2017届高三物理一轮复习 第2讲 机械能守恒定律
- 格式:pptx
- 大小:2.59 MB
- 文档页数:45
实验6:验证机械能守恒定律一、实验目的验证机械能守恒定律.二、实验原理在只有重力做功的自由落体运动中,物体的重力势能和动能互相转化,但总的机械能守恒。
若物体从静止开始下落,下落高度为h 时的速度为v,恒有mgh=错误!m v2。
故只需借助打点计时器,通过纸带测出重物某时刻的下落高度h和该时刻的瞬时速度v,即可验证机械能守恒定律。
测定第n点的瞬时速度的方法是:测出第n点相邻的前、后两段相等时间间隔T内下落的高度x n-1和x n+1(或用h n-1和h n+1),然后由公式v n=错误!或由v n=错误!可得v n(如图所示)。
三、实验器材铁架台(带铁夹)、电磁打点计时器与低压交流电源(或电火花打点计时器)、重物(带纸带夹子)、纸带数条、复写纸片、导线、毫米刻度尺。
四、实验步骤1.安装器材:如图所示,将打点计时器固定在铁架台上,用导线将打点计时器与低压电源相连,此时电源开关应为断开状态。
2.打纸带:把纸带的一端用夹子固定在重物上,另一端穿过打点计时器的限位孔,用手竖直提起纸带,使重物停靠在打点计时器下方附近,先接通电源,待计时器打点稳定后再松开纸带,让重物自由下落,打点计时器就在纸带上打出一系列的点,取下纸带,换上新的纸带重打几条(3~5条)纸带。
3.选纸带:分两种情况说明(1)若选第1点O到下落到某一点的过程,即用mgh=错误!m v2来验证,应选点迹清晰,且1、2两点间距离小于或接近2 mm的纸带,若1、2两点间的距离大于2 mm,这是由于打点计时器打第1个点时重物的初速度不为零造成的(如先释放纸带后接通电源等错误操作会造成此种结果)。
这样第1个点就不是运动的起始点了,这样的纸带不能选。
(2)用错误!m v错误!-错误!m v错误!=mgΔh验证时,由于重力势能的相对性,处理纸带时选择适当的点为基准点,这样纸带上打出的第1、2两点间的距离是否为2 mm就无关紧要了,所以只要后面的点迹清晰就可以选用。
高三物理机械能守恒定律一轮复习案知识点归纳一、重力势能1.定义:物体的重力势能等于它所受重力与高度的乘积.2.公式:E p=mgh.3.矢标性:重力势能是标量,正负表示其大小.4.特点(1)系统性:重力势能是地球和物体共有的.(2)相对性:重力势能的大小与参考平面的选取有关.重力势能的变化是绝对的,与参考面的选取无关.5.重力做功与重力势能变化的关系重力做正功时,重力势能减小;重力做负功时,重力势能增大;重力做多少正(负)功,重力势能就减小(增大)多少,即W G=E p1-E p2.二、弹性势能1.定义:物体由于发生弹性形变而具有的能.2.大小:弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大.3.弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减小;弹力做负功,弹性势能增大.三、机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.2.表达式(1)守恒观点:E k1+E p1=E k2+E p2(要选零势能参考平面).(2)转化观点:ΔE k=-ΔE p(不用选零势能参考平面).(3)转移观点:ΔE A增=ΔE B减(不用选零势能参考平面).3.机械能守恒的条件考点一机械能守恒的理解与判断【典例归纳】【例1】(多选)如图,轻弹簧竖立在地面上,正上方有一钢球,从A处自由下落,落到B处时开始与弹簧接触,此时向下压缩弹簧.小球运动到C处时,弹簧对小球的弹力与小球的重力平衡.小球运动到D处时,到达最低点.不计空气阻力,以下描述正确的有 ( ) A.小球由A向B运动的过程中,处于完全失重状态,小球的机械能减少B.小球由B向C运动的过程中,处于失重状态,小球的机械能减少C.小球由B向C运动的过程中,处于超重状态,小球的动能增加D.小球由C向D运动的过程中,处于超重状态,小球的机械能减少【变式1】木块静止挂在绳子下端,一子弹以水平速度射入木块并留在其中,再与木块一起共同摆到一定高度如图所示,从子弹开始射入到共同上摆到最大高度的过程中,下列说法正确的是( )A.子弹的机械能守恒B.木块的机械能守恒C.子弹和木块总机械能守恒D.子弹和木块上摆过程中机械能守恒【变式2】如图所示,完整的撑杆跳高过程可以简化成三个阶段:持杆助跑、撑杆起跳上升、越杆下落(下落时人杆分离),最后落在软垫上速度减为零.不计空气阻力,则( ) A.运动员在整个跳高过程中机械能守恒B.运动员在撑杆起跳上升过程中机械能守恒C.在撑杆起跳上升过程中,杆的弹性势能转化为运动员的重力势能且弹性势能减少量小于运动员的重力势能增加量D.运动员落在软垫上时做减速运动,处于超重状态考点二单个物体的机械能守恒【典例归纳】【例2】如图所示,在竖直平面内有一固定光滑轨道,其中AB是为R的水平直轨道,BCD是圆心为O、半径为R的34圆弧轨道,两轨道相切于B点.在外力作用下,一小球从A点由静止开始做匀加速直线运动,到达B点时撤除外力.已知小球刚好能沿圆轨道经过最高点C,重力加速度大小为g求:(1)小球在AB段运动的加速度的大小;(2)小球从D点运动到A点所用的时间.【变式3】如图所示,由光滑细管组成的轨道固定在竖直平面内,AB段和BC段是半径为R的四分之一圆弧,CD段为平滑的弯管.一小球从管口D处由静止释放,最后能够从A端水平抛出落到地面上.关于管口D距离地面的高度必须满足的条件( )A.等于2R B.大于2RC.大于2R且小于52R D.