生产中所说的气体碳氮共渗就是指中温气体碳氮共渗
- 格式:doc
- 大小:13.00 KB
- 文档页数:2
热处理开放分类:工艺、机械、冶金、金属材料、材料加工热处理是将材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的组织结构,来控制其性能的一种综合工艺过程。
热处理名词:金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。
金属内部原子具有规律性排列的固体(即晶体)。
合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。
相:合金中成份、结构、性能相同的组成部分。
固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。
固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。
化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。
机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。
铁素体:碳在a-Fe(体心立方结构的铁)中的间隙固溶体。
奥氏体:碳在g-Fe(面心立方结构的铁)中的间隙固溶体。
渗碳体:碳和铁形成的稳定化合物(Fe3c)。
珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%)莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%)金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。
其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。
为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。
钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。
另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。
第一章1.简述一次键与二次键各包括哪些结合键这些结合键各自特点如何答:一次键——结合力较强,包括离子键、共价键和金属键。
二次键——结合力较弱,包括范德瓦耳斯键和氢键。
①离子键:由于正、负离子间的库仑(静电)引力而形成。
特点:1)正负离子相间排列,正负电荷数相等;2)键能最高,结合力很大;②共价键:是由于相邻原子共用其外部价电子,形成稳定的电子满壳层结构而形成。
特点:结合力很大,硬度高、强度大、熔点高,延展性和导电性都很差,具有很好的绝缘性能。
③金属键:贡献出价电子的原子成为正离子,与公有化的自由电子间产生静电作用而结合的方式。
特点:它没有饱和性和方向性;具有良好的塑性;良好的导电性、导热性、正的电阻温度系数。
④范德瓦耳斯键:一个分子的正电荷部位和另一个分子的负电荷部位间的微弱静电吸引力将两个分子结合在一起的方式。
也称为分子键。
特点:键合较弱,易断裂,可在很大程度上改变材料的性能;低熔点、高塑性。
2.比较金属材料、陶瓷材料、高分子材料在结合键上的差别。
答:①金属材料:简单金属(指元素周期表上主族元素)的结合键完全为金属键,过渡族金属的结合键为金属键和共价键的混合,但以金属键为主。
②陶瓷材料:陶瓷材料是一种或多种金属同一种非金属(通常为氧)相结合的化合物,其主要结合方式为离子键,也有一定成分的共价键。
③高分子材料:高分子材料中,大分子内的原子之间结合方式为共价键,而大分子与大分子之间的结合方式为分子键和氢键。
④复合材料:复合材料是由二种或者二种以上的材料组合而成的物质,因而其结合键非常复杂,不能一概而论。
3. 晶体与非晶体的区别稳态与亚稳态结构的区别晶体与非晶体区别:答:性质上,(1)晶体有整齐规则的几何外形;(2)晶体有固定的熔点,在熔化过程中,温度始终保持不变;(3)晶体有各向异性的特点。
结构上,晶体原子排列有序,非晶体排列长程无序。
稳态与亚稳态结构的区别同种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构。
将钢加热到一定的温度,经一段时间的保温,然后以某种速度冷却下来,通过这样的工艺过程能使钢的性能发生改变。
1、碳钢的普通热处理工艺方法1)钢的退火钢的退火通常是把钢加热到临界温度Ac1或Ac3线以上,保温一段时间,然后缓慢地随炉冷却。
此时,奥氏体在高温区发生分解,从而得到比较接近平衡状态的组织。
