轴交于点A(﹣4,0),与y轴交于点B(0,1),∴AO=4,OB=1,∴C(﹣5,4);问题解决:解:设线段AB绕点A顺时针旋转后的线段为AC,绕A点逆时针旋转后的线段为AD,过点C作CN⊥x轴交于点N,过D点作DM⊥x轴交于点M,∵∠CAB=∠DAB=45°,∴∠CAD=90°,由问题提出可得△ACN≌△DAM(SAS),设C点坐标为(m,n),∴DM=AN,CN=AM,∵OA=1,∴A(﹣1,0),∴D(﹣n﹣1,m+1),∵射线AB与直线y=﹣2x平行,∴直线AB的解析式为y=﹣2x﹣2,连接CD交AB于点E,∵△ACD是等腰直角三角形,∴∠ADC=45°,∵∠BAD=45°,∴∠AED=90°,∴E是CD的中点,∴E(,),∴E点在直线AB上,∴=﹣2•﹣2,整理得n=3m+3,∴直线AC的解析式为y=3x+3,设y=m+1,x=﹣n﹣1,∴﹣x﹣1=3(y﹣1)+3,整理得y=﹣x﹣,∴直线AD的解析式为y=﹣x﹣.。
word版数学一次函数练习(1)一.确定函数关系式(一)根据数量关系列函数关系式;1.正方形的周长与边长之间的函数关系式 ;2.正方形的面积与边长之间的函数关系式 ;3.圆周长与半径之间的函数关系式 ;4.圆面积与半径之间的函数关系式 ;5. 一汽车以60km/h的速度正常行驶,行驶的路程(km)与时间(h)之间的函数关系式;6. 树苗高2m,栽植后每年生长0.7m,树苗的高度(m)与生长时间(年)之间的函数关系式;7. 用一根长20cm的铁丝围成一个等腰三角形,腰长与底边之间的函数关系式 ;8. 池中有水600m3,每小时抽出50 m3,则池中剩余水量与时间的函数关系式;9. 一蜡烛长20㎝,点燃后每小时燃烧5㎝,剩余高度(㎝)与燃烧时间(h)的函数关系式 ;10. 已知等腰三角形的面积为20㎝2,底上的高(㎝)与底边为(㎝)之间的函数关系式 ;11. 一幢20层高的大楼底层高4.8m,其余各层高3.2m,第层楼顶高度(m)与(层)之间的函数关系式12.某新生办理月票卡时一次存入50元,每次乘车刷卡扣费0.5元,则卡内剩余金额(元)与刷卡次数的关系式为 ;13.等腰三角形的底角与顶角之间的关系式 ;14.一根弹簧原长18㎝,挂重不超过24㎏时,每增加1㎏,弹簧就拉长0.5㎝,弹簧的长度(㎝)与所挂物重(㎏)之间的函数关系式 ;15.某文具店采购员用500元去购买单价为2.5元的一种商品,剩余的钱y(元)与购买这种商品的件数x(件)之间的函数关系式;16.某公司业务员到A市出差,,打车从火车站到分公司的车费,起步价为8元(3km以内),超过3km每增加1km加收2.4元(不足1km按1km计算),车费(元)与路程(km)之间的函数关系式 ;17. 某移动公司为用户提供两种资费方式拨打市话.甲:拨打和接听市话0.20元/min,但每月要交10元月租费;乙:拨打和接听市话0.40元/min,不收月租费.甲,乙两种方式下的费用 (元)与拨打或接听电话时间(min) 之间的关系式 ;18.某图书馆使用两种方式开展租书业务.一是使用会员卡,需付办卡费20元,每本书每天需支付0.2元,另一是不使用会员卡,每本书每天需付0.5元.使用会员卡和不使用会员卡所需支付的费用(元)与租书天数(天)之间的函数关系式 ;19.某市民用电收费标准为每千瓦时0.52元,电费(元)与用电千瓦时数(千瓦时)之间的关系 ;20.一长方体盒子高为8cm,底面是正方形,这个长方体的体积(cm3)与底面长(cm)之间的关系 ;21.在一个半径为10cm的圆形纸片中剪去一个半径为(cm)的同心圆,得到一个圆环.圆环的面积(cm2)与半径(cm)之间的关系;22.小张准备将平时的零用钱节约一些存起来,他已存有50元,从现在起每月存12元,小张的存款数与从现在开始的月份数之间的关系;23.仓库内有粉笔400盒,如果每个星期领出36盒,仓库内余下的粉笔盒数与星期数之间的关系式;24.某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月用电量不超过100千瓦时时,按每千瓦时0.57元计费;每月用电超过100千瓦时时,其中的100千瓦时仍按原标准收费,超过部分按每千瓦时0.50元计费.设月用电千瓦时时,应交电费元,当0≤≤100时, = , 当>100时, = 25.某公司组织员工外出旅游,每人需交费用100元,旅行社答应给予一定优惠:一人买全票,其余均按八五折优惠.设参加计算旅游人数为人,总费用为元,则与之间的关系式 ;word版数学(二)根据点坐标(或两个条件)确定函数关系式26.已知某一次函数的图象经过点(,求此函数的关系式;27.已知某一次函数的图象经过点(-1,-1),(2,10),试求此函数的关系式;28.