国内外风力发电技术现状与发展
- 格式:doc
- 大小:70.50 KB
- 文档页数:6
风力发电现状与发展趋势分析摘要:在新能源快速发展的今天,风电技术受到越来越多人的关注,有着优化能源结构、改善生态环境、促进社会和经济可持续和谐发展等方面的优势。
为此,本文探讨了风力发电现状与发展趋势。
关键词:风力发电;发展趋势引言近些年来,全球的风力发电行业发展十分迅速,发展前景可观,各个国家都十分重视风力发电技术,风电机组装机容量不断提升,即使在全球经济衰退的大背景下,在制造业行业中整个风电累计装增量的增长率依然遥遥领先。
由于我国的能源短缺问题、环境污染问题比较严重,风电技术由于清洁、可靠、无需进口的优势成为了发展的重点项目。
1新能源的概念所谓新能源是指传统能源之外的各种非常规能源,主要是在新技术基础上加以开发利用的可再生能源,当前主要包括太阳能、地热能、风能、核能等,这些新型能源以新技术和新材料为基础,将传统的可再生能源进行循环开发利用。
新能源的出现和应用是在能源和环境危机日益严重地背景下为了人类的可持续发展而不得不采取的一种手段,常规能源的储存总量有限且使用过程中很容易造成环境污染等问题,环保的重要性逐渐被世界各个国家和地区所重视,持续开发利用新能源是解决当前全球环境和经济发展危机的首要选择。
2我国风力发电发展的历史回顾与分析1986年山东荣成风电场的成功并网代表着我国风电开发建设的开始,至今我国风力发展技术的开发与应用研究已经过了30多年,实现了从无到有、由弱变强质的飞跃。
在技术研究之初主要由相关高等院校及科研机构进行理论、原理样机方面的研究,之后出现了一批风力发电技术企业如新疆金风科技股份有限公司,企业在国家政策的引导、扶持下,通过技术引进与创新加快了我国风力发电的速度,完善了风力发电相关产业链,技术创新方面取得了新的突破。
2006年1月1日实施了《可再生能源法》,我国的风电进入了高速的黄金发展时期,2009年颁布了《新能源产业规划》、《风电“十二五”发展规划》,推进了河北、蒙西、甘肃、新疆等9个大型风电基地建设,风机的装电量突破了2000万千瓦。
我国风力发电现状及其技术发展
一、我国风力发电的现状
我国风力发电是使用大气中变化的风能来发电的一种新型可再生能源。
我国风力发电的发展取得了显著的成效。
截止2024年底,全国风电装机
容量已经达到157.2GW,占我国总装机容量的5.63%,其中,大型风电机
组装机容量达到125.7GW,小型风力发电机组装机容量达到31.5GW。
截止2024年底,我国的风力发电发电量已经达到180亿千瓦时,占
全国发电量的2.59%,其中大型风力发电发电量达到146亿千瓦时,小型
风力发电发电量达到34亿千瓦时。
2024年至2024年,我国风力发电发
电量增长了近6.7%,大型风力发电发电量增长了4.7%,小型风力发电发
电量增长了23.4%。
随着发电量的增加,风力发电对新能源的贡献率不断提高,2024年
新增装机容量中风力发电比例达到39.5%,新增发电量中风力发电比例达
到31.7%,成为可再生能源发电新增装机容量和发电量的主力。
二、我国风力发电技术发展
(一)推动大型风机发展
我国大型风力发电的发展趋势主要表现在两个方面:一是大型风机发
展趋势,二是风电项目科学规划的发展趋势。
浅谈风力发电技术的现状及发展前景摘要:主要介绍了风力发电机的主要组成、种类、我国风力资源的分布情况、发展前景、风力发电的优越性,以及我国风力发电亟待解决的问题。
关键词:风力发电;资源分布;风机的分类;发展前景风能是一种可再生的清洁能源,近30年来,国际上在风能的利用方面,无论是理论研究还是应用研究都取得了重大进步。
风力发电技术日臻完善,并网型风力发电机单机额定功率最大已经到5MW,叶轮直径达到126m。
今后,国内外风力发电技术和产业的发展速度将明显加快。
1 风力发电机的主要组成1.1 小型风力发电机小型水平轴风力机主要组成部分有:风轮、发电机、塔架、调向机构、蓄能系统、逆变器等。
(1)风轮风轮是风力机从风中吸收能量的部件,其作用是把空气流动的动能转变为风轮旋转的机械能。
水平轴风力发电机的风轮是由1~3个叶片组成的。
叶片的结构形式多样,材料因风力机型号和功率大小而定,如木心外蒙玻璃钢叶片、玻璃纤维增强塑料树脂叶片等。
(2)发电机在风力发电机中,已采用的发电机有3种,即直流发电机、同步交流发电机和异步交流发电机。
小型风力发电机多采用同步或异步交流发电机,发出的交流电通过整流装置转换成直流电。
(3)塔架塔架用于支撑发电机和调向机构等。
因风速随离地面的高度增加而增加,塔架越高,风轮单位面积捕捉的风能越多,但造价、安装费等也随之加大。
(4)调向机构垂直轴风力机可接受任何方向吹来的风,因此不需要调向机构。
对于水平轴风力机,为了得到最高的风能利用效率,应用风轮的旋转面经常对准风向,需要对风装置。
常用的调向机构主要有尾舵、舵轮、电动对风装置。
(5)限速机构当风速高于风力机的设计风速时,为了防止叶片损坏,需要对风轮转速进行控制。