大于52R【变式4】一小球以一定的初速度从图示位置进入光滑的轨道,小球先进入圆轨道1,再进入圆轨道2,圆轨道1的半径为R,圆轨道2的半径是轨道1的1.8倍,小球的质量为m,若小球恰好能通过轨道2的最高点B,则小球在轨道1上经过A处时对轨道的压力为( ) A.2mgB.3mgC.4mgD.5mg【例3】如图,位于竖直平面内的光滑轨道由四分之一圆弧ab和抛物线bc组成,圆弧半径Oa水平,b点为抛物线顶点.已知h=2 m,s= 2 m.取重力加速度大小g=10 m/s2. (1)一小环套在轨道上从a点由静止滑下,当其在bc段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b点由静止因微小扰动而开始滑下,求环到达c点时速度的水平分量的大小.【变式5】如图所示,在高1.5 m的光滑平台上有一个质量为2 kg的小球被一细线拴在墙上,球与墙之间有一根被压缩的轻质弹簧.当烧断细线时,小球被弹出,小球落地时的速度方向与水平方向成60°角,则弹簧被压缩时具有的弹性势能为(g取10 m/s2) ()A.10 JB.15 JC.20 JD.25 J【变式6】取水平地面为重力势能零点.一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力,该物块落地时的速度方向与水平方向的夹角为( )A.π6B.π4C.π3D.5π12考点三多物体关联的机械能守恒定律【典例归纳】【例4】如图所示,物体A的质量为M,圆环B的质量为mA、B通过绳子连接在一起,圆环套在光滑的竖直杆上,开始时,圆环与定滑轮之间的绳子处于水平状态,长度l=4 m,现从静止开始释放圆环,不计定滑轮和空气的阻力,重力加速度g取10 m/s2,若圆环下降h=3 m 时的速度v=5 m/s,则A和B的质量关系( )A.Mm=3529B.Mm=79C.Mm=3925D.Mm=1519【变式7】如图所示,可视为质点的小球A、B用不可伸长的细软轻线连接,跨过固定在地面上半径为R的光滑圆柱,A的质量为B的两倍.当B位于地面时,A恰与圆柱轴心等高.将A 由静止释放,B上升的最大高度是( )A.2R B.5R 3C.4R3D.2R3【例5】如图所示,可视为质点的小球A和B用一根长为0.2 m的轻杆相连,两球质量均为1 kg,开始时两小球置于光滑的水平面上,并给两小球一个大小为 2 m/s,方向水平向左的初速度,经过一段时间,两小球滑上一个倾角为30°的光滑斜面,不计球与斜面碰撞时的机械能损失,重力加速度g取10 m/s2,在两小球的速度减小为零的过程中,正确的是( )A.杆对小球A做负功B.小球A的机械能守恒C.杆对小球B做正功D.小球B速度为零时距水平面的高度为0.15 m【变式8】如图所示,滑块a、b的质量均为m,a套在固定竖直杆上与光滑水平地面相距h,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a、b可视为质点,重力加速度大小为g.则 ( )A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg【例6】如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放A后,A沿斜面下滑至速度最大时C恰好离开地面.下列说法正确的是( )A.斜面倾角α=60°B.A获得的最大速度为2g m 5kC.C刚离开地面时,B的加速度最大D.从释放A到C刚离开地面的过程中,A、B两小球组成的系统机械能守恒【变式9】如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中( )A.圆环的机械能守恒B.弹簧弹性势能变化了3mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变【例7】如图所示,固定在地面的斜面体上开有凹槽,槽内紧挨放置六个半径均为r的相同小球,各球编号如图.斜面与水平轨道OA 平滑连接,OA 长度为6r .现将六个小球由静止同时释放,小球离开A 点后均做平抛运动,不计一切摩擦.则在各小球运动过程中,下列说法正确的是 ( )A .球1的机械能守恒B .球6在OA 段机械能增大C .球6的水平射程最小D .六个球落地点各不相同【变式10】.有一条长为L =2 m 的均匀金属链条,有一半长度在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30°,另一半长度竖直下垂在空中,当链条从静止开始释放后链条滑动,则链条刚好全部滑出斜面时的速度为(g 取10 m/s 2)( )A .2.5 m/sB .522m/s C . 5 m/s D .352m/s 【巩固练习】1.在如图所示的物理过程示意图中,甲图一端固定有小球的轻杆,从右偏上30°角释放后绕光滑支点摆动;乙图为末端固定有小球的轻质直角架,释放后绕通过直角顶点的固定轴O 无摩擦转动;丙图为轻绳一端连着一小球,从右偏上30°角处自由释放;丁图为置于光滑水平面上的带有竖直支架的小车,把用细绳悬挂的小球从图示位置释放,小球开始摆动,则关于这几个物理过程(空气阻力忽略不计),下列判断中正确的是( )A .甲图中小球机械能守恒B .乙图中小球A 机械能守恒C .丙图中小球机械能守恒D .丁图中小球机械能守恒 2.(多选)如图所示,两质量相同的小球A 、B ,分别用线悬在等高的O 1、O 2点,A 球的悬线比B 球的长,把两球的悬线均拉到水平位置后将小球无初速度释放,则经过最低点时(以悬点为零势能点)( )A .A 球的速度等于B 球的速度B .A 球的动能大于B 球的动能 甲 乙丙 丁C.A球的机械能大于B球的机械能 D.A球的机械能等于B球的机械能3.从地面竖直上抛两个质量不同、初动能相同的小球,不计空气阻力,以地面为零势能面,当两小球上升到同一高度时,则( )A.它们具有的重力势能相等 B.质量小的小球动能一定小C.它们具有的机械能相等 D.质量大的小球机械能一定大4.如图所示,固定的倾斜光滑杆上套有一质量为m的小球,小球与一轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,已知杆与水平面之间的夹角θ<45°,当小球位于B点时,弹簧与杆垂直,此时弹簧处于原长。