已知某一次函数的图象与轴交于点(0,4),且与函数的图象交于点(3,-2),试求此函数的关系式;29.已知某一次函数的图象与函数的图象平行,且与轴交于点(0,4),试确定此函数的关系式; 30.随着海峡两岸交流日益增强,通过”零关税”进入我市的一种台湾水果,其进货成本是每吨0.5万元,这种水果市场上的销售量(吨)是每吨的销售价(万元)的一次函数,且当,(1)求出销售量与每吨的销售价之间的函数关系式(2)若销售利润为(万元),写出与之间的函数关系式;31.地表以下岩层的温度(℃)随着所处的深度变化而变化,在一定范围内,可以近似地看作是的一次函数,并且当岩层所处深度是7km和10km时,它的温度分别是263℃和370℃,求这个函数的关系式;32.某地举办乒乓球赛的费用(元)包括两部分:一部分是租用比赛场地等固定不变的费用(元),另一部分与参加比赛的人数(人)成正比例.当=20时,; 当.求与之间的函数关系式.。
6.4用一次函数解决问题同步练习一.选择题1.如图,一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分,则剩余木板的面积(空白部分)y(m2)与x(m)的函数关系式为(0≤x <5)()A.y=10﹣x B.y=5x C.y=2x D.y=﹣2x+10 2.某公司市场营销部的个人收入y(元)与其每月的销售量x(万件)成一次函数关系,其图象如图所示,营销人员没有销售量时最低收入是()A.1000 B.2000 C.3000 D.40003.A、B两地相距20千米,甲、乙两人都从A地去B地,图中l1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系.下列说法错误的是()A.乙晚出发1小时B.乙出发3小时后追上甲C.甲的速度是4千米/小时D.乙先到达B地4.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回,设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度为()A.10米/秒B.11米/秒C.12米/秒D.13米/秒5.小明用刻度不超过100℃的温度计来估计某食用油的沸点温度:将该食用油倒入锅中,均匀加热,每隔10s测量一次锅中的油温,得到如下数据:时间t(单位:S)0 10 20 30 40油温y(单位:℃)10 30 50 70 90当加热100s时,油沸腾了,则小明估计这种油的沸点温度是()A.150℃B.170℃C.190℃D.210℃6.小红从家出发去晨跑,她离家的距离y(米)与时间x(分)的关系图象如图所示.下列结论错误的是()A.出发10分钟时,小红距离家1000米B.整个晨跑过程一共走了3600米C.返回时速度为60米/分D.去时的平均速度小于返回速度7.如图,甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离为S(km)和行驶时间t(h)之间的函数关系的图象如图所示,则下列结论错误的是()A.A、B两地相距18kmB.甲在途中停留了0.5小时C.全程行驶时间乙比甲少用了1小时D.乙出发后0.5小时追上甲8.A、B两地相距90km,甲、乙两人从两地出发相向而行,甲先出发.图中l1.l2表示两人离A地的距离s(km)与时间t(h)的关系,结合图象,下列结论错误的是()A.l1是表示甲离A地的距离与时间关系的图象B.乙的速度是30km/hC.两人相遇时间在t=1.2hD.当甲到达终点时乙距离终点还有45km9.甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为xkg,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元.y1,y2与x之间的函数图象如图所示,则下列说法中错误的是()A.甲园的门票费用是60元B.草莓优惠前的销售价格是40元/kgC.乙园超过5kg后,超过的部分价格优惠是打五折D.若顾客采摘12kg草莓,那么到甲园或乙园的总费用相同10.某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10﹣3毫克),接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克),随时间x(小时)的变化如图所示.如果每毫升血液中含药量为5微克或5微克以上,对于治疗疾病是有效的,那么该药治疗的有效时间长是()小时.A.6 B.3 C.D.二.填空题11.