(6)贮能装置贮能装置对独立运行的小型风力机是十分重要的。
其贮能方式有热能贮能、化学能贮存。
(7)逆变器用于将直流电转换为交流电,以满足交流电气设备用电的要求。
1.2 大型风力发电机组大型风力发电机组由两大部分组成:气动机械部分和电气部分。
风能发电技术的现状和发展趋势Introduction随着全球经济的不断发展,能源需求也在不断增加。
然而,许多传统的能源资源正逐步枯竭,因此我们需要寻找更加可持续、环保的能源。
风能发电便是这样一种被广泛认可的能源。
Main body1. 风能发电技术的现状风能发电已成为全球能源转型的关键领域。
截至2021年,全球风力发电容量已经达到了743.8吉瓦,覆盖了全球30%以上的电力需求量。
尽管如此,风能发电在技术和规模上仍处于不断发展和完善的阶段。
目前,风能发电技术主要可以分为两种类型:一种是水平轴风力发电机组,另一种则是垂直轴风力发电机组。
其中,水平轴风力发电机组是目前应用最广泛的一种。
2. 风能发电技术的发展趋势随着风能发电的不断发展,其技术也在不断升级和改进。
以下是几种可能的发展趋势:(1)更高效的风力发电设备:一些最新的研究表明,通过增加风力发电设备的叶片数量和长度,可以极大地提高风力发电的效率水平。
此外,一些公司也在探索如何利用人工智能和机器学习等技术来进一步提高发电设备的效率和可靠性。
(2)海上风电项目的发展:海上风电项目是风能发电领域的一个热点,由于其风速更高,可利用率更高。
目前,全球海上风力发电的容量已经达到了30吉瓦,而这一数字预计未来几年还将继续增长。
此外,由于海上环境的恶劣,海上风电项目需要更加耐用和可靠的风力发电设备,这也将推动风力发电技术的进一步发展。
(3)蓄能技术的发展:因为风能发电存在不稳定性,这使得蓄能技术的研究和应用越来越受关注。
目前,蓄能技术主要包括电池、压缩空气和熔盐硬盘等多种方式,这些技术可以解决风力发电在低风或无风情况下的能量存储问题,从而为风力发电的可靠性提供了更多可能性。
3. 求稳定发展,需要共同努力尽管风能发电技术的发展迅速,但仍存在一些挑战需要克服。
其中一个最显著的问题是风电场的规模太小,以至于它们无法灵活地应对需求方的不同需求。
此外,风能发电的系统集成和配套技术等附带技术还需要进一步完善。
风力发电发展现状及前景浅析摘要:能源产业支撑着社会经济不断向前发展,随着能源消耗的日益增长、社会环境意识的不断提升,可再生新能源的开发和利用受到了世界各国的普遍重视。
风能具有清洁、安全、可再生的特点,是重要的可再生新能源之一。
风力发电作为能源利用的重要手段,是对传统能源发电的重要补充,可以有效缓解电力行业对煤炭、石油等传统能源的依赖,实现电力行业的能源结构多样化。
再者,风力发电也有利于环境和生态的保护,不同的发电形式都会对环境造成不同程度的影响,风力发电相对于传统能源发电,空气污染近乎零,气候改变也非常低,水质污染以及野生动物等方面影响也近乎零。
鉴于此,本文主要分析探讨了风力发电发展现状及前景,以供参阅。
关键词:风力发电;发展现状;前景引言随着我国经济的不断发展,各行各业都迎来了新的发展机遇,风力发电也正是如此。
近几年来,全球气候变暖的问题越来越严重,在这样的情况下,开发并且使用清洁能源是我国发电行业主要的发展方向。
从这一方面来看,风力发电的发展前景十分可观。
风力发电的发展实际上是环保意识的重要体现,为了解决各种各样的环境问题,使用无污染的清洁能源是非常有必要的,但是就目前我国风力发电的情况来看,在很多方面都存在着问题,因此,相关工作人员应该对风力发电的发展现状进行分析,为其提供更好的发展前景。
1风力发电发展现状1.1西方国家风力发电的发展现状在全球环境恶化的同时人们把更多的关注放在了开发新能源上,自20世纪70年起,全世界范围内都在努力的寻找一种新能源,力求寻找一条同时满足发展资源环境与经济的两全之策。
因此在这种情况下,全世界一同把目光放在了这种具有巨大潜力的,优越性突出的新能源上——风能。
例如,德国和西班牙等欧洲国家采取了长期保护性电价政策,为风电和其他可再生能源开发商提供担保的上网电价,并要求电力公司与风力发电开发商签署长期购电合同;在英国和美国对风能采取了配额制政策,这一项规定要求在国家总电力供应量中,风能等可再生能源应占有一定的比重,并达到规定数量。
2020.11 EPEM21智库见解Vision风力发电现状与发展趋势分析通道新天绿色能源有限公司 王月普近些年来,全球的风力发电行业发展十分迅速,发展前景可观,各个国家都十分重视风力发电技术,风电机组装机容量不断提升,即使在全球经济衰退的大背景下,在制造业行业中整个风电累计装增量的增长率依然遥遥领先。
由于我国的能源短缺问题、环境污染问题比较严重,风电技术由于清洁、可靠、无需进口的优势成为了发展的重点项目。
我国可以开发的陆地风能资源大约分别为253GW,海洋风能资源大约为750GW。