一般中碳钢(如40、45钢)经退火后消除了残余应力,组织稳定,硬度较低(HB180~220)有利于下一步进行切削加工。
2)钢的正火钢的正火通常是把钢加热到临界温度Ac3或Accm线以上,保温一段时间,然后进行空冷。
由于冷却速度稍快,与退火组织相比,组织中的珠光体量相对较多,且片层较细密,故性能有所改善,细化了晶粒,改善了组织,消除了残余应力。
对低碳钢来说,正火后提高硬度可改善切削加工性,提高零件表面光洁度;对于高碳钢,则正火可消除网状渗碳体,为下一步球化退火及淬火作好组织准备。
3)钢的淬火钢的淬火通常是把钢加热到临界温度Ac1或Ac3线以上,保温一段时间,然后放入各种不同的冷却介质中快速冷却(V冷>V临),以获得具有高硬度、高耐磨性的马氏体组织。
4)钢的回火钢的回火通常是把淬火钢重新加热至Ac1线以下的一定温度,经过适当时间的保温后,冷却到室温的一种热处理工艺。
由于钢经淬火后得到的马氏体组织硬而脆,并且工件内部存在很大的内应力,如果直接进行磨削加工则往往会出现龟裂,一些精密的零件在使用过程中将会引起尺寸变化从而失去精度,甚至开裂。
因此,淬火钢必须进行回火处理.不同的回火工艺可以使钢获得各种不同的性能。
2、碳钢普通热处理工艺1)加热温度碳钢普通热处理的加热温度,原则上按加热到临界温度Ac1或Ac3线以上30~50℃选定。
但生产中,应根据工件实际情况作适当调整。
热处理加热温度不能过高,否则会使工件的晶粒粗大、氧化、脱碳、变形、开裂等倾向增加。
但加热温度过低,也达不到要求。
表2-1碳钢普通热处理的加热温度方法加热温度(℃)应用范围退火 Ac3+(20~60)亚共析钢完全退火Ac1+(20~40) 过共析钢球化退火正火 Ac3+(50~100)亚共析钢Accm+(30~50)过共析钢淬火 Ac3+(30~70) 亚共析钢Ac1+(30~70)过共析钢回火低温回火 150~250 刃具、模具、量具、高硬度零件中温回火 350~500 弹簧、中等硬度零件高温回火 500~650 齿轮、轴、连杆等综合机械性能零件表2—2 常用碳钢的临界点钢号临界点(℃)Ac1 Ac3 Accm20钢 735 855 ——45钢 724 780 —-T8钢 730 —- ——T12钢 730 —- 8202)加热时间热处理的加热时间(包括升温与保温时间)与钢的成分、原始组织、工件的尺寸与形状、使用的加热设备与装炉方式及热处理方法等许多因素有关.因此,要确切计算加热时间是比较复杂的。
碳氮共渗热处理的标准包括温度、时间、气氛和冷却方式等几个方面。
1. 温度:碳氮共渗的温度通常在820~880℃范围内。
具体温度的选择取决于钢种和零件的使用性能。
2. 时间:共渗时间根据渗层深度要求而定。
层深与时间呈抛物线规律,可以通过公式计算得到。
3. 气氛:碳氮共渗的气氛通常使用尿素作为渗剂,也可以使用其他含碳、氮的物质作为渗剂。
气氛的控制对于共渗层的组织和性能有重要影响。
4. 冷却方式:共渗后的冷却方式可以根据需要选择不同的方法,如直接淬火、分级淬火、再次加热淬火等。
冷却方式的选择会影响共渗层的组织和硬度分布。
除了以上标准外,碳氮共渗热处理还需要注意以下几点:
1. 共渗前的表面准备:在进行碳氮共渗前,需要对零件表面进行清洗、除油、除锈等处理,以保证渗剂能够均匀地渗透到表面。
2. 渗剂的选择和配比:渗剂的选择和配比会影响共渗层的组织和性能,需要根据具体要求进行选择。
3. 炉温和气氛的控制:炉温和气氛的控制是共渗过程中的关键因素,需要严格控制以保证共渗层的质量和性能。
4. 后处理:共渗后需要进行适当的后处理,如淬火、回火等,以获得所需的组织和性能。
总之,碳氮共渗热处理的标准是多方面的,需要综合考虑温度、时间、气氛、冷却方式等因素,并注意共渗前的表面准备和后处理等步骤,以获得高质量的共渗层。
热处理热处理是将金属材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的金相组织结构,来控制其性能的一种金属热加工工艺。
基本简介热处理是将金属材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的金相组织结构,来控制其性能的一种金属热加工工艺。
发展简史在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。
早在公元前770至前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。
白口铸铁的柔化处理就是制造农具的重要工艺。
公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。