第五章⎪⎪⎪机械能[备考指南]第1节功和功率(1)只要物体受力的同时又发生了位移,则一定有力对物体做功。
(×)(2)一个力对物体做了负功,则说明这个力一定阻碍物体的运动。
(√)(3)作用力做正功时,反作用力一定做负功。
(×)(4)力对物体做功的正负是由力和位移间的夹角大小决定的。
(√)(5)由P=F v可知,发动机功率一定时,机车的牵引力与运行速度的大小成反比。
(√)(6)汽车上坡时换成低挡位,其目的是减小速度得到较大的牵引力。
(√)1.功的正负的判断方法(1)恒力做功的判断:依据力与位移的夹角来判断。
(2)曲线运动中做功的判断:依据F与v的方向夹角α来判断,当0°≤α<90°,力对物体做正功;90°<α≤180°,力对物体做负功;α=90°,力对物体不做功。
(3)依据能量变化来判断:功是能量转化的量度,若有能量转化,则必有力对物体做功。
此法常用于判断两个相联系的物体之间的相互作用力做功的判断。
2.恒力做功的计算方法3.合力做功的计算方法方法一:先求合力F合,再用W合=F合l cos α求功。
方法二:先求各个力做的功W1、W2、W3…,再应用W合=W1+W2+W3+…求合力做的功。
[多角练通]1.(多选)如图5-1-1所示,质量为m的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在外力作用下,斜面体以加速度a沿水平方向向左做匀加速运动,运动中物体m与斜面体相对静止。
则关于斜面对m的支持力和摩擦力的下列说法中正确的是()图5-1-1A.支持力一定做正功B.摩擦力一定做正功C.摩擦力可能不做功D.摩擦力可能做负功解析:选ACD支持力方向垂直斜面向上,故支持力一定做正功。
而摩擦力是否存在需要讨论,若摩擦力恰好为零,物体只受重力和支持力,如图所示,此时加速度a=g tan θ,当a>g tan θ,摩擦力沿斜面向下,摩擦力与位移夹角小于90°,则做正功;当a<g tan θ,摩擦力沿斜面向上,摩擦力与位移夹角大于90°,则做负功。
高三物理一轮复习专题专练(力学部分)专题29 机械能守恒定律的应用一、曲线运动中机械能守恒定律的应用1.如图所示是玩具飞车的360︒回环赛道,其底座固定,且赛道视为半径为R的光滑竖直圆轨道。
一质量为m的无动力赛车被弹射出去后,在圆形轨道最低点以水平初速度0v向右运动。
设重力加速度为g,则下列说法正确的是()A.当v=4mgB.如果赛车能够完成圆周运动,0v的最小值是C.如果赛车能够完成圆周运动,其对轨道的最大压力与最小压力之差为6mgD.如果赛车能够完成圆周运动,其最大速度与最小速度之差为2.如图所示,一轻质细绳的下端系一质量为m的小球,绳的上端固定于O点。
现用手将小球拉至水平位置(绳处于水平拉直状态),松手后小球由静止开始运动。
在小球摆动过程中绳突然被拉断,绳断时与竖直方向的夹角为α。
已知绳能承受的最大拉力为F ,若想求出cosα值,你有可能不会求解,但是你可以通过一定的物理分析,对下列结果目的合理性做出判断。
根据你的判断cosα值应为( )A .cos 4F mgmg α+= B .cos 2F mgmg α-=C .2cos 3Fmg α= D .cos 3Fmg α=3.如图所示,一个小球(视为质点)从H =15m 高处,由静止开始沿光滑弯曲轨道AB ,进入半径R =5m 的竖直圆环内侧,且与圆环的动摩擦因数处处相等,当到达圆环顶点C 时,刚好对轨道压力为零;然后沿CB 圆弧滑下,进入光滑弧形轨道BD ,到达高度为h 的D 点时速度为零,则h 的值可能为( )A .10mB .11mC .12mD .12.5m4.冬奥会上有一种女子单板滑雪U 形池项目,如图所示为U 形池模型,池内各处粗糙程度相同,其中a 、c 为U 形池两侧边缘,且在同一水平面,b 为U 形池最低点。
某运动员从a 点上方h 高的O 点自由下落由左侧切线进入池中,从右侧切线飞出后上升至最高位置d 点(相对c 点高度为2h)。
第2讲动量守恒定律及“三类模型”问题一、动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.2.表达式(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.(4)Δp=0,系统总动量的增量为零.3.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.自测1关于系统动量守恒的条件,下列说法正确的是( )A.只要系统内存在摩擦力,系统动量就不可能守恒B.只要系统中有一个物体具有加速度,系统动量就不守恒C.只要系统所受的合外力为零,系统动量就守恒D.系统中所有物体的加速度为零时,系统的总动量不一定守恒答案 C二、碰撞、反冲、爆炸1.碰撞(1)定义:相对运动的物体相遇时,在极短的时间内它们的运动状态发生显著变化,这个过程就可称为碰撞.(2)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒.(3)碰撞分类①弹性碰撞:碰撞后系统的总动能没有损失.②非弹性碰撞:碰撞后系统的总动能有损失.③完全非弹性碰撞:碰撞后合为一体,机械能损失最大.2.反冲(1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力.