在风电的设计生产制造与运行控制技术方面,西班牙在2009年安装了第一台4.5MW 风电机组,该风电机组由本土制造商生产,机组的叶轮直径为128m,采用了中速齿轮箱和永磁同步发电机及全功率变流器设计,实现了叶片变桨独立控制,显著提高了机组的可利用率及使用寿命。
欧洲在海上风电产业技术方面的发展处于全世界领先地位,拥有的核心技术包括无齿轮直驱及混合驱动技术、双馈齿轮驱动技术等,美国风电设备制造商GE 已经研发一种被称之为“动态无功控制”的闭环风电场电压控制技术。
在风力发电初始阶段,采用较多的为低效率的定桨距恒速恒频风力机,风能利用率较低。
随着风力发电技术日趋成熟,出现了比较先进的变速恒频风力发电系统(VSCF),最大限度的提高了风能利用率。
变速恒频风力发电机应用的主流机组为双馈式感应异步发电机(DFIG)和直驱永磁同步风力发电机(PMSG)。
与DFIG 相比,直驱永磁同步风力发电机组可靠性、故障率、机械损耗等降低,机组的运行寿命延长。
风电电源在应用中需注重与电网的协同运行,相关的研究包括电网风电接纳能力、风电机组低电压穿越能力等,但这些研究相对独立,对于技术之间的相互影响及制约作用等处于研究的空白阶段。
我国风力发电发展的历史回顾与分析1986年山东荣成风电场的成功并网代表着我国风电开发建设的开始,至今我国风力发展技术的开发与应用研究已经过了30多年,实现了从无到有、由弱变强质的飞跃。
风力发电工程行业现状分析报告及未来五至十年发展趋势一、引言风力发电作为一种可再生能源,正逐渐发展成为全球能源转型的重要组成部分。
本文将以业内资深精英人士的水平,对风力发电工程行业的现状进行深入分析,并展望未来五至十年的发展趋势。
二、行业现状分析市场规模不断扩大随着全球对清洁能源需求的增加和环境保护意识的提高,风力发电市场规模不断扩大。
许多国家和地区纷纷制定政策,鼓励和支持风力发电工程的建设。
同时,风力发电的成本不断降低,使其具备了更大的市场竞争力。
技术水平不断提升风力发电工程作为一项技术密集型的工程,需要各种高效、可靠的技术支撑。
随着技术的不断进步,风力发电设备的效率和可靠性不断提高。
例如,新型的风力发电机组设计和创新的叶片材料可以提高发电效率和抗风能力。
这些技术的进步推动了风力发电工程行业的发展。
市场竞争日益激烈由于风力发电市场前景广阔,吸引了众多企业进入。
市场竞争激烈,企业争夺订单和项目,并通过技术创新和成本控制来提高自身竞争力。
这种竞争不仅加剧了价格竞争,也推动了技术的不断创新和发展。
三、未来五至十年发展趋势政策支持将更加明确随着全球对可持续能源的需求增加,政府对风力发电工程的政策支持将更加明确。
政府将继续出台更多的激励政策,如补贴和税收减免等,以促进风力发电工程的发展。
同时,政府还会加强对风力发电工程的监管和管理,确保其安全、高效运行。
技术创新将进一步推动行业升级未来五至十年,风力发电工程行业将面临更多的技术创新机遇。
新型风力发电机组设计和创新的叶片材料将进一步提高风能的捕捉效率和风电机组的性能。
同时,智能化、数字化技术的应用将提高风力发电设备的运行管理效率。
海上风电发展潜力巨大海上风电发展具有巨大的潜力。
海上风力资源更加丰富且稳定,可以提供更稳定的发电量。
未来五至十年,海上风电工程将成为风力发电行业的重要发展方向。
同时,随着技术的进步和成本的降低,海上风电的商业化运行将逐渐实现。
国际合作和市场拓展助推行业发展风力发电工程行业需要加强国际合作,共同应对全球能源转型的挑战。
基于风力发电技术发展现状以及行业发展分析风力发电技术是目前最受欢迎的可再生能源之一,具有许多优点,如无污染、零排放、可再生和可持续性,因此在全球范围内得到广泛关注和应用。
随着科技的发展,风力发电技术也在不断进化和改进。
本文将基于风力发电技术发展现状以及行业发展分析,对该技术的未来前景进行探讨。
一、发展现状1. 技术成熟度不断提高:风力发电技术经过了近几十年的发展,在技术成熟度方面已经达到了一个比较高的水平。
目前的风力机经济性已经得到了保证,同时风力发电技术及其组成部件的可靠性也在不断提高。
2. 规模越来越大:风力发电机组的容量和高度规模越来越大,不断地推动着技术和产业的进步。
世界上规模最大的风力发电机组是中国海南的三峡风电场,单机容量达到了7.58兆瓦,其转子直径超过了100米,塔高达73.5米。
3. 生产成本逐渐降低:随着风力发电技术的不断成熟和规模的扩大,风力发电的生产成本也在逐渐降低。
据统计,目前全球风力发电的平均成本已经降至每千瓦时5美分以下。
4. 国际市场份额持续扩大:随着全球对环保、可持续发展和低碳经济的重视,风力发电技术在国际市场上的份额不断扩大。
据国际能源署的报告,到2030年,全球风力发电的总装机容量将达到2000亿瓦,占全球总发电量的18%。
二、行业发展分析1. 行业竞争加剧:随着风力发电技术的普及和市场份额的扩大,行业竞争也越来越激烈。
除了传统的风机制造商之外,越来越多的非传统企业也开始进入风力发电行业。
