硫回收工艺讲解
- 格式:ppt
- 大小:2.09 MB
- 文档页数:17
硫回收操作法试行目录1.0简介2.0工艺描述2.1 工艺流程描述2.2 公用工程系统3.0操作与控制说明3.1 催化剂处理3.1.1 克劳斯催化剂活化3.1.2 超优克劳斯催化剂3.1.3 超级克劳斯催化剂3.2 正常操作3.2.1 操作变量与控制3.2.2 硫锁斗的堵塞3.2.3 考虑要点3.3 工艺控制,报警和安全保障系统3.4 温度失控3.4.1 克劳斯反应器内部着火3.4.2 超级克劳斯反应器内温度失控3.4.3 液硫槽中着火4.0试车4.1 简介4.2 废热锅炉和冷凝器的清扫4.2.1 废热锅炉/克劳斯冷凝器4.2.2 超级克劳斯冷凝器4.3 公用工程与仪表系统的试车4.4 燃料气引入与干燥4.4.1 引入4.4.2 简化轮廓图4.4.3 详细轮廓4.5 装填催化剂5.0原始开车5.1 装填催化剂后的升温5.2 引入原料气以前的准备工作5.3 引入原料气5.4 超级克劳斯投入使用5.5 液硫槽开车6.0停车6.1 概述6.2 短期停车步骤 (热备用)6.3 长期停车步骤(全面停车))6.4 液硫槽停止运行6.5 自动停车(跳车)6.6 自动停车 (跳车) 后的再次启动6.6.1 装置已经过升温而且硫磺在设备中时的再次启动6.6.2 装置为冷态而且硫碘在设备中时的再次启动6.6.3 硫磺不在设备中时的再次启动7.0安全S 监测设备7.1 环境 H27.2 特殊安全措施和工业卫生7.3 急救措施7.4 毒性数据S的生理影响7.4.1 H2的生理影响7.4.2 SO2S 的性质与毒性影响7.4.3 H2性质与毒性影响7.4.4 SO27.4.5 硫粉尘7.5 着火与爆炸数据8.0故障排除8.1 简介8.2 工艺问题8.2.1 概述8.2.2 烧嘴 & 燃烧室8.2.3 反应段8.2.4 焚烧炉8.2.5 液硫槽8.2.6 低硫回收8.2.7 压力降8.2.8 堵塞8.2.9 温度失控8.3 机械问题8.3.1 运行问题8.3.2 点火器8.3.3 锅炉或冷凝器泄漏8.3.4 耐火材料8.3.5 波动与携带的碳氢化合物8.3.6 腐蚀8.4 硫回收装置运行时的关键区域9.0维护9.1 设备9.1.1 洗涤器/气液分离罐9.1.2 预热器&再热器9.1.3 烧嘴9.1.4 燃烧室9.1.5 废热锅炉9.1.6 硫冷凝器9.1.7 反应器9.1.8 硫聚结器9.1.9 焚烧炉9.1.10 硫锁斗9.1.11 液硫槽9.1.12 液硫槽中的蒸汽盘管9.1.13 运行设备9.1.14 管道与阀门9.1.15 分析仪10.0附录:安全数据表1. 简介硫回收装置的设计目的是为了处理来自煤基化工装置的酸性废气。
硫磺回收工艺硫磺回收装置包括硫磺回收、尾气处理、尾气焚烧、液硫脱气和液硫成型五个部分,处理溶剂再生和酸性水汽提来的酸性气。
1、制硫部分自酸性水汽提及溶剂再生装置来的酸性气经酸性气分液罐分液后进入酸性气燃烧炉。
酸性气分液罐排出的酸性液,自流至酸性液压送罐,经酸性水泵送到装置外(酸性水汽提装置)处理。
在炉内,根据制硫反应需氧量,通过比值调节严格控制进炉空气量,使进炉酸性气中的H2S约有65%直接生成元素硫,过程气经制硫余热锅炉发生1.2MPa(g)蒸汽回收余热,再经一级冷凝器发生0.4MPa低压蒸汽,同时将过程气中的元素硫冷凝为液态并分出进入液硫池。