中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。
随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。
三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。
这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。
中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。
但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。
1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。
法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。
与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。
1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。
1889~1890年英国人莱克获得多种金属光亮热处理的专利。
二十世纪以来,金属物理的发展和其他新技术的移植应用,使金属热处理工艺得到更大发展。
碳氮共渗工艺流程
《碳氮共渗工艺流程》
碳氮共渗工艺是一种常用的表面淬火工艺,它可以提高钢件的表面硬度和耐磨性。
在碳氮共渗工艺中,碳化物和氮化物一起渗入钢件表面,从而形成一层坚硬的外壳。
下面将介绍碳氮共渗工艺的具体流程。
首先,将待处理的钢件经过去氧化、碱洗、酸洗等预处理工艺,将表面的油污和杂质去除干净,以保证碳氮共渗工艺的有效进行。
接着,将经过预处理的钢件放入碳氮共渗炉中,进行渗碳氮处理。
渗碳氮的温度通常为850°C-950°C,时间为2-6小时。
在
这个温度下,碳氮原子将渗透到钢件的表面,并在晶粒边界和晶粒内形成碳化物和氮化物。
随后,将处理后的钢件经过水冷或油冷,使其迅速冷却。
这一步骤可以有效地保持钢件的硬度和组织。
最后,对处理后的钢件进行表面处理,如打磨、抛光等,以去除表面的氧化层和残余碳化物、氮化物。
总的来说,碳氮共渗工艺是一种比较成熟的工艺,可以在钢件表面形成一层坚硬的外壳,提高其表面硬度和耐磨性。
通过对工艺流程的控制和优化,可以获得高质量的碳氮共渗处理效果。
中碳钢碳氮共渗中碳钢碳氮共渗是一种常见的表面处理技术,用于提高中碳钢的硬度和耐磨性。
这种技术的原理是将碳和氮元素一起渗透到钢材表面,形成一层硬度较高的表面层。
下面将详细介绍中碳钢碳氮共渗的工艺和特点。
一、中碳钢碳氮共渗的工艺1. 清洗:首先需要将中碳钢表面的油污、锈蚀等杂质清除干净,以保证共渗效果。
2. 预处理:将中碳钢置于高温炉中,在氮气气氛下进行预处理,使其表面形成一层氮化物薄膜,以增加表面的反应性。
3. 共渗:将经过预处理的中碳钢放入含有适量碳和氮的混合物中,进行共渗处理。
共渗时间和温度根据不同的材料和要求而定。
4. 淬火:共渗后的中碳钢需要进行淬火处理,以使其表面硬度更高。
5. 清洗:最后需要对淬火后的中碳钢进行清洗,去除表面残留物,以达到更好的表面质量。
二、中碳钢碳氮共渗的特点1. 提高硬度:中碳钢碳氮共渗后,表面硬度明显提高,可以达到HRC60以上。
2. 提高耐磨性:由于共渗后表面硬度提高,因此耐磨性也得到了提高。
3. 提高抗腐蚀性:共渗后的中碳钢表面形成了一层致密的氮化物薄膜,可以起到一定的抗腐蚀作用。
4. 易于加工:共渗后的中碳钢表面硬度提高,但内部仍然保持原有的韧性和可加工性。
5. 成本低廉:与其他表面处理技术相比,中碳钢碳氮共渗成本较低。
三、中碳钢碳氮共渗的应用1. 模具制造:模具需要具有较高的硬度和耐磨性,因此中碳钢碳氮共渗技术广泛应用于模具制造领域。
2. 机械制造:机械零部件需要具有较高的硬度和耐磨性,因此中碳钢碳氮共渗技术也常用于机械制造领域。
3. 刀具制造:刀具需要具有较高的硬度和耐磨性,因此中碳钢碳氮共渗技术也广泛应用于刀具制造领域。
总之,中碳钢碳氮共渗是一种常用的表面处理技术,可以提高中碳钢的硬度、耐磨性和抗腐蚀性,广泛应用于模具制造、机械制造和刀具制造等领域。
钢的热处理温度Ac1、Ac3、Ar1具体温度钢的热处理温度A1、A3与Ac1、Ac3、Ar1 Acm铁碳合金,可以查阅Fe-C相图。
(铁碳相图有几条温度线---727度,1148度,1495度)如果是合金钢,只能根据具体牌号查阅有关资料。
1. A1:在平衡状态下,奥氏体、铁素体、渗碳体或碳化物共存的温度,用A1表示。
2. A3亚共析钢在平衡状态下,奥氏体和铁