2. 技术创新驱动发展:风力发电技术的创新将成为未来行业发展的主要动力。
比如,一些新技术正在得到广泛应用,如水平轴式和垂直轴式风力发电机组、浮式风力发电系统、大型风力储能成为研究热点等。
3. 利润空间研究:当前,行业主要的利润来源是增加容量和降低生产成本。
然而,较低的发电成本也意味着较低的价格,这对于一些企业的继续发展可能会产生影响。
4. 存在挑战:虽然风力发电技术的发展前景广阔,但仍存在一些挑战。
风电发展现状及前景1、现状:(I)关于风力发电机组装机容量方面在风电技术的不断提高的推动下,全球风电发电量不断增加。
近些年,由于各国政府对风力发电的重视程度不断提高,风电装机的年增长率仍在高位增长。
(2)关于风电联网运行方面风电具有强随机波动性、低可控性特征,因此大规模并网接入将对电网的运行造成不利影响。
目前风电相关研究主要聚焦于电网风电接纳能力、风电功率预测与风电联网对电网影响及改善方法以及风电机组低电压穿越能力等方面。
(3)关于设计生产制造与运行控制技术方面在目前风力发电产业快速发展背景下,并网容量增加逐步加大,变速恒频发电机正在逐步取代恒速恒频发电机组。
2、前景:(1)在风电机组单机容量方面符持续加大在风电技术发展推动下,全球风电产业发展迅猛,装机容量连年上升,而且已经向海上风电发展势头强劲。
(2)在结构设计方面将向紧凑、柔性、轻盈化发展在风电机组单机容量不断增大的趋势下,将迫使组件制造趋于便于运输与安装方向发展,未来也会对机组在结构设计方面实现紧凑、柔性和轻盈化为目标。
(3)在低电压穿越技术方面将得到更大推广与应用在机组单机容量及风电场规模不断扩大的过程中,风电机组与电网间的相互制约已成为较大问题。
如何使电网机组在电网在出现故障并电压跌落时不发生脱网运行,而且在故障排除后,相关设备可以帮助风电发电系统以较快速度重启稳定运行。
这就对风电机组在控制方面提出具有较强的低电压穿越能力的要求。
低电压穿越技术方面也将得到更大推广与应用。
(4)陆上风电将向海上风电发展海上风电相比于陆上风电风俗平稳、风机利用率高、单机容量大、不占地、不扰民、距离用电负荷近等优势,未来陆上风电也将向海上风电发展倾斜。
(5)在机组运行方面将采取更多智能控制技术面对风电系统运行特点及控制系统的特性,风电领域已经将各种智能控制技术不断应用于变桨距控制系统中,在很大程度上解决了风力发电系统中的非线性、随机扰动等问题,将来也将会在机组运行方面将采取更多智能控制技术。
风力发电的前景随着全球对可再生能源的需求不断增加,风力发电作为其中的重要组成部分,正逐渐成为人们关注的焦点。
凭借其无污染、资源丰富、可持续等诸多优势,风力发电具备广阔的发展前景。
本篇文档将探讨风力发电的前景,并介绍其在可再生能源领域中的地位和挑战。
一、风力发电的现状风力发电作为一种清洁、可再生的能源形式,一直以来都受到全球关注。
近年来,风力发电已经成为许多国家能源政策的主要组成部分。
据国际能源署统计,全球装机容量最大的风力发电市场分别是中国、美国和德国。
目前,风力发电的技术水平不断提高,大型风机的效率也在逐步提高。
同时,风力发电的成本持续下降,越来越多的国家和地区将其作为推进可再生能源发展的重点方向。
二、风力发电的优势1. 无污染:风力发电过程中不会产生任何污染物,不会对环境和人体健康造成危害。
2. 可再生:风力是地球上永恒存在的能源,风力发电不会消耗资源,具备长期可持续发展的优势。
3. 能源多样化:风力发电可以减少对传统化石燃料的依赖,降低能源供应风险。
4. 土地利用灵活:风力发电设备可以设置在农田、沙漠、山区等各种地形中,灵活利用土地资源。
三、风力发电的应用领域1. 电力供应:风力发电已成为一种重要的电力供应方式。
其装机容量不断扩大,能够满足城市居民和工业部门对电力的需求。
2. 农村电网:风力发电设备可以在农村地区建立微型电网,提供清洁能源供应,改善农村能源结构,解决能源短缺问题。
3. 海上风电:海上风电作为新兴领域受到广泛关注。
相比陆地风电,海上风电场可以充分利用海洋资源,且风力更加稳定。
4. 增加富余能源:风电可以作为主要的电力供应方式,同时也可以将多余的电力储存下来,用于应对极端天气等特殊情况。
四、风力发电面临的挑战1. 风能资源分布不均:尽管风能是可再生能源中最丰富的之一,但风能的分布并不均匀。
一些地区可能会面临缺乏足够的风能资源的问题。
2. 电网接入困难:风电场通常建设在偏远地区,电网接入是一个重要的问题。
风力发电设备技术现状与发展趋势摘要:风力发电是一种将风的动能转化为电能的能量转换方式,通过这种发电方式得到的电能有着清洁环保的优点,在新时期发展背景下,人们消耗的电力资源总量不断增长,为了满足人们在对电力资源需求的基础上,降低电力供应对自然环境造成的污染,合理应用风力发电技术,成为了一项极为必要的工作。
下面,文章重点就风力发电设备技术现状与发展趋势展开论述。
关键词:风力发电;设备技术;技术现状;发展趋势1风力发电的优势新形势下,电力的需求和当前供应的缺口较大,作为一种可再生能源,风力发电的优势主要包括:第一,风能是可再生能源。