根据反应温度要求,一级冷凝器后的过程气与制硫燃烧炉后的高温气流通过高温掺合阀,按要求混合后进入一级转化器,在催化剂的作用下,过程气中的H2S和SO2进一步转化为元素硫,自一转出来的高温过程气进入过程气换热器,与自二冷出来的过程气换热后,再进入二级冷凝器,过程气经二级冷凝器发生0.4MPa蒸汽并使元素硫凝为液态,液硫捕集分离后进入液硫池;由二级冷凝器出来的过程气再经过程气换热器加热后进入二级转化器,使过程气中剩余的H2S和SO2进一步发生催化转化,二转出口过程气经三级冷凝器发生0.4MPa蒸汽并使元素硫凝为液态,液硫被捕集分离进入液硫池,尾气经尾气分液罐分液后进入尾气处理部分。
液硫池的液硫,经脱气处理,液硫中的有毒气体被分出,送至尾气焚烧炉焚烧。
脱气后的液硫用泵送至液硫成型或至液硫装车。
2、尾气处理部分以焦化干气作燃料,在还原炉的燃烧室内进行次化学当量燃烧,产生还原性气体(H2、CO),自制硫尾气分液罐出来的制硫尾气,与该还原气在混合室内混合,被加热到300℃左右进入加氢反应器,在加氢催化剂的作用下进行加氢水解反应,将SO2、S X、CS2、COS等还原为H2S。
从尾气加氢反应器出来的气流经蒸汽发生器发生0.4MPa蒸汽回收热量后进入尾气急冷塔,与急冷水直接接触降温。
硫回收工艺流程
《硫回收工艺流程》
硫是一种重要的化工原料,但在其生产过程中产生的废气和废水中含有大量的硫化物,传统上被视为污染物处理。
然而,随着环保意识的提高,越来越多的企业开始关注硫的回收利用,以减少对环境的影响并实现资源的可持续利用。
硫回收工艺流程是将工业废气和废水中的硫化物提取出来并转化为有用的化工产品的技术过程。
其主要步骤包括废气和废水的处理、硫化物的提取和硫的转化。
首先,废气和废水中的硫化物需要经过处理,以去除其中的杂质和污染物。
接着,通过化学反应或者生物酶的作用,将硫化物从废水中提取出来,并进行纯化和浓缩。
最后,经过一系列的化工反应和分离过程,将提取出来的硫化物转化为硫磺或者其他硫化合物,实现硫的回收和再利用。
硫回收工艺流程不仅可以减少工业废气和废水对环境的污染,还可以将硫化物转化为有用的化工产品,实现资源的再生利用。
此外,这一技术的应用还可以降低企业的生产成本,并提升其在可持续发展领域的竞争力。
总之,硫回收工艺流程具有重要的环保和经济意义,对于推动企业的可持续发展和促进资源的可持续利用具有重要的意义。
相信随着科技的不断进步和环保意识的提高,硫回收工艺流程将在化工生产中得到更广泛的应用。
焦炉煤气脱硫及硫回收工艺分析焦炉煤气脱硫工艺中常用的方法有吸收法、催化氧化法和膜法等。
其中,吸收法是一种较常用的脱硫技术,其主要原理是通过将煤气经过吸收液(如碱液或氨液)进行接触,使H2S被吸收并转化为硫化物,从而达到脱硫的目的。
催化氧化法则是利用催化剂将H2S氧化为硫,达到脱硫的效果。
膜法则是通过膜的选择性透过性,将H2S从煤气中分离出来,实现脱硫。
吸收法中较为常用的是碱液吸收法。
碱液吸收法的优点是操作简单、脱硫效果较好,但对于含有高浓度的H2S的煤气来说,在吸收液中可能会生成大量的硫化物,导致液氨浴中硫化物过多,降低硫吸收效果。
为解决这一问题,可以通过加入硝酸铁和硝酸铝等添加剂,改善液氨浴的性质,提高脱硫效果。
催化氧化法主要是通过催化剂(如氧化铁、氧化锌等)将H2S氧化为硫,其中反应产物为SO2、在焦炉煤气中,SO2含量较高,通过反应器中催化剂的作用,可以将H2S和SO2相互转化,使SO2被还原为硫,并回收利用。
这种方法适用于H2S含量较高的煤气,可以有效地将H2S转化为有价值的硫。
