不同构造部位地应力对压裂裂缝形态的控制
- 格式:pdf
- 大小:987.55 KB
- 文档页数:4
地应力的测井计算与标定方法赵军;杨福林【摘要】随着油气勘探开发的不断深入,地下油气储层的地应力分析也越来越受到重视.在油气勘探开发的过程中,诸如油气的运移、钻井过程中井壁的稳定性、采油过程的出砂、注水开发中的井网布置与调整、储层裂缝的发育状况等均与地应力有十分密切的关系.测井资料具有数据丰富、成本低、数据连续的优点,通过优选适当的模型,可以利用测井资料计算岩石的地应力大小.在利用测井资料计算地应力的基础上,根据Kaiser实验及现场水力压裂资料对计算的水平最大、最小主应力进行标定,建立了标定后的地应力计算模型.通过实际资料的计算与检验,证明了经刻度后的地应力模型更能真实反映实际地应力大小.【期刊名称】《科学技术与工程》【年(卷),期】2015(015)017【总页数】5页(P42-46)【关键词】地应力;标定;测井;水力压裂;Kaiser实验【作者】赵军;杨福林【作者单位】西南石油大学地球科学与技术学院,成都610500;西南石油大学地球科学与技术学院,成都610500【正文语种】中文【中图分类】TE151目前地应力的获取方法主要有水力压裂法[1—3]、岩石声发射Kaiser效应法[4—7]、测井资料计算法[8,9]等。
利用水力压裂资料确定地应力的方法是目前现场确定地应力最直接、最可靠的方法之一;岩石声发射资料计算地应力的方法是目前实验室确定地应力的重要方法[4]。
这两种方法获取的地应力数值比较准确,能够反映地层的真实地应力大小:但这两种方法在实际地应力求取中存在共同的局限性,即不能得到全井段连续的地应力剖面且测试成本高、耗时长。
测井具有测量深度大、成本低、测量数据连续的特点,因而采用此方法能够得到随深度连续变化的地应力剖面;但是这种间接的计算方法获得的地应力与实际的地应力值相比误差较大精度偏低[8]。
综合分析此三种方法各自的优缺点,提出在利用测井资料计算地应力基础上采用Kaiser实验数据及水力压裂获得的地应力值对其进行标定,提高测井资料计算地应力的精度以满足实际应用的需要。
试分析大庆油田压裂裂缝形态与特征大庆油田是中国最大的陆上油田,其开发历史悠久,技术实力雄厚。
在大庆油田的开发过程中,压裂技术一直是常用的增产手段之一。
通过对大庆油田压裂裂缝形态与特征的分析,可以更好地理解大庆油田的地质特征以及优化压裂工艺。
一、大庆油田概况大庆油田位于东北地区,其属于典型的复杂构造地质油田,油气藏类型多样,地质构造复杂。
在大庆油田的开发过程中,压裂技术一直是常用的增产手段之一。
压裂是指通过液压作用将一定流体体积(压裂液)输送到井下,使井下地层产生人工裂缝,从而提高油气的开采率。
二、压裂裂缝形态分析1. 裂缝形态大庆油田的油藏储层主要以块状碳酸盐岩储层为主,裂缝的形态多样,包括水平裂缝、垂直裂缝、斜交裂缝等。
水平裂缝是指在地层中形成的水平走向的裂缝,通常是在地层受到压力作用下形成;垂直裂缝是指在地层中形成的垂直走向的裂缝,通常是地层受到拉张作用形成;斜交裂缝是指在地层中形成的斜向走向的裂缝,通常是地层同时受到拉张和压缩作用形成。
2. 裂缝特征大庆油田的储层岩性复杂,对井下压裂的精细裂缝形态要求较高。
根据实际井下资料分析,大庆油田的压裂裂缝呈现出以下特征:(1)裂缝分布广泛:在大庆油田的裂缝形态分析中发现,裂缝分布广泛,裂缝密度高。