风力发电机组利用风能发电,不会消耗天然气、石油、煤等资源。
第二,风电场的建设周期短。
立足于相关调查研究、经验或软件确定好建设风电场的地址后,修好路、配备好设备后,便可以对风力发电设备进安装,此速度显然比其他电厂快很多。
第三,在风电场运行过程中,可以设计无需人员值守,维护难度小。
现阶段,计算机技术迅猛发展,风力发电技术日新月异,风力发电机组的自动化程度越来越高,可以做到远程控制。
第四,造价不高。
相较于核电站、火力发电厂以及水力发电厂的建造费用相比,风力发电场的建造费用低很多。
第五,土地占用规模不大。
风电场可以在沙漠、荒岛及沿海的浅海中建造,占用耕地规模大大减少。
运用风力发电,不会产生废物或废气,不会对环境和人类造成影响。
2风力发电设备技术现状2.1双馈式风电机组双馈异步风机是市场上应用最多的风电机组,市场份额占比最高。
双馈机型整体经济性好,目前5MW以下等级的双馈机型技术性能稳定、供应链成熟、制造成本相对较低,但后期运维成本较高。
当前主流技术研究方向集中在低电压穿越时的控制策略、高压穿越控制策略和并网相关研究等,智能化控制相关研究贯穿其中。
2.2直驱型风电机组直驱式风力发电机由多极电机与叶轮直接连接驱动,与双馈式风机比,减少了齿轮箱,体积更小,寿命提升,降低了运维成本。
但由于发电机和全功率变流器的存在,成本明显增加。
1 国内风电的发展现状和趋势 201010202143 摘要 风电古老而现代,但之所以到近代才得以发展,是因为这方面存在许多实际困难,主要表现在:(1)风本身随机性大且不稳定,对其资源的准确测量与评估存在误差 (2)风速大小、风力强弱、风的方向都随时间在变化,设计制造在不同的风况下都能保持稳定运行的风电系统,并使其风电输出功率高且理想平滑十分困难 (3)风是间歇式能源,有功功率与无功功率都将随风速的变化而变化,在与电网连接时需要考虑输出功率的波动对地区电网的影响。 此外,在降低制造成本和运行维护费用的前提下如何提高系统运行的安全性与可靠性、如何延长风力发电机的寿命以及改善系统储能措施使其容量更大、体积更小、效率更高且寿命更长等问题上尚有待于得到更完善的解决。 关键字:风力发电 国际 海上风能 现状 趋势
Abstract wind power is ancient and modern, in the modern time is to development, because there are many practical difficulties,mainly embodied in:(1)wind itself randomness and not stable,there is error in its resources accurate measurement and assessment (2) Size of wind speed, wind strength, the direction of the wind,all of them Changes with the time,design and manufacture under different wind conditions can keep the stable operation of wind power system,and make them ideal smooth wind power output is high and difficult (3)The wind is intermittent energy sources, power will change along with the change of wind speed, need to consider when connected to the power grid output power fluctuation's influence on the regional power grid. In addition, to reduce the manufacturing cost and operation maintenance cost under the premise of how to improve the safety and reliability of system operation, how to prolong the life of wind turbines, as well as measures to boost the energy storage system to make its capacity is bigger, smaller volume, higher efficiency and longer life on such issues is still waiting to get more perfect solution.