某高速列车公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,已知行李质量为30kg时,需付行李费4元;行李质量为40kg时,需付行李费12元,则旅客最多可免费携带kg行李.12.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为L.13.甲、乙两地之间相距960千米,小新开车从甲地出发前往乙地,小白骑车从乙地出发前往甲地,已知小新比小白先出发1小时,两者均匀速行驶,当小新到达乙地后立即原路原速返回,在返回途中再次与小白相遇后两者都停止,如图是小新、小白两人之间的距离y(千米)与小新出发的时间x(小时)之间的图象,则当小新与小白第二次相遇时,小白离乙地的距离千米.14.甲、乙两地高速铁路建设成功,一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y与x之间的函数关系,下列结论:①甲、乙两地相距1800千米;②点B的实际意义是两车出发后4小时相遇;③动车的速度是280千米/小时;④m=6,n=900.其中正确的是.(写出所有正确结论的序号)15.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离家的距离S(千米)与时间t(时)之间的函数关系可以用图中的折线表示.现有如下信息:(1)小李到达离家最远的地方的时间是14时;(2)小李第一次休息时间是10时;(3)11时到12时,小李骑了5千米;(4)返回时,小李的平均车速是10千米/时.其中,正确的信息有(填序号).三.解答题16.一辆汽车在公路上匀速行驶,下表记录的是汽车在加满油后油箱内剩余油量y(升)与行驶时间x(时)之间的关系:行驶时间x(时)0 1 2剩余油量y(升)100 80 60(1)小明分析上表中所给的数据发现x,y成一次函数关系,试求出它们之间的函数表达式(不要求写出自变量的取值范围);(2)求汽车行驶4.2小时后,油箱内剩余油多少升?17.某社区的游泳馆按照顾客游泳的次数收取费用,每次的全票价为40元.在盛夏即将来临时,为吸引更多的顾客再次光顾,推出了以下两种收费方式.方式一:先交250元会员费,每次游泳按照全票价的7.5折收取费用;方式二:第一次收全票价,以后每次按照全票价的9.5折收取费用.(1)按照方式一的总费用为y1,按照方式二的总费用为y2,请直接写出y1,y2与游泳次数x的函数关系式;(2)去该游泳馆的次数等于次时,两种方式收取总费用一样.18.在近期“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售80只A 型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A型口罩的进货量且不超过它的3倍,设购进A型口罩x只,这2000只口罩的销售总利润为y元.①求y关于x的函数关系式,并求出自变量x的取值范围;②该药店购进A型、B型口罩各多少只,才能使销售总利润最大?参考答案一.选择题1.解:由题意可得:y=2(5﹣x)=10﹣2x.故选:D.2.解:设y与x的函数关系为y=kx+b,由题意得:,解得:,∴y=5000x+2000,当x=0时,y=5000×0+2000=2000,∴营销人员没有销售量时最低收入是2000元,故选:B.3.解:由图象可得,乙晚出发1小时,故选项A正确;乙出发3﹣1=2小时追上甲,故选项B错误;甲的速度是12÷3=4(千米/小时),故选项C正确;乙先到达B地,故选项D正确;故选:B.4.解:设甲车的速度为v1m/s,乙车的速度为v2m/s,由图象可知:开始时,乙车与甲车相距300米,乙车用100秒追上了甲车,∴100v1+300=100v2,装完货物后,甲乙两车行驶了20秒后,两车相距500米,∴20v1+20v2=500,∴,解得:,故选:B.5.解:设y=kt+b,根据题意,得:,解得,∴y=2t+10,当t=100时,y=2×100+10=210,即当加热100s时,油沸腾了,小明估计这种油的沸点温度是210℃,故选:D.6.解:由图象可得:x=10时y=1000,即出发10分钟时,小红距离家1000米,故本选项不合题意;B.整个晨跑过程一共走了1800×2=3600(米),故本选项不合题意;C.返回时速度为:1800÷(30﹣20)=180(米/分),故本选项符合题意;D.去时的平均速度为:1800÷20=90(米/分),即去时的平均速度小于返回速度,故本选项不合题意.故选:C.7.解:A.由图可得,s为18千米,即A、B两地的距离是18千米,故A选项不合题意;B.