这对于压裂技术来说具有挑战性,需要选择合适的压裂液和压裂工艺。
(2)裂缝长度短:大庆油田的裂缝长度较短,通常在数米到数十米之间。
这对于压裂工艺来说需要有针对性的设计,以保证裂缝的有效传导性和压裂效果。
(3)裂缝宽度不均:大庆油田的裂缝宽度不均,通常在井下压裂中存在部分裂缝宽度较大,部分裂缝宽度较小的情况。
这对于压裂液的选择和压裂工艺的设计提出了挑战。
1. 压裂液的选择针对大庆油田压裂裂缝的特征和形态,选择合适的压裂液对于压裂效果具有决定性作用。
大庆油田的压裂裂缝宽度不均,需要选择具有较好渗透性和压裂效果的压裂液,提高裂缝宽度的均匀性和稳定性。
2. 压裂工艺的优化针对大庆油田裂缝的形态和特征,需要对压裂工艺进行优化。
压裂的质量控制措施1、压裂质量控制目标、技术指标(1)生产时效:95%;(2)设备完好率:97%;(3)工程质量全优率:99. 5%;(4)施工一次合格率:100%;(5)资料全准率:99. 7%;(6)单项资料合格率:96. 0%;(7)单项资料全优率:96. 0%o(8) HSE目标管理100%o2、影响压裂施工质量因素1.1施工工艺因素采用下封隔器压裂工艺,一是为了保护油层套管,二是为了分层改造,三是既护套又分压。
其有利亦有弊,如果封隔器在井下出现问题,就会影响压裂效果。
2.2压裂液因素黏度高、流动性好、抗剪切而摩阻损失小、滤失小而携砂能力强的压裂液是决定压裂成败的关键。
2.3操作及设备因素压裂成功需要完好的设备条件和良好的操作素质来支持。
如果在施工中指挥控制仪表和线路出现问题,或混砂车、大泵车出现故障,就无法顺利的完成压裂施工。
3.4地层及地质因素地层和地质的物性是大自然所固有的客观因素,是人无法改变的客观事实。
要改造它首先要适应它。
4.5井内管柱因素压裂施工是高压作业,其所用的工具、用具、设施、配件等的质量是至关重要的。
压裂井口又是高压施工中的危险部位,其井口的“升高短节”更是最薄弱环节,它是采油树与井筒连接的“咽喉要道:2、压裂施工现场质量规范5.1车辆摆放a、按顺序进入井场,避免在井场内发生冲突,做到准确快速摆放。
b、混砂车的摆放要考虑加砂车的停放和混砂车进排出管线的连接。
c、仪表车的摆放要考虑对井口及施工场地的观察。
6.2压裂液和支撑剂的检查a、施工前压裂队要准确测量压裂液总量,并做好记录。
b、压裂液配制是否均匀,有无结块和漂浮物,并作记录。
c、压裂队负责目测检查压裂液、支撑剂量和类型,并作记录,同时观察支撑剂是否有杂质,是否潮湿或有结块。
如果有不合格应请示有关领导,并有指示记录。
7.3井口及施工管柱的检查a、施工前压裂队要查看井口类型,检查升高短节,绷绳及大螺栓是否上齐上紧,阀门是否齐全,开关灵活。
地应力对垂直裂缝高度的影响及缝高控制技术研究摘要:地应力是影响垂直裂缝高度最重要的因素,理想的裂缝高度等于目的层的厚度,裂缝在垂向上过度延伸会带来很多不利影响。
在前人研究的基础上,总结了地应力与裂缝高度的关系、裂缝垂向过度延伸的影响、裂缝高度控制工艺技术,对压裂设计和现场施工具有一定的指导意义。
关键词:水力压裂;地应力;裂缝高度;缝高控制压裂自上世纪五十年代首次实施以来,在油气田勘探和开发过程中被广泛使用并日益发挥重要的作用。
压裂的目的是在地层中形成一条具有一定几何形态和导流能力的裂缝。