中国风力发电调研报告
一、概述
中国风力发电技术以其优越的性能特点、节能环保的发电特性,在世
界范围内逐步发展成为新能源领域的一种潮流,具有广阔的发展前景。
目前,风能发电系统的技术已经取得了很大的发展,已经成为发电量最大的
新能源发电系统。
中国的风能发电应用范围已从初期的气象研究、农业服务等局限于本
地区域,发展到社会的全部领域,以及用于城乡改造和环境保护方面的技
术应用。
二、现状及发展研究
(一)现状及趋势
中国是风能发电系统应用最为普及的国家,具有最广泛的发展空间。
2024年,中国的风力发电装机容量突破6000兆瓦,累计为6410.4兆瓦,占全球总装机容量的约20%,成为全球风力发电装机总容量最大的国家。
中国的风能发电资源分布较为单一,以沿海地区为主,其中东北沿海
地区资源最为丰富,占全国资源总量的60%以上。
同时,山东、广西、广东、湖南、江苏、四川等沿海省份的资源等级也较高,风力发电资源多为
四级以上。
(二)技术发展
中国风能发电技术的发展历程是由指挥控制系统向高级控制及方案优
化系统的连续进步,以及从风电站小型化开始,到标准化、大型化,再到
多机组共同控制、智能化发展的演进。
中国风电发展现状与潜力分析近年来,随着环保意识的日益增强和人们对能源需求的不断增长,风力发电作为一种清洁、可再生的能源形式成为了全球关注的焦点之一。
作为国际能源领域重要的参与国,中国也在积极推进风电产业的发展,而其风电发展现状和潜力则备受关注。
一、中国风电发展现状中国风电产业的发展可追溯到上世纪90年代初期,当时国内唯一的一台风电机组由建设部批准在内蒙古的张北地区投产。
此后,中国风电发展进入了一个加速发展的时期,其市场规模和装机容量蓬勃增长。
截至2021年3月末,中国累计风电装机容量已经达到了281.71万千瓦,成为世界上风电装机容量最大的国家之一。
据国家能源局公布的数据,2020年中国新增风电装机容量达到71.67万千瓦,同比增长15.9%。
其中,在新的一年,中国还将继续加大新能源领域的投资,预计未来几年的风电装机容量增速将保持在10%以上的水平。
中国风电发展中的一个重要举措是建立了较为完整的产业政策和相关标准体系,包括建立了全国风电建设规划,发展了一批大型风电基地,并以该体系为基础建立了风电装备制造业。
如今,中国已形成了一批有实力的风电企业,多家企业已在海外市场建设风电项目。
二、中国风电发展的潜力中国风电发展的潜力是很大的。
首先,中国在继续提高市场开发的同时,还需将重点从规模扩张转向提升质量、改善效益,因为风电行业的另一项关键挑战是如何提高发电效率,降低成本,并实现技术革新和能源互补。
其次,伴随着中国社会经济的高速发展和工业化进程的不断推进,能源需求也在不断增长,风电作为其可再生能源的其中之一,可以为中国提供更加可靠、清洁、安全的能源供应。
政策层面上,中国政府也在加强洁能产业的发展,支持和推动技术创新的研究和市场应用,增强风电市场的可持续性和稳定性,为风电产业提供了更广阔的发展空间。
再次,随着风电装机容量的不断提高和技术的不断革新,中国风能资源的勘测和利用也将得到进一步加强。
在未来几年中,风电技术将进一步完善,特别是智能化和数字化技术的应用。
国内外风力发电技术现状与发展 风能是一种可再生的清洁能源。近30年来,国际上在风能的利用方面,无论是理论研究还是应用研究都取得了重大进步。风力发电技术日臻完善,并网型风力发电机单机额定功率最大已经到5MW,叶轮直径达到126m。截止2005年世界装机容量已达58,982MW,风力发电量占全球电量的1%。中国成为亚洲风电产业发展的主要推动者之一,其总装机容量居世界第8位,2005年新增装机容量居世界第6位。今后,国内外风力发电技术和产业的发展速度将明显加快。
1 引 言 风是最常见的自然现象之一,是太阳对地球表面不均衡加热而引起的“空气流动”,流动空气具有的动能称之为风能。因此,风能是一种广义的太阳能。据世界气象组织(WMO)和中国气象局气象科学研究院分析,地球上可利用的风能资源为200亿kW,是地球上可利用水能的20倍。中国陆地10m高度层可利用的风能为2.53亿kW,海上可利用的风能是陆地上的3倍,50m高度层可利用的风能是10m高度层的2倍,风能资源非常丰富。