实例:发射炮弹、发射火箭等.(3)规律:遵从动量守恒定律.3.爆炸问题爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒.如爆竹爆炸等.自测2如图1所示,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是( )图1A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动答案 D解析以两滑块组成的系统为研究对象,两滑块碰撞过程动量守恒,由于初始状态系统的动量为零,所以碰撞后两滑块的动量之和也为零,所以A、B的运动方向相反或者两者都静止,而碰撞为弹性碰撞,碰撞后两滑块的速度不可能都为零,则A应该向左运动,B应该向右运动,选项D正确,A、B、C错误.命题点一动量守恒定律的理解和基本应用例1(2018·湖北省仙桃市、天门市、潜江市期末联考)如图2所示,A、B两物体的质量之比为m A∶m B=1∶2,它们原来静止在平板车C上,A、B两物体间有一根被压缩了的水平轻质弹簧,A、B两物体与平板车上表面间的动摩擦因数相同,水平地面光滑.当弹簧突然释放后,A、B两物体被弹开(A、B两物体始终不滑出平板车),则有( )图2A.A、B系统动量守恒B.A、B、C及弹簧整个系统机械能守恒C.小车C先向左运动后向右运动D.小车C一直向右运动直到静止答案 D解析A、B两物体和弹簧、小车C组成的系统所受合外力为零,所以系统的动量守恒.在弹簧释放的过程中,因m A∶m B=1∶2,由摩擦力公式f=μN=μmg知,A、B两物体所受的摩擦力大小不等,所以A、B两物体组成的系统合外力不为零,A、B两物体组成的系统动量不守恒,A物体对小车向左的滑动摩擦力小于B对小车向右的滑动摩擦力,在A、B两物体相对小车停止运动之前,小车所受的合外力向右,会向右运动,因存在摩擦力做负功,最终整个系统将静止,则系统的机械能减为零,不守恒,故A、B、C错误,D正确.变式1(多选)(2018·安徽省宣城市第二次调研)如图3所示,小车在光滑水平面上向左匀速运动,水平轻质弹簧左端固定在A点,物体与固定在A点的细线相连,弹簧处于压缩状态(物体与弹簧未连接),某时刻细线断了,物体沿车滑动到B端粘在B端的油泥上,取小车、物体和弹簧为一个系统,下列说法正确的是( )图3A.若物体滑动中不受摩擦力,则该系统全过程机械能守恒B.若物体滑动中有摩擦力,则该系统全过程动量守恒C.不论物体滑动中有没有摩擦,小车的最终速度与断线前相同D.不论物体滑动中有没有摩擦,系统损失的机械能相同答案BCD解析物体与油泥粘合的过程,发生非弹簧碰撞,系统机械能有损失,故A错误;整个系统在水平方向不受外力,竖直方向上合外力为零,则系统动量一直守恒,故B正确;取系统的初速度方向为正方向,根据动量守恒定律可知,物体在沿车滑动到B端粘在B端的油泥上后系统共同的速度与初速度是相同的,故C 正确;由C 的分析可知,当物体与B 端油泥粘在一起时,系统的速度与初速度相等,所以系统的末动能与初动能是相等的,系统损失的机械能等于弹簧的弹性势能,与物体滑动中有没有摩擦无关,故D 正确.例2 (2017·全国卷Ⅰ·14)将质量为1.00kg 的模型火箭点火升空,50g 燃烧的燃气以大小为600m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( ) A .30kg·m/s B .5.7×102kg·m/s C .6.0×102kg·m/s D .6.3×102kg·m/s答案 A解析 设火箭的质量为m 1,燃气的质量为m 2.由题意可知,燃气的动量p 2=m 2v 2=50×10-3×600kg·m/s=30 kg·m/s.以火箭运动的方向为正方向,根据动量守恒定律可得,0=m 1v 1-m 2v 2,则火箭的动量大小为p 1=m 1v 1=m 2v 2=30kg·m/s,所以A 正确,B 、C 、D 错误. 变式2 (2018·江西省七校第一次联考)一质量为M 的航天器远离太阳和行星,正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出质量为m 的气体,气体向后喷出的速度大小为v 1,加速后航天器的速度大小v 2等于(v 0、v 1、v 2均为相对同一参考系的速度)( ) A.M +m v 0-mv 1MB.M +m v 0+mv 1MC.Mv 0+mv 1M -mD.Mv 0-mv 1M -m答案 C解析 以v 0的方向为正方向,由动量守恒定律有Mv 0=-mv 1+(M -m )v 2 解得v 2=Mv 0+mv 1M -m,故选C. 命题点二 碰撞模型问题1.碰撞遵循的三条原则 (1)动量守恒定律 (2)机械能不增加E k1+E k2≥E k1′+E k2′或p 122m 1+p 222m 2≥p 1′22m 1+p 2′22m 2(3)速度要合理①同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体速度大或相等.②相向碰撞:碰撞后两物体的运动方向不可能都不改变. 2.弹性碰撞讨论 (1)碰后速度的求解 根据动量守恒和机械能守恒⎩⎪⎨⎪⎧m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ①12m 1v 12+12m 2v 22=12m 1v 1′2+12m 2v 2′2②解得v 1′=m 1-m 2v 1+2m 2v 2m 1+m 2v 2′=m 2-m 1v 2+2m 1v 1m 1+m 2(2)分析讨论:当碰前物体2的速度不为零时,若m 1=m 2,则v 1′=v 2,v 2′=v 1,即两物体交换速度. 