地应力场研究
- 格式:ppt
- 大小:2.19 MB
- 文档页数:25
地应⼒及其分布规律地应⼒及其分布规律————————————————————————————————作者:————————————————————————————————⽇期:地应⼒及其分布规律1 、地应⼒的基本概念地应⼒是存在于地层中的未受⼯程扰动的天然应⼒,也称岩体初始应⼒、绝对应⼒或原岩应⼒。
⼴义上也指地球体内的应⼒。
它包括由地热﹑重⼒﹑地球⾃转速度变化及其他因素产⽣的应⼒。
地应⼒是各种岩⽯开挖⼯程变形和破坏的根本作⽤⼒;是确定⼯程岩体⼒学属性,进⾏围岩稳定性分析,实现开挖设计和决策科学化的必要前提条件。
此外地应⼒状态对地震预报、区域地壳稳定性评价、油⽥油井的稳定性、核废料储存、岩爆、煤和⽡斯突出的研究以及地球动⼒学的研究等也具有重要意义。
2、地应⼒的成因产⽣地应⼒的原因是⼗分复杂的,地应⼒的形成主要与地球的各种动⼒运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应⼒、地⼼引⼒、地球旋转、岩浆浸⼊和地壳⾮均匀扩容等。
另外,温度不均、⽔压梯度、地表剥蚀或其它物理化学变化等也可引起相应的应⼒场。
其中,构造应⼒场和⾃重应⼒场为现今地应⼒场的主要组成部分。
当前的地应⼒状态主要由最近的⼀次构造运动所控制,但也与历史上的构造运动有关。
由于亿万年来,地球经历了⽆数次⼤⼤⼩⼩的构造运动,各次构造运动的应⼒场也经过多次的叠加、牵引和改造,另外,地应⼒场还受到其他多种因素的影响,造成地应⼒状态的复杂性和多变性,地应⼒成因之⼀:地幔热对流(图1、图2)地应⼒成因之⼀:板块边界受压(图3)地应⼒成因之⼀:岩浆浸⼊(图4)3、地应⼒的影响因素地壳深层岩体地应⼒分布复杂多变,造成这种现象的根本原因在于地应⼒的多来源性和多因素影响,但主要还是由岩体⾃重、地质构造运动和剥蚀决定。
1)岩体⾃重的影响岩体应⼒的⼤⼩等于其上覆岩体⾃重,研究表明:在地球深部的岩体的地应⼒分布基本⼀致。
但在初始地应⼒的研究中⼈们发现,岩体初始应⼒场的形成因素众多,剥蚀作⽤难以合理考虑,在常规的反演分析中,通常只考虑岩体⾃重和地质构造运动2)地形地貌和剥蚀作⽤对地应⼒的影响地形地貌对地应⼒的影响是复杂的,剥蚀作⽤对地应⼒也有显著的影响,剥蚀前,岩体内存在⼀定数量的垂直应⼒和⽔平应⼒,剥蚀后,垂直应⼒降低较多,但有⼀部分来不及释放,仍保留⼀部分应⼒数量,⽽⽔平应⼒却释放很少,基本上保留为原来的应⼒数量,这就导致了岩体内部存在着⽐现有地层厚度所引起的⾃重应⼒还要⼤很多的应⼒数值。
地应力的测量原理目前地应力测量方法有很多种,根据测量原理可分为三大类:第一类是以测定岩体中的应变、变形为依据的力学法,如应力恢复法、应力解除法及水压致裂法等;第二类是以测量岩体中声发射、声波传播规律、电阻率或其他物理量的变化为依据的地球物理方法;第三类是根据地质构造和井下岩体破坏状况提供的信息确定应力方向。
其中,应力解除法与水压致裂法得到比较广泛的应用,其他几种只能作为辅助方法。
1.应力解除法测试原理和技术1.1应力解除法测试原理具有初始应力的岩体,用人为的方法卸去其应力,在岩体恢复变形的过程中测试其应变,然后用弹性力学理论计算出地应力的大小,得出其方向、倾角。
目前国内外地应力测量普遍采用空心包体应变计测量技术。