风能是一种技术比较成熟、很有开发利用前景的可再生能源之一[1]。风能的利用方式不仅有风力发电、风力提水,而且还有风力致热、风帆助航等。因此,开发利用风能对世界各国科技工作者具有极强的魅力,从而唤起了世界众多的科学家致力于风能利用方面的研究。在本文中,将对国内外风力发电技术的现状和发展趋势进行论述。
2 风力发电基本知识 2.1 风能的计算公式 空气运动具有动能。风能是指风所具有的动能。如果风力发电机叶轮的断面积为A,则当风速为V的风流经叶轮时,单位时间风传递给叶轮的风能为 (1) 其中:单位时间质量流量m=ρAV (2) 在实际中, (3) 式中: PW—每秒空气流过风力发电机叶轮断面面积的风能,即风能功率,W; Cp—叶轮的风能利用系数; m—齿轮箱和传动系统的机械效率,一般为0.80—0.95,直驱式风力发电机为1.0; e—发电机效率,一般为0.70—0.98; —空气密度,kg/m3; A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。
2.2 贝茨(Betz)理论 第一个关于风轮的完整理论是由德国哥廷根研究所的A·贝茨于1926年建立的。 贝茨假定风轮是理想的,也就是说没有轮毂,而叶片数是无穷多,并且对通过风轮的气流没有阻力。因此这是一个纯粹的能量转换器。此外还进一步假设气流在整个风轮扫掠面上的气流是均匀的,气流速度的方向无论在风轮前后还是通过时都是沿着风轮轴线的。
通过分析一个放置在移动空气中的“理想”风轮得出风轮所能产生的最大功率为 (4) 式中:Pmax—风轮所能产生的最大功率; —空气密度,kg/m3; A—风力发电机叶轮旋转一周所扫过的面积,m2; V—风速,m/s。 这个表达式称为贝茨公式。其假定条件是风速与风轮轴方向一致并在整个风轮扫掠面上是均匀的[2]。 将(4)式除以气流通过扫掠面A时风所具有的动能,可推得风力机的理论最大效率 (5) (5)式即为有名的贝兹(Betz)理论的极限值。它说明,风力机从自然风中所能索取的能量是有限的,其功率损失部分可以解释为留在尾流中的旋转动能。 能量的转换将导致功率的下降,它随所采用的风力机和发电机的型式而异,因此,风力机的实际风能利用系数Cp<0.593[3]。
2.3 温度、大气压力和空气密度 通过温度计和气压计测试出实验地点的环境温度和大气压,由下式计算出空气密度。 (6)
式中:ρ—空气密度,kg/m3; h—当地大气压力,Pa; t—温度,℃。 从空气密度公式可以看出,空气密度的大小与大气压力、温度有关。
2.4 风力机的主要组成 1) 小型风力发电机 小型水平轴风力机主要组成部分有:风轮、发电机、塔架、调向机构、蓄能系统、逆变器等。 (1)风轮 风轮是风力机从风中吸收能量的部件,其作用是把空气流动的动能转变为风轮旋转的机械能。水平轴风力发电机的风轮是由1~3个叶片组成的。叶片的结构形式多样,材料因风力机型号和功率大小而定,如木心外蒙玻璃钢叶片、玻璃纤维增强塑料树脂叶片等。 (2)发电机 在风力发电机中,已采用的发电机有3种,即直流发电机、同步交流发电机和异步交流发电机。小型风力发电机多采用同步或异步交流发电机,发出的交流电通过整流装置转换成直流电。 (3)塔架 塔架用于支撑 发电机和调向机构等。因风速随离地面的高度增加而增加,塔架越高,风轮单位面积捕捉的风能越多,但造价、安装费等也随之加大。 (4)调向机构 垂直轴风力机可接受任何方向吹来的风,因此不需要调向机构。对于水平轴风力机,为了得到最高的风能利用效率,应用风轮的旋转面经常对准风向,需要对风装置。常用的调向机构主要有尾舵、舵轮、电动对风装置。 (5)限速机构 当风速高于风力机的设计风速时,为了防止叶片损坏,需要对风轮转速进行控制。 (6)贮能装置 贮能装置对独立运行的小型风力机是十分重要的。其贮能方式有热能贮能、化学能贮存。 (7)逆变器 用于将直流电转换为交流电,以满足交流电气设备用电的要求。
2) 大型风力发电机 大型风力发电机组由两大部分组成:气动机械部分和电气部分。气动机械部分包括风轮、低速轴、增速齿轮箱、高速轴,其功能是驱动发电机转子,将风能转换为机械能。电气部分包括异步发电机、电力电子变频器、变压器和电网,其功能是将机械能转换为频率恒定的电能。近年来,又研制成功了直驱式变速恒频风力发电机组(无增速齿轮箱)。