甲在0.5小时至1小时之间,S没有变化,说明甲在途中停留了0.5小时,故B选项不合题意;C.由图可得,甲行驶的时间为2小时,乙行驶的时间为1.5小时,所以全程乙比甲少用了0.5小时,故C选项符合题意;D.图中P点的实际意义是:甲,乙相遇,此时乙出发了0.5小时,故D选项不合题意.故选:C.8.解:∵甲先出发,∴表示甲离A地的距离与时间关系的图象是l,1故选项A不合题意;乙的速度是:90÷(3.5﹣0.5)=90÷3=30(km/h),故选项B不合题意;设甲对应的函数解析式为y=ax+b,,解得,∴甲对应的函数解析式为y=﹣45x+90,设乙对应的函数解析式为y=cx+d,,解得,即乙对应的函数解析式为y=30x﹣15,,解得,即甲出发1.4小时后两人相遇.故选项C符合题意;90﹣30×(2﹣0.5)=45(km),即当甲到达终点时乙距离终点还有45km.故选项D不符合题意.故选:C.9.解:由图象可得,甲园的门票为60元,故选项A正确;乙园草莓优惠前的销售价格是:200÷5=40(元/千克),故选项B正确;=0.5,即乙园超过5kg后,超过的部分价格优惠是打5折,故选项C正确;若顾客采摘12kg草莓,甲园花费为:60+12×40×0.6=344(元),乙园的花费为:40×5+(12﹣5)×40×0.5=340(元),∵344>340,∴若顾客采摘12kg草莓,那么到甲园比到乙园的总费用高,故选项D错误;故选:D.10.解:当x≤2时,设y=k1x,把(2,6)代入上式,得k1=3,∴x≤2时,y=3x;当x>2时,设y=k2x+b,把(2,6),(10,3)代入上式,,解得,∴y=;把y=5代入y=3x,得x1=;把y=5代入y=,得x2=,则x2﹣x1=3小时.即该药治疗的有效时间长是3小时.故选:B.二.填空题11.解:设行李费y(元)与行李质量x(kg)的函数关系式为y=kx+b,∵行李质量为30kg时,需付行李费4元;行李质量为40kg时,需付行李费12元,∴,解得,即行李费y(元)与行李质量x(kg)的函数关系式为y=0.8x﹣20,当y=0时,0=0.8x﹣20,解得x=25,故答案为:25.12.解:由图象可得,每分钟的进水量为:20÷4=5(L),每分钟的出水量为:5﹣(30﹣20)÷(12﹣4)=5﹣10÷8=5﹣1.25=3.75(L),故答案为:3.75.13.解:设小新的速度为akm/h,小白的速度为bkm/h,根据题意得:,解得,,设第二次小新追上小白的时间为m小时,120m﹣20(m﹣1)=960,解得,m=9.4,∴当小新与小白第二次相遇时,小白离乙地地的距离为:20×(9.4﹣1)=168(千米).故答案为:168.14.解:由图象可知,甲、乙两地相距1800千米,故①说法正确;点B的实际意义是两车出发后4小时相遇,故②说法正确;动车的速度为:1800÷4﹣150=300(km/h),故③说法错误;150×4÷300+4=6,∴m=6,n=150×6=900,故④说法正确;∴正确的是①②④.故答案为:①②④.15.解:由图象可得,小李到达离家最远的地方的时间是14时,故(1)正确;小李第一次休息时间是10时,故(2)正确;11时到12时,小李骑了25﹣20=5(千米),故(3)正确;返回时,小李的平均车速是30÷(16﹣14)=15(千米/小时),故(4)错误;故答案为:(1)(2)(3).三.解答题16.解:(1)由x,y成一次函数关系可设y=kx+b,将(0,100),(1,80)代入上式得:,解得,则它们之间的函数表达式为:y=﹣20x+100;(2)当x=4.2时,由y=﹣20×4.2+100=16,即汽车行驶4.2小时后,油箱内余油16升.17.解:(1)根据题意,可得:y1=250+40×0.75x=30x+250;y2=40+40×0.95(x﹣1)=38x+2.(2)令y1=y2,可得:30x+250=38x+2,解方程,得x=31,故答案为31.18.解:(1)设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据题意得:,解得,答:每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元;(2)①根据题意得,y=0.15x+0.2(2000﹣x),即y=﹣0.05x+400;根据题意得,,解得500≤x≤1000,∴y=﹣0.05x+400(500≤x≤1000);②∵y=﹣0.05x+400,k=﹣0.05<0;∴y随x的增大而减小,∵x为正整数,∴当x=500时,y取最大值,则2000﹣x=1500,即药店购进A型口罩500只、B型口罩1500只,才能使销售总利润最大.。