KX一81型空心包体应变计由A、B、C 3组共12枚应变片嵌埋在1个壁厚约3 mm的空心环氧树脂圆筒中间,圆筒外表面与钻孔壁用专用环氧树脂胶黏结在一起,其是在澳大利亚CSIRO空心包体应变计的基础上研制出来的,是套钻孔应力解除法的一种,只需1个孔就能测量出某点的三维原岩应力,具有使用方便、安装操作简单、成本低、效率高等优点。
1.2完全温度补偿技术KX一81型空心包体应变计与其他许多应变测量仪器一样,均采用应变计作为敏感元件,并根据惠斯顿电桥的原理13J,将应变的变化转换成电压变化经放大后记录下来。
电阻应变计对温度变化是很敏感的,温度发生变化时应变计的电阻值将发生变化,从而产生虚假的附加应变值。
因此在现场测试中必须采取温度补偿措施。
惠斯顿电桥原理:平衡时,检流计所在支路电流为零,则有,(1)流过R1和R3的电流相同(记作I1),流过R2和R4的电流相同(记作I2)。
(2)B,D两点电位相等,即UB=UD。
因而有I1R1=I2R2;个阻值已知,便可求得第四个电阻。
测量时,选择适当的电阻作为R1和R2,用一个可变电阻作为R3,令被测电阻充当R4,调节R3使电桥平衡,而且可利用高灵敏度的检流计来测零,故用电桥测电阻比用欧姆表精确。
地应力基本概念及测量方法应力等因素导致岩体具有初始地应力(或简称地应力)是最具有特色的性质之一。
就岩体工程而言,如不考虑岩体地应力这一要素,就难以进行合理的分析和得出符合实际的结论。
岩体应力天然应力是指未经人为扰动的,主要是在重力场和构造应力场的综合作用下,有时也在岩体的物理、化学变化及岩浆侵入等的作用下所形成的应力状态,称为岩体天然应力或岩体初始应力,有时也称为地应力。
天然应力构成:岩体自重自重应力构造运动构造应力流体作用静水压力梯度,渗流应力其他(低温、地球化学作用)地壳岩体的天然应力状态与人类的工程活动关系极大,它不仅是决定区域稳定性的重要因素,而且往往对各类建筑物的设计和施工造成直接的影响。
比如,地下空间的开挖必然使围岩应力场和变形场重新分布并引起围岩损伤,严重时导致失稳、垮塌和破坏。
这都是由于在具有初始地应力场的岩体中进行开挖所致,因为这种开挖荷载通常是地下工程问题中的重要荷载。
由此可见,如何测定和评估岩体的地应力,如何合理模拟工程区域的初始地应力场以及正确和合理地计算工程问题中的开挖荷载,是岩石力学与工程问题中不可回避的重要问题。
已有的研究和工程实践表明,浅部地壳应力分布主要有如下的一些基本规律:地应力是一个具有相对稳定性的非稳定应力场,它是时间和空间的函数。
实测垂直应力基本等于上覆岩层的重量。
水平应力普遍大于垂直应力。
平均水平应力与垂直应力的比值随深度增加而减小,但在不同地区,变化的速度很不相同。
最大水平主应力和最小水平主应力也随深度呈线性增长关系。
最大水平主应力和最小水平主应力之值一般相差较大,显示出很强的方向性。
地应力的上述分布规律还会受到地形、地表剥蚀、风化、岩体结构特征、岩体力学性质、温度、地下水等因素的影响,特别是地形和断层的扰动影响最大。
高应力区实践表明,在高应力区,地表、地下工程施工期间所进行的岩体开挖工作,往往能在岩体内引起一系列与卸荷回弹和应力释放相联系的变形和破坏现象,其结果是不仅会恶化地基或边坡岩体的工程地质条件,而且作用的本身有时也会对建筑物造成直接的危害。
地应力知识简介地应力是存在于地层中的未受工程扰动的天然应力,也称岩体初始应力、绝对应力或原岩应力。