3 风力机与风力发电技术 3.1 风力机与风力发电技术的发展史 风能,是人类最早使用的能源之一。远在公元前2000年,埃及、波斯等国已出现帆船和风磨,中世纪荷兰与美国已有用于排灌的水平轴风车。我国是世界上最早利用风能的国家之一,早在距今1800年前,我国就有风力提水的记载。1890年丹麦的P·拉库尔研制成功了风力发电机,1908年丹麦已建成几百个小型风力发电站。自二十世纪初至二十世纪六十年代末,一些国家对风能资源的开发,尚处于小规模的利用阶段[4]。
随着大型水电、火电机组的采用和电力系统的发展,1970年以前研制的中、大型风力发电机组因造价高和可靠性差而逐渐被淘汰,到二十世纪六十年代末相继都停止了运转。这一阶段的试验研究表明,这些中、大型机组一般在技术上还是可行的,它为二十世纪七十年代后期的大发展奠定了基础。
1980年以来,国际上风力发电机技术日益走向商业化。主要机组容量有300kW、600kW、750kW、850kW、1MW、2MW。1991年丹麦在Vindeby建成了世界上第一个海上风电场,由11台丹麦Bonus 450kW单机组成,总装机4.95MW。随后荷兰、瑞典、英国相继建成了自己的海上风电场。
目前,已经备离岸风力发电设备商业生产能力的厂家,主要有丹麦的Vestas(包括被其整合的NEG-Micon),美国的GE风能,德国的Nordex、Repower、Pfleiderer/Prokon、Bonus和德国著名的Enercon公司。单机额定功率覆盖范围从2MW、2.3MW、3.6MW、4.2MW、4.5MW到5MW。叶轮直径从80m、82.4m、100m、110m、114m、116m到126m。
3.2 风力机的种类 风力发电机是把风能转换为电能的装置,鉴于风力发电机种类繁多,因此分类法也是多种。按叶片数量分,单叶片,双叶片,三叶片,四叶片和多叶片;按主轴与地面的相对位置分,水平轴、垂直轴(立轴)式;按桨叶工作原理分,升力型、阻力型。目前风力发电机三叶片水平轴类型居多。 水平轴风力机,风轮的旋转轴与风向平行,如图1所示;垂直轴风力机,风轮的旋转轴垂直于地面或气流方向,如图2所示。
4 国内外风力发电的现状 4.1 世界风力发电的现状 目前,中、大型风力发电机组已在世界上40多个国家陆地和近海并网运行,风电增长率比其它电源增长率高的趋势仍然继续。如表1所示,截止2005年12月31日世界装机容量已达58,982MW,年装机容量为11,310MW,增长率为24%;风力发电量占全球电量的1%,部分国家及地区已达20%甚至更多。2005年世界风电累计装机容量最多的十个国家见表2,前十名合计51750.9MW,约占世界总装机容量的87.7%。
2005年国际风电市场份额的分布多样化进程呈持续发展趋势:有11个国家的装机容量已高于1,000MW,其中7个欧洲国家(德国、西班牙、意大利、丹麦、英国、荷兰、葡萄牙),3个亚洲国家(印度、中国、日本),还有美国。亚洲正成为发展全球风电的新生力量,其增长率为48%[5]。
2002年欧洲风能协会(EWEA)与绿色和平组织(Greenpeace International)发表了一份标题为“风力 12(Wind Force 12)”的报告,勾画了风电在2020年达到世界电量12%的蓝图。报告声明这份文件不是预测,而是从世界风能资源、世界电力需求的增长和电网容量、风电市场发展趋势和潜在的增长率、与核电和大水电等其他电源技术发展历程的比较以及减排CO2等温室气体的要求,论证了风电达到世界电量12%的可能性。报告还指出中国2020年风电装机有可能达到1.7亿千瓦[6]、[7]。
4.2 国内风力发电的现状 根据国家气象科学院的估算[8],我国陆地地面10米高度层风能的理论可开发量为32亿kW,实际可开发量为2.53亿kW。海上风能可开发量是陆地风能储量的3倍。
内蒙古 实际可开发量 0.618亿kW 西藏 实际可开发量 0.408亿kW 新疆 实际可开发量 0.343亿kW 青海 实际可开发量 0.242亿kW 黑龙江 实际可开发量 0.172亿kW
2005年中国除台湾省外新增风电机组592台,装机容量50.3万kW。与2004年当年新增装机19.8万kW相比,2005年当年新增装机增长率为254%。
截至2005年底,中国除台湾省外累计风电机组1864台,装机容量126.6万kW,风电场62个。分布在15个省(市、自治区、特别行政区),它们按装机容量排序如表3所示。与2004年累计装机76.4万kW相比,2005年累计装机增长率为65.6%。2005年风电上网电量约15.3亿kW.h[9]。