裂缝在地层中的张开与扩展主要受地应力场、流体场和温度场的控制。
地应力场对裂缝的形成和形态的影响尤为显著。
对于压裂改造形成垂直裂缝的井而言,人们希望裂缝高度能够控制在油气层内。
长期实践中发现,很多时候裂缝都会穿过目的层而进入邻近的隔层内。
影响裂缝高度的诸多因素中,地应力的影响尤为显著。
因此,深入研究地应力的分布、地应力对裂缝高度的影响和裂缝高度控制工艺技术有十分重要的意义。
一、地应力概述及分布规律1.地层应力及分布在地层中造缝,形成裂缝的条件与地应力及其分布、岩石的力学性质、压裂液的性质及注入方式等密切相关。
一般情况下,地下岩石由于埋藏在地下深处,所以承受着很厚的上覆岩层的重力,而且又受到邻近岩石的挤压,地层中的岩石处于压应力状态,作用在地下岩石某单元体上的应力为垂向主应力,及水平主应力,(如图1所示)。
垂向主应力即该深度以上覆盖地层所形成的压力,用以下公式计算:= gH式中—上覆岩层平均相对密度,g/cm3;g——重力加速度,m/s2;H——油层深度,m 。
水平应力一部分是由垂向应力诱导产生,如果水平应力仅由垂向应力诱导产生,那么在各个方向上应该相同。
水平应力的另一来源是构造应力,由于受构造运动等方面的影响,两个水平应力一般并不相等,根据其大小分别称为最大水平主应力和最小水平主应力。
埋藏在地下深处的岩石,具有弹性与脆性。
储层天然裂缝与压裂裂缝关系分析李玉喜 肖淑梅(大庆石油学院经管系) (大庆职工大学) 摘要 方法 运用构造物理分析方法,论述了储层中天然裂缝与压裂裂缝之间的关系。
目的 确定天然裂缝对人工压裂裂缝的影响。
结果 储层中不同天然裂缝组合及其与最大主应力间的相对方位,决定了压裂裂缝的方位和裂缝宽度等空间分布规律。
结论 天然裂缝在压裂时活动与否,主要取决于地应力差、岩石和天然裂缝的抗张强度及裂缝与最大主应力方向间的夹角等因素;在压裂造缝时要充分考虑现今应力场特征、岩石和天然裂缝的力学特征及其组合规律。
主题词 低渗透储集层 天然裂缝 压裂裂缝 抗张强度 地应力 分析引 言人工压裂造缝是提高低渗透油田产油率的重要手段之一。
在储层为均质体时,压裂裂缝的方向、形态受现今地应力场的特征控制[1]。
当储层有天然裂缝存在时,天然裂缝的抗张强度很低或为零,使得岩石的均一性受到破坏,这必然影响到压裂裂缝的产出特征。
本文在对裂缝性岩石压裂时一般破裂规律分析的基础上,阐述了储层中不同天然裂缝组合对压裂裂缝特征的影响。
裂缝性岩石压裂时一般破裂规律分析当岩石为均质体时(无限大平板),在与井壁平行(a=r,θ=0时)的最大主应力方向上,破裂压力与局部地应力、孔隙液压、岩石抗张强度等参数间的关系式为[1,2]:P f=3σ3-σ1-P p+S R(1)其中 a———井孔半径,m;P f———破裂压力,M Pa;P p———油层孔隙压力,M Pa;r———距井孔中心距离,m;S R———岩石抗张强度,M Pa;θ———任意径向方向与最大主应力间夹角; σ1、σ3———最大、最小主应力,M Pa。
在距井孔中心距离大于10a时,应力基本恢复为原地应力值[3]。
即井孔周围的应力异常只存在于井孔周围几米范围之内。
若远离井孔,在不考虑压裂液渗流所引起的应力改变且岩石为均质体时,则压裂裂缝延伸时主要受原地应力状态和地层的抗拉强度控制,并沿最大主应力方向延伸。