膜法则是利用特定的膜材料,通过选择性透过性将煤气中的H2S分离出来。
膜法具有操作简单、能耗低、脱硫效果好等优点,但因为膜材料对不同的气体有不同的透过性,所以需要选择合适的膜材料来实现脱硫。
在焦炉煤气脱硫的基础上,硫回收技术可以有效地利用焦炉煤气中的硫资源。
目前常用的硫回收技术有硫磺回收、硫纵向深度利用和硫脱硫液回收等。
硫磺回收是将焦化炉煤气中的SO2和氢气反应生成硫磺,然后收集硫磺进行回收利用。
硫纵向深度利用是将硫经过高温和高压加工,制成硫酸、硫酸铵和硫化铵等化工产品。
硫脱硫液回收则是利用含氢气的溶液将气中的硫含量吸收,生成硫酸铵和硫化铵等化学品。
综上所述,焦炉煤气脱硫及硫回收工艺分析主要包括吸收法、催化氧化法和膜法等不同的脱硫工艺。
根据不同的情况,可以选择适合的工艺来降低煤气中的硫含量,并对焦炉煤气中的硫进行回收利用,以实现资源的可持续利用。
克劳斯法硫磺回收工艺技术现状及发展趋势克劳斯法硫磺回收工艺技术是一种基于烟气脱硝过程中产生的氨气和二氧化硫反应,将二氧化硫转化为硫磺的环保技术。
该技术能够有效地减少二氧化硫排放,同时实现对硫磺的回收利用,具有经济性和环保性的双重优势。
本文将介绍该技术的现状及发展趋势。
一、技术原理克劳斯法硫磺回收工艺技术的原理是将烟气中的氨气通过与二氧化硫反应,生成硫磺和水。
反应产物的固体硫磺可以收集进行后续利用,而水则通过水处理工艺排放。
该技术的反应原理如下:2NH3 + 3SO2 → 2NS + 3H2O此反应中,氨气是还原剂,二氧化硫则是氧化剂,二者在适当的温度和催化剂存在的情况下,会发生反应生成硫磺和水。
该反应的温度范围一般在200-280℃之间,催化剂一般是金属催化剂,例如铝、铜、钯等。
二、技术现状目前,克劳斯法硫磺回收工艺技术已经在一些国家被广泛应用。
在中国,该技术也已经在一些大型污染源进行了应用和推广。
以煤电行业为例,河北、山东等地的一些电厂已经成功采用该技术进行烟气治理和硫磺回收。
此外,该技术在钢铁、石化、印染和纸浆等行业也有一定的应用和研究。
三、发展趋势1.技术改进和提升随着技术的不断发展,克劳斯法硫磺回收工艺技术也不断进行改进和提升。
例如,研究人员正在研究利用新型催化剂和增加反应温度对该技术进行改进,以提高硫磺回收率和降低催化剂使用量。
2.开发应用范围克劳斯法硫磺回收工艺技术不仅可以应用于煤电、石化、钢铁等行业,还可以应用于废气处理和工业锅炉烟气处理等领域。
此外,该技术可以和其他技术进行联合应用,例如与湿法脱硫技术结合,以进一步提高治理效果。
3.扩大市场需求四、结论克劳斯法硫磺回收工艺技术是一种环保技术,可以有效减少二氧化硫排放,实现硫磺的回收和利用。
目前该技术已经在一些国家和地区得到应用和推广,并且未来还有很大的发展空间。
随着人们对环保技术需求的不断增加,克劳斯法硫磺回收工艺技术将会更加广泛地应用于各个行业和领域。
克劳斯法回收硫工艺原理克劳斯法回收硫的基本反应如下:H2S+1/2O2→S+H2O (1)H2S+3/2O2→SO2+H2O (2)2H2S+SO2→3S+2H2O (3)反应(1)(2)在燃烧室中进行,在温度1150℃-1300℃,压力0.06MPa和严格控制气量的条件下,将硫化氢燃烧成二氧化硫,为催化反应提供(H2S+CS2)/SO2为2/1的混合气体。
此气体通过AL2O3基触媒,按反应(3)生成单质硫。
2.2流程叙述来自上游甲醇洗工序的酸性气温度为37.2℃,压力为0.22MPaG,经进料管分离罐(V1301)分出挟带液后,按一定比例分成两股,其中一股去H2S燃烧炉(F1301)。