当碰前物体2的速度为零时,v 2=0,则:v 1′=m 1-m 2v 1m 1+m 2,v 2′=2m 1v 1m 1+m 2,①m 1=m 2时,v 1′=0,v 2′=v 1,碰撞后两物体交换速度. ②m 1>m 2时,v 1′>0,v 2′>0,碰撞后两物体沿同方向运动. ③m 1<m 2时,v 1′<0,v 2′>0,碰撞后质量小的物体被反弹回来.例3 (2018·广东省湛江市第二次模拟)如图4所示,水平地面放置A 和B 两个物块,物块A 的质量m 1=2kg ,物块B 的质量m 2=1kg ,物块A 、B 与地面间的动摩擦因数均为μ=0.5.现对物块A 施加一个与水平方向成37°角的外力F ,F =10N ,使物块A 由静止开始运动,经过12s 物块A 刚好运动到物块B 处,A 物块与B 物块碰前瞬间撤掉外力F ,物块A 与物块B 碰撞过程没有能量损失,设碰撞时间很短,A 、B 两物块均可视为质点,g 取10m/s 2,sin37°=0.6,cos37°=0.8.求:图4(1)计算A 与B 两物块碰撞前瞬间物块A 的速度大小;(2)若在物块B 的正前方放置一个弹性挡板,物块B 与挡板碰撞时没有能量损失,要保证A 和B 两物块能发生第二次碰撞,弹性挡板距离物块B 的距离L 不得超过多大?答案 (1)6m/s (2)L 不得超过3.4m 解析 (1)设物块A 与物块B 碰前速度为v 1,由牛顿第二定律得:F cos37°-μ(m 1g -F sin37°)=m 1a 解得:a =0.5m/s 2则速度v 1=at =6m/s(2)设A 、B 两物块相碰后A 的速度为v 1′,B 的速度为v 2 由动量守恒定律得:m 1v 1=m 1v 1′+m 2v 2 由机械能守恒定律得:12m 1v 12=12m 1v 1′2+12m 2v 22联立解得:v 1′=2m/s 、v 2=8 m/s对物块A 用动能定理得:-μm 1gx A =0-12m 1v 1′2解得:x A =0.4m对物块B 用动能定理得:-μm 2gx B =0-12m 2v 22解得:x B =6.4m物块A 和物块B 能发生第二次碰撞的条件是x A +x B >2L , 解得L <3.4m即要保证物块A 和物块B 能发生第二次碰撞,弹性挡板距离物块B 的距离L 不得超过3.4m.拓展点1 “滑块—弹簧”碰撞模型例4 (2018·山东省临沂市一模)如图5所示,静止放置在光滑水平面上的A 、B 、C 三个滑块,滑块A 、B 间通过一水平轻弹簧相连,滑块A 左侧紧靠一固定挡板P ,某时刻给滑块C 施加一个水平冲量使其以初速度v 0水平向左运动,滑块C 撞上滑块B 的瞬间二者粘在一起共同向左运动,弹簧被压缩至最短的瞬间具有的弹性势能为1.35J ,此时撤掉固定挡板P ,之后弹簧弹开释放势能,已知滑块A 、B 、C 的质量分别为m A =m B =0.2kg ,m C =0.1kg ,(取10=3.17)求:图5(1)滑块C 的初速度v 0的大小;(2)当弹簧弹开至恢复到原长的瞬时,滑块B 、C 的速度大小;(3)从滑块B 、C 压缩弹簧至弹簧恢复到原长的过程中,弹簧对滑块B 、C 整体的冲量. 答案 (1)9m/s (2)1.9 m/s (3)1.47N·s,方向水平向右解析 (1)滑块C 撞上滑块B 的过程中,滑块B 、C 组成的系统动量守恒,以水平向左为正,根据动量守恒定律得:m C v 0=(m B +m C )v 1弹簧被压缩至最短时,滑块B 、C 速度为零,根据能量守恒定律得:E p =12(m B +m C )v 12解得:v 1=3m/s ,v 0=9 m/s(2)设弹簧弹开至恢复到原长的瞬间,滑块B 、C 的速度大小为v 2,滑块A 的大小为v 3,根据动量守恒定律得:m A v 3=(m B +m C )v 2,根据能量守恒定律得:E p =12m A v 32+12(m B +m C )v 22解得:v 2≈1.9m/s(3)设弹簧对滑块B 、C 整体的冲量I ,选向右为正方向,由动量定理得:I =Δp =(m B +m C )(v 2+v 1)解得:I =1.47N·s,方向水平向右.拓展点2 “滑块—木板”碰撞模型例5 (2018·湖北省武汉市部分学校起点调研)如图6,在光滑的水平面上静止着足够长、质量为3m 的木板,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块1、2、3水平向右的初速度v 0、2v 0、3v 0,最后所有的木块与木板相对静止.已知重力加速度为g ,求:图6(1)木块3从开始运动到与木板相对静止时位移的大小; (2)木块2在整个运动过程中的最小速度. 答案 (1)4v 02μg (2)56v 0解析 (1)当木块3与木板的速度相等时,3个木块与木板的速度均相等,设为v ,以v 0的方向为正方向.系统动量守恒m (v 0+2v 0+3v 0)=6mv 木块3在木板上匀减速运动:μmg =ma 由运动学公式(3v 0)2-v 2=2ax 3 解得x 3=4v 02μg(2)设木块2的最小速度为v 2,此时木块3的速度为v 3,由动量守恒定律m (v 0+2v 0+3v 0)=(2m +3m )v 2+mv 3在此过程中,木块3与木块2速度改变量相同 3v 0-v 3=2v 0-v 2 解得v 2=56v 0.变式3 (多选)(2018·广西桂林市、百色市和崇左市第三次联考)如图7甲,光滑水平面上放着长木板B ,质量为m =2kg 的木块A 以速度v 0=2m/s 滑上原来静止的长木板B 的上表面,由于A 、B 之间存在摩擦,之后木块A 与长木板B 的速度随时间变化情况如图乙所示,重力加速度g =10 m/s 2.则下列说法正确的是( )图7A .木块A 与长木板B 之间的动摩擦因数为0.1 B .