随着水利水电、矿山、交通与城建等边坡、洞室及深基坑等事故的明显增加从而使人们对地应力引起较为广泛的注意与重视,所以,地应力研究不但具有重要的实际意义,而且具有重要的理论意义。
一地应力的成因产生地应力的原因是十分复杂的,也是至今尚不十分清楚的问题。
30多年来的实测和理论分析表明,地应力形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。
另外,温度不均、水压梯度、地表剥蚀或其它物理化学等也可引起相应的应力场,其中,构造应力场和重力应力场是现今地应力场的主要组成部分。
1大陆板块边界受压引起的应力场以中国大陆板块为例,由于受到印度板块和太平洋板块的推挤,推挤速度为每年数厘米,同时受到西伯利亚板块和菲律宾板块的约束。
在这样的边界条件下,包括发生变形,产生水平受压应力场。
2地幔热对流引起的应力场由硅镁质组成的地幔因温度很高,具有可塑性,并可以上下对流和蠕动。
地幔热对流引起地壳下面的水平切向应力,在亚洲形成由孟加拉湾一直延伸到贝加尔湖的最低重力槽。
3由地心引力引起的应力场(也称为重力场)重力场,是各种应力场中唯一能够计算的应力场。
重力应力为垂直方向应力,是地壳中所有各点垂直应力的主要组成部分,但是垂直应力一般并不完全等于自重应力,因为板块移动、岩浆对流和侵入、岩体非均匀扩容、温度不均和水压梯度均会引起垂直方向应力变化。
4岩浆侵入引起的应力场岩浆侵入挤压、冷凝收缩和成岩,均在周围底层中产生相应的应力场,其过程也是相当复杂。
熔融状态的岩浆处于静水压力状态,对其周围施加的是各个方向相等均匀压力,但是热的岩浆侵入后逐渐冷凝收缩,并从接触面界面逐渐向内部发展,不同的热膨胀系数及热力学过程会使侵入岩浆自身及其周围岩体应力产生复杂的变化过程。
岩浆侵入引起的应力场是一种局部应力场。
地应力分类关于地应力的分类与研究方法的思考地应力,作为地壳岩石中的应力存在,根据其诱发因素的差异,可划分为构造应力、非构造应力和残余应力三大类别。
一、构造应力构造应力是引发构造运动、产生构造应变以及形成各类构造形迹的地应力。
对于构造应力的生成,地质学界的各大学派持有不同的观点。
例如,板块学说认为,软流层的对流驱使板块进行水平运动,从而在地壳中形成水平构造应力。
地质力学则认为,地球角速度的变化(即地球自转速度的快慢变化)导致地壳发生水平方向运动及垂直运动,因此以水平应力为主,垂直应力次之。
这一观点已被地应力测量结果所证实。
构造应力还可以被划分为现今构造应力和古构造应力。
现今构造应力,也称为活动构造应力,是引发现今正在形成的某些构造形迹,从而导致当前地震和最新地壳变动的应力。
它是全球地应力研究的主要对象。
研究现今构造应力的主要方法包括地应力测量、地形变测量以及与地应力活动相关的地球物理场(如地电、地磁等)的观测等。
地应力测量(包括应力解除法、应力半解除法、声波法、水力压裂法等)是当前各国最常用的有效手段,它能准确且迅速地测出构造应力。
地形变测量则是以构造应力引发的地壳形变为依据,尽管这种形变表现得十分缓慢,但只要经过长时间的精密测量,就可以判断出正在活动的构造应力。
例如,日本通过近六十年间全国三角点的水平变位,计算出各地的平均主应变,确定了构造应力状态,并在活动断层两侧观测其相对运动。
目前,我国已广泛采用地形变测量作为监测地震的手段之一。
研究现今构造应力不仅能为地震预报和工程地质等领域提供科学依据,同时在研究地壳运动方面也具有重要意义。
古构造应力是指地质时期作用于地壳岩石的构造应力。
地壳自形成以来,经历了漫长的地质时期,古构造应力的变化过程复杂,它的形成过程并非一成不变。
有时地应力分布均衡,地壳相对稳定;有时地应力平衡破坏,非均匀应变导致地壳的运动和变形,从而形成地史上的构造运动。
岩石越古老,经历的构造运动越多,所受古构造应力也越复杂。
简述地应力场反演的流程。
地应力场反演是一种重要的地质研究工具,它可以用来研究区域内的地质构造、深部地质运动及表面地貌的变化。
与其他的深部研究工具相比,地应力场反演的优势主要在于它可以模拟各种不同的地质背景下的地应力场,为地质结构解释提供有价值的结论。
地应力场反演的流程主要是利用一些基本的地球物理学理论并结合相关的实验数据,从而推测出区域内的地应力场情况。
首先,通过收集实验数据,包括诸如地震、重力、地热等等,为地应力场反演提供必要的外部信息。
其次,收集地质界面的位移数据,反映地下的地质构造及深部构造的变化。
第三步,利用坐标系变换方法,将收集的数据从地球坐标系转换到陆地坐标系,以便于进行后续的研究。
第四步,将地震反射地质层位转换为水平速度模型,并用于地应力场反演计算。
第五步,通过把地质界面的位移分析与垂直速度模型相匹配,建立地应力场模型。
经过上述步骤,可以推测出某一区域的地应力场情况。
地应力场反演计算的步骤还包括计算地震反射波速度模型、建立地下介质的密度模型、构建结构的拓扑图等。
根据地下的介质结构及其拓扑图,可以推测出某段区域的地应力场的数值模型,这样就可以推测出区域内的地应力场情况了。
地应力场反演的结果可以用来帮助地质学家分析出区域内的地质构造及深部运动及表面地貌的变化。
例如,地应力场反演结果可以用作研究地震波在岩石中的传播机制中的参考,从而更好地了解地震学的一些基本知识。
另外,地应力场反演的结果还可以用来预测某一区域构造上可能出现的断层活动,以便及时采取预防措施,防止可能发生的地质灾害。
总之,地应力场反演是一种重要的地质研究工具,它与其他深部研究工具相比具有独特的优势,可以用来研究区域内的地质构造、深部运动及表面地貌的变化。
它的流程主要是通过收集实验数据进行数据转换、构建水平速度模型及建立地应力场模型,从而推测出某一区域的地应力场情况。
的结果可以用来帮助分析出区域内的地质构造及深部运动及表面地貌的变化,也可以预测可能出现的断层活动,以便及时采取预防措施,防止可能发生的地质灾害。
地应力及其分布规律————————————————————————————————作者:————————————————————————————————日期:ﻩ地应力及其分布规律1 、地应力的基本概念地应力是存在于地层中的未受工程扰动的天然应力,也称岩体初始应力、绝对应力或原岩应力。
广义上也指地球体内的应力。
它包括由地热﹑重力﹑地球自转速度变化及其他因素产生的应力。
地应力是各种岩石开挖工程变形和破坏的根本作用力;是确定工程岩体力学属性,进行围岩稳定性分析,实现开挖设计和决策科学化的必要前提条件。
此外地应力状态对地震预报、区域地壳稳定性评价、油田油井的稳定性、核废料储存、岩爆、煤和瓦斯突出的研究以及地球动力学的研究等也具有重要意义。
2、地应力的成因产生地应力的原因是十分复杂的,地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆浸入和地壳非均匀扩容等。
另外,温度不均、水压梯度、地表剥蚀或其它物理化学变化等也可引起相应的应力场。
其中,构造应力场和自重应力场为现今地应力场的主要组成部分。
当前的地应力状态主要由最近的一次构造运动所控制,但也与历史上的构造运动有关。
由于亿万年来,地球经历了无数次大大小小的构造运动,各次构造运动的应力场也经过多次的叠加、牵引和改造,另外,地应力场还受到其他多种因素的影响,造成地应力状态的复杂性和多变性,地应力成因之一:地幔热对流(图1、图2)地应力成因之一:板块边界受压(图3)地应力成因之一:岩浆浸入(图4)3、地应力的影响因素地壳深层岩体地应力分布复杂多变,造成这种现象的根本原因在于地应力的多来源性和多因素影响,但主要还是由岩体自重、地质构造运动和剥蚀决定。
1)岩体自重的影响岩体应力的大小等于其上覆岩体自重,研究表明:在地球深部的岩体的地应力分布基本一致。
但在初始地应力的研究中人们发现,岩体初始应力场的形成因素众多,剥蚀作用难以合理考虑,在常规的反演分析中,通常只考虑岩体自重和地质构造运动2)地形地貌和剥蚀作用对地应力的影响地形地貌对地应力的影响是复杂的,剥蚀作用对地应力也有显著的影响,剥蚀前,岩体内存在一定数量的垂直应力和水平应力,剥蚀后,垂直应力降低较多,但有一部分来不及释放,仍保留一部分应力数量,而水平应力却释放很少,基本上保留为原来的应力数量,这就导致了岩体内部存在着比现有地层厚度所引起的自重应力还要大很多的应力数值。
图1三轴渗透仪实验装置示意图0引言煤储层是复杂的空隙、裂隙多孔介质结构,其渗透率是反映煤层中的气、水等流体渗透性能的重要参数,决定着煤层气的运移和产生。煤储层渗透性能主要是由裂隙网络提供的,相互连通的裂隙网络构成了煤层气流动的通道。多年来的大量研究表明:煤储层渗透率与地应力、地温、地电场、瓦斯压力、吸附性、煤级以及煤的含水率等因素有密切关系,并且煤的不均匀性和各向异性在渗透性能方面表现显著。我国学者[1-3]大多研究了单一因素对渗透率的影响,很少综合考虑这两种因素的共同作用。文中以贵州玉舍煤矿1号煤层煤样为研究对象,初步探讨了平均有效应力和温度对型煤的综合作用,结果为贵州瓦斯灾害防治和煤层气的利用提供了理论依据。
1实验设备此实验采用自主研发的的三轴渗透仪装置,其
主要组成部分见图1。2实验方案进行了不同平均有效应力及不同温度条件下的实验。在三轴渗流实验中,为确保煤样不被破坏,应严格控制轴压>围压>瓦斯压力。2.1恒平均有效应力变温度的瓦斯渗透实验方案
恒定平均有效应力为2,4,6MPa,测定各有效应力条件下温度为25,35,45,55,65℃时煤样渗透率,进口压力为0.6MPa,出口压力为大气压。2.2恒温变平均有效应力的瓦斯渗透实验方案
恒定温度为30,50,70℃,测定各温度条件下平均有效应力为1,3,5,7,9MPa时煤样渗透率,进口
收稿日期:2012-08-14;修订日期:2012-10-20基金项目:贵州省科技厅国际合作项目(黔科外G〔2010〕7008号);重庆大学西南资源开发及环境灾害控制工程教育部重点实验室访问学者基金;贵州大学矿业学院研究生创新基金项目(201107);贵州省科技厅社会发展攻关项目(黔科合SZ字[2009]3032)作者简介:王珍(1985-),女,贵州道真人,硕士,现在贵州职业技术学院从事教学工作。
第32卷第2期2013年2期煤炭技术CoalTechnologyVol.32,No.02February,2013