该流股经过控制阀后压力降为0.06 MPaG进入H2S燃烧炉(F1301),在H2S燃烧炉(F1301)中,酸性气和一定比例的反应空气发生燃烧反应,反应生成SO2的和燃烧反应剩余的H2S进一步发生部分克劳斯反应,反应后的酸性气体温度可达800℃以上。
高温酸性气随后进入H2S余热回收器(E1301)回收器废热并副产蒸汽,同时将反应生成的单质硫部分冷凝。
H2S余热回收器(E1301)一共有四程换热管(PASS1~4)回收本工序工艺气的废热,高温酸性气废热的回收是通过其中的第一、二换热管(PASS1、PASS2)进行的。
高温酸性气全部通过PASS1后温度降为600℃,然后分成两股,其中一股流经PASS2温度进一步降至185℃,然后和未经过PASS2的流股混和。
通过调整两个流股的比例可使混合后的温度控制在约300℃。
混合后的酸性气流股和进料器分离罐(V1301)后未进入H2S燃烧炉(F1301)的旁路酸性气体混合后温度降至230℃、压力0.04MPaG进入克劳斯反应器(R1301)一段。
在该段床层酸性气中的H2S和SO2在催化剂LS-971和LS-300的作用下发生克劳斯反应生成单质硫,H2S的转化率为80%~85%。
流出反应器的酸性气体温度约为340℃,经过H2S余热回收器PASS3回收器废热后,温度降为175℃,同时绝大部分的单质硫被冷凝下来。
前言在石油和天然气加工过程中产生大量的H2S气体,为了保护环境和回收元素硫,工业上普遍采用克劳斯过程处理含有H2S的酸性气体,其反应方程式如下:’H2S + 3/2 O2 = S02 + H2O (1)2H2S + S02 = 3/X Sx +2H2O (2)其中反应(1)和(2)是在高温反应炉中进行的,在催化反应区(低于538℃)除了发生反应(2)外,还进行下述有机硫化物的水解反应:CS2 + H2O = COS + H2S (3)COS + H20 = H2S + C02(4)本文回顾了改良克劳斯硫磺回收工艺的发展历程,阐明了工艺方法的基本原理、影响因素及操作条件,进行了扼要的评述.1、工艺的发展历程1.1原始的克劳斯工艺1883年英国化学家C,F·C1aus首先提出回收元素硫的专利技术,至今已有100多年历史。
原始的克劳斯法是一个两步过程,其工艺流程示于图1,专门用于回收吕布兰(Leblanc)法生产碳酸钠时所消耗的硫。
关于后者的反应过程列于下式:2NaCl + H2S04 = Na2SO4 + 2HCl (5)Na2SO4 + 2C = Na2S + 2CO2 (6)Na2S + CaCO3 = Na2CO3 + CaS (7)为了回收元素硫,第一步是把CO2导入由H20和CaS(碱性废料)组成的液浆中,按上述反应式得到H2S,然后在第二步将H2S和O2混合后,导入一个装有催化剂的容器,催化剂床层则预先以某种方式预热至所需要的温度,按←CaS(固)+ H2O (液)+C02(气)= CaC03(固)十H2S(气)(8)反应式(9)进行反应。
反应开始后,用控制反应物流的方法来保持固定的床层温度.显然此工艺只能在催化剂上以很低的空速进行反应。
据报导,H2S + 1/2 O2 = 1/X Sx + H2O (9)如果使用了水合物形式的铁或锰的氧化物,就不需要预热催化剂床层即可以开始反应,然而由于H2S和O2之间的反应是强烈的放热反应,而释放的热量又只靠辐射来发散,因此限制了克劳斯窑炉只能处理少量的H2S气体。