长木板的质量M =2kgC .长木板B 的长度至少为2mD .木块A 与长木板B 组成系统损失机械能为4J 答案 AB解析 由题图可知,木块A 先做匀减速运动,长木板B 先做匀加速运动,最后一起做匀速运动,共同速度v =1m/s ,取向右为正方向,根据动量守恒定律得:mv 0=(m +M )v ,解得:M =m =2kg ,故B 正确;由题图可知,长木板B 匀加速运动的加速度为:a B =Δv Δt =11m/s 2= 1 m/s 2,对长木板B ,根据牛顿第二定律得:μmg =Ma B ,μ=0.1,故A 正确;由题图可知前1s 内长木板B 的位移为:x B =12×1×1m=0.5m ,木块A 的位移为:x A =2+12×1m=1.5m ,所以长木板B 的最小长度为:L =x A -x B =1m ,故C 错误;木块A 与长木板B 组成系统损失的机械能为:ΔE =12mv 02-12(m +M )v 2=2J ,故D 错误.拓展点3 “滑块—斜面”碰撞模型例6 (2018·福建省厦大附中第二次模拟)如图8所示,光滑水平面上质量为m 1=2kg 的物块以v 0=2m/s 的初速度冲向质量为m 2=6kg 静止的光滑圆弧面斜劈体.求:图8(1)物块m 1滑到最高点位置时,二者的速度大小; (2)物块m 1从圆弧面滑下后,二者速度大小.(3)若m 1=m 2,物块m 1从圆弧面滑下后,二者速度大小. 答案 见解析解析 (1)物块m 1与斜劈体作用过程水平方向遵从动量守恒定律,且到最高点时共速,以v 0方向为正,则有:m 1v 0=(m 1+m 2)v ,v =0.5m/s ;(2)物块m 1从圆弧面滑下过程,水平方向动量守恒,动能守恒,则有:m 1v 0=m 1v 1+m 2v 2,12m 1v 02=12m 1v 12+12m 2v 22, 解得:v 1=m 1-m 2m 1+m 2v 0,v 2=2m 1m 1+m 2v 0 代入数据得:v 1=-1m/s ,v 2=1 m/s ;(3)若m 1=m 2,根据上述分析,物块m 1从圆弧面滑下后,交换速度,即v 1′=0,v 2′=2m/s. 变式4 (2019·甘肃省天水市调研)如图9所示,在水平面上依次放置小物块A 和C 以及曲面劈B ,其中A 与C 的质量相等均为m ,曲面劈B 的质量M =3m ,曲面劈B 的曲面下端与水平面相切,且曲面劈B 足够高,各接触面均光滑.现让小物块C 以水平速度v 0向右运动,与A 发生碰撞,碰撞后两个小物块粘在一起滑上曲面劈B .求:图9(1)碰撞过程中系统损失的机械能;(2)碰后物块A 与C 在曲面劈B 上能够达到的最大高度. 答案 (1)14mv 02 (2)3v 0240g解析 (1)小物块C 与物块A 发生碰撞粘在一起,以v 0的方向为正方向 由动量守恒定律得:mv 0=2mv 解得v =12v 0;碰撞过程中系统损失的机械能为E 损=12mv 02-12×2mv 2解得E 损=14mv 02.(2)当小物块A 、C 上升到最大高度时,A 、B 、C 系统的速度相等.根据动量守恒定律:mv 0=(m +m +3m )v 1 解得v 1=15v 0根据机械能守恒得2mgh =12×2m ⎝ ⎛⎭⎪⎫12v 02-12×5m ⎝ ⎛⎭⎪⎫15v 02解得h =3v 0240g.命题点三 “人船”模型1.特点⎩⎪⎨⎪⎧1两个物体2动量守恒3总动量为零2.方程m 1v 1-m 2v 2=0(v 1、v 2为速度大小)3.结论m 1x 1=m 2x 2(x 1、x 2为位移大小)例7 (2018·河南省鹤壁市第二次段考)有一只小船停靠在湖边码头,小船又窄又长(估计重一吨左右).一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船.用卷尺测出船后退的距离d ,然后用卷尺测出船长L .已知他的自身质量为m ,水的阻力不计,则船的质量为( ) A.m L +dd B.m L -dd C.mL dD.m L +dL答案 B解析 设人走动的时候船的速度为v ,人的速度为v ′,人从船头走到船尾用时为t ,人的位移为L -d ,船的位移为d ,所以v =d t ,v ′=L -dt.以船后退的方向为正方向,根据动量守恒有:Mv -mv ′=0,可得:M d t =mL -d t ,小船的质量为:M =m L -dd,故B 正确.变式5 (2018·河南省中原名校第六次模拟)光滑水平面上放有一上表面光滑、倾角为α的斜面体A ,斜面体质量为M 、底边长为L ,如图10所示.将一质量为m 、可视为质点的滑块B 从斜面的顶端由静止释放,滑块B 经过时间t 刚好滑到斜面底端.此过程中斜面对滑块的支持力大小为N ,则下列说法中正确的是( )图10A .N =mg cos αB .滑块下滑过程中支持力对B 的冲量大小为Nt cos αC .滑块B 下滑的过程中A 、B 组成的系统动量守恒D .此过程中斜面体向左滑动的距离为mM +mL答案 D解析 当滑块B 相对于斜面加速下滑时,斜面体A 水平向左加速运动,所以滑块B 相对于地面的加速度方向不再沿斜面方向,即沿垂直于斜面方向的合外力不再为零,所以斜面对滑块的支持力N 不等于mg cos α,A 错误;滑块B 下滑过程中支持力对B 的冲量大小为Nt ,B 错误;由于滑块B 有竖直方向的分加速度,所以A 、B 组成的系统竖直方向合外力不为零,系统的动量不守恒,C 错误;A 、B 组成的系统水平方向不受外力,水平方向动量守恒,设A 、B 两者水平位移大小分别为x 1、x 2,则Mx 1=mx 2,x 1+x 2=L ,解得x 1=mM +mL ,D 正确.命题点四 “子弹打木块”模型1.木块放在光滑水平面上,子弹水平打进木块,系统所受的合外力为零,因此动量守恒. 2.两者发生的相对位移为子弹射入的深度x 相.3.根据能量守恒定律,系统损失的动能等于系统增加的内能.4.系统产生的内能Q =f ·x 相,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.5.当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k =f ·L (L 为木块的长度).例8 一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平打进木块并留在其中,设子弹与木块之间的相互作用力为f .则: (1)子弹、木块相对静止时的速度是多少? (2)子弹在木块内运动的时间为多长?(3)子弹、木块相互作用过程中子弹、木块发生的位移以及子弹打进木块的深度分别是多少?答案 (1)m M +m v 0 (2)Mmv 0f M +m (3)Mm M +2m v 022f M +m 2Mm 2v 022f M +m2Mmv 022f M +m解析 (1)设子弹、木块相对静止时的速度为v ,以子弹初速度的方向为正方向,由动量守恒定律得mv 0=(M +m )v解得v =mM +mv 0 (2)设子弹在木块内运动的时间为t ,由动量定理得 对木块:ft =Mv -0 解得t =Mmv 0f M +m(3)设子弹、木块发生的位移分别为x 1、x 2,如图所示,由动能定理得对子弹:-fx 1=12mv 2-12mv 02解得:x 1=Mm M +2m v 022f M +m2对木块:fx 2=12Mv 2解得:x 2=Mm 2v 022f M +m2子弹打进木块的深度等于相对位移,即x 相=x 1-x 2=Mmv 022f M +m变式6 (2019·陕西省商洛市质检)如图11所示,在固定的水平杆上,套有质量为m 的光滑圆环,轻绳一端拴在环上,另一端系着质量为M 的木块,现有质量为m 0的子弹以大小为v 0的水平速度射入木块并立刻留在木块中,重力加速度为g ,下列说法正确的是( )图11A .子弹射入木块后的瞬间,速度大小为m 0v 0m 0+m +MB .子弹射入木块后的瞬间,绳子拉力等于(M +m 0)gC .子弹射入木块后的瞬间,环对轻杆的压力大于(M +m +m 0)gD .子弹射入木块之后,圆环、木块和子弹构成的系统动量守恒 答案 C解析 子弹射入木块后的瞬间,子弹和木块系统的动量守恒,以v 0的方向为正方向,则m 0v 0=(M +m 0)v 1,得v 1=m 0v 0m 0+M ,选项A 错误;子弹射入木块后的瞬间,T -(M +m 0)g =(M +m 0)v 12L,可知绳子拉力大于(M +m 0)g ,选项B 错误;子弹射入木块后的瞬间,对圆环:N =T +mg >(M +m +m 0)g ,由牛顿第三定律知,选项C 正确;子弹射入木块之后,圆环、木块和子弹构成的系统只在水平方向动量守恒,选项D 错误.1.现有甲、乙两滑块,质量分别为3m 和m ,以相同的速率v 在光滑水平面上相向运动,发生了碰撞.已知碰撞后,甲滑块静止不动,那么这次碰撞是( )A.弹性碰撞B.非弹性碰撞C.完全非弹性碰撞D.条件不足,无法确定答案 A2.(2018·福建省福州市模拟)一质量为M的航天器正以速度v0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v1,加速后航天器的速度大小为v2,则喷出气体的质量m为( )A.v2-v1v1M B.v2v2-v1MC.v2-v0v2+v1M D.v2-v0v2-v1M答案 C3.(2018·广东省东莞市调研)两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在,其中一人向另一个人抛出一个篮球,另一人接球后再抛回.如此反复进行几次之后,甲和乙最后的速率关系是( )A.若甲最先抛球,则一定是v甲>v乙B.若乙最后接球,则一定是v甲>v乙C.只有甲先抛球,乙最后接球,才有v甲>v乙D.无论怎样抛球和接球,都是v甲>v乙答案 B4.(2018·山东省青岛市第二次质量检测)如图1,连接有水平轻弹簧的物块a静止于光滑水平面上,物块b以一定初速度向左运动.下列关于a、b两物块的动量p随时间t的变化关系图像,不合理的是( )图1答案 A解析 物块b 以一定初速度向左运动与连接有水平轻弹簧的静止物块a 相碰,中间弹簧先被压缩后又恢复原长,则弹力在碰撞过程中先变大后变小,两物块动量的变化率先变大后变小.故A 错误.5.(2019·河南省鹤壁市调研)在列车编组站里,一节动车车厢以1m/s 的速度碰上另一节静止的拖车车厢,碰后两节车厢结合在一起继续运动.已知两节车厢的质量均为20t ,则碰撞过程拖车车厢受到的冲量大小为(碰撞过程时间很短,内力很大)( ) A .10N·s B .20N·s C .104N·s D .2×104N·s答案 C解析 动车车厢和拖车车厢碰撞过程动量守恒,根据动量守恒定律有mv 0=2mv ,对拖车根据动量定理有I =mv ,联立解得I =104N·s,选项C 正确.6.(2018·山西省晋城市第一次模拟)所谓对接是指两艘同方向以几乎同样快慢运行的宇宙飞船在太空中互相靠近,最后连接在一起.假设“天舟一号”和“天宫二号”的质量分别为M 、m ,两者对接前的在轨速度分别为(v +Δv )、v ,对接持续时间为Δt ,则在对接过程中“天舟一号”对“天宫二号”的平均作用力大小为( )A.m 2·Δv M +m ΔtB.M 2·Δv M +m ΔtC.Mm ·ΔvM +m ΔtD .0答案 C解析 在“天舟一号”和“天宫二号”对接的过程中水平方向动量守恒,M (v +Δv )+mv =(M +m )v ′,解得对接后两者的共同速度v ′=v +M ·ΔvM +m,以“天宫二号”为研究对象,根据动量定理有F ·Δt =mv ′-mv ,解得F =Mm ·ΔvM +m Δt,选项C 正确.7.(2018·河北省石家庄二中期中)滑块a 、b 沿水平面上同一条直线发生碰撞,碰撞后两者粘在一起运动,两者的位置x 随时间t 变化的图像如图2所示.则滑块a 、b 的质量之比( )图2A .5∶4B.1∶8C.8∶1D.4∶5 答案 B解析 设滑块a 、b 的质量分别为m 1、m 2,a 、b 两滑块碰撞前的速度为v 1、v 2, 由题图得v 1=-2m/sv 2=1m/s两滑块发生完全非弹性碰撞,碰撞后两滑块的共同速度设为v ,由题图得v =23m/s由动量守恒定律得m 1v 1+m 2v 2=(m 1+m 2)v联立解得m 1∶m 2=1∶8.8.(2018·山东省日照市校际联合质检)沿光滑水平面在同一条直线上运动的两物体A 、B 碰撞后以共同的速度运动,该过程的位移—时间图像如图3所示.则下列说法错误的是( )图3A .碰撞前后物体A 的运动方向相反B .物体A 、B 的质量之比为1∶2C .碰撞过程中A 的动能变大,B 的动能减小D .碰前物体B 的动量较大 答案 C解析 由题图可得,碰撞前v A =20-302m/s =-5 m/s ,碰撞后v A ′=20-102m/s =5 m/s ,则碰撞前后物体A 的运动方向相反,故A 正确;由题图可得,碰撞前v B =20-02m/s =10 m/s ,根据动量守恒得m A v A +m B v B =(m A +m B )v A ′,代入数据得:m A ∶m B =1∶2,故B 正确;碰撞前后物体A 速度大小相等,则碰撞过程中物体A 动能不变,故C 错误;碰前物体A 、B 速度方向相反,碰后物体A 、B 速度方向与物体B 碰前速度方向相同,则碰前物体B 动量较大,故D 正确.9.(多选)(2019·江西省上饶市调研)质量为M 的小车置于光滑的水平面上,左端固定一根水平轻弹簧,质量为m 的光滑物块放在小车上,压缩弹簧并用细线连接物块和小车左端,开始时小车与物块都处于静止状态,此时物块与小车右端相距为L ,如图4所示,当突然烧断细线后,以下说法正确的是( )图4A .物块和小车组成的系统机械能守恒B .物块和小车组成的系统动量守恒C .当物块速度大小为v 时,小车速度大小为mMv D .当物块离开小车时,小车向左运动的位移为m ML 答案 BC解析 弹簧推开物块和小车的过程,若取物块、小车和弹簧组成的系统为研究对象,则无其他力做功,机械能守恒,但选物块和小车组成的系统,弹力做功属于系统外其他力做功,弹性势能转化成系统的机械能,此时系统的机械能不守恒,A 选项错误;取物块和小车的系统,外力的和为零,故系统的动量守恒,B 选项正确;由物块和小车组成的系统动量守恒得:0=mv -Mv ′,解得v ′=m M v ,C 选项正确;弹开的过程满足反冲原理和“人船模型”,有v v ′=Mm,则在相同时间内x x ′=M m ,且x +x ′=L ,联立得x ′=mL M +m,D 选项错误. 10.(多选)(2018·陕西省西安一中一模)如图5所示,在光滑的水平面上有一静止的物体M ,物体M 上有一光滑的半圆弧轨道,最低点为C ,A 、B 为同一水平直径上的两点,现让小滑块m 从A 点由静止下滑,则( )图5A .小滑块m 到达物体M 上的B 点时小滑块m 的速度不为零B .小滑块m 从A 点到C 点的过程中物体M 向左运动,小滑块m 从C 点到B 点的过程中物体M 向右运动C .若小滑块m 由A 点正上方h 高处自由下落,则由B 点飞出时做竖直上抛运动D .物体M 与小滑块m 组成的系统机械能守恒,水平方向动量守恒 答案 CD解析 物体M 和小滑块m 组成的系统机械能守恒,水平方向动量守恒,D 正确;小滑块m 滑到右端两者水平方向具有相同的速度:0=(m +M )v ,v =0,可知小滑块m 到达物体M 上的B 点时,小滑块m 、物体M 的水平速度为零,故当小滑块m 从A 点由静止下滑,则能恰好到达B 点,当小滑块由A 点正上方h 高处自由下落,则由B 点飞出时做竖直上抛运动,A 错误,C 正确;小滑块m 从A 点到C 点的过程中物体M 向左加速运动,小滑块m 从C 点到B 点的过程中物体M 向左减速运动,选项B 错误.11.(2018·山东省日照市二模)2017年4月22日12时23分,“天舟一号”货运飞船与离地面390公里处的“天宫二号”空间实验室顺利完成自动交会对接.下列说法正确的是( )A .根据“天宫二号”离地面的高度,可计算出地球的质量B .“天舟一号”与“天宫二号”的对接过程,满足动量守恒、能量守恒C .“天宫二号”飞越地球的质量密集区上空时,轨道半径和线速度都略微减小D .若测得“天舟一号”环绕地球近地轨道的运行周期,可求出地球的密度 答案 D解析 根据GMmR +h2=m4π2T 2(R +h ),可得M =4π2R +h 3GT 2,则根据“天宫二号”离地面的高度,不可计算出地球的质量,选项A 错误;“天舟一号”与“天宫二号”对接时,“天舟一号”要向后喷气加速才能对接,故对接的过程不满足动量守恒,但是能量守恒,选项B 错误;“天宫二号”飞越地球的质量密集区上空时,万有引力变大,则轨道半径略微减小,引力做正功,故线速度增加,选项C 错误;G Mm R 2=m 4π2T 2R ,而M =43πR 3ρ,可得ρ=3πGT2,即若测得“天舟一号”环绕地球近地轨道的运行周期,可求出地球的密度,选项D 正确. 12.(2018·河南省新乡市第三次模拟)如图6所示,质量M =9kg 的小车A 以大小v 0=8m/s 的速度沿光滑水平面匀速运动,小车左端固定的支架光滑水平台上放置质量m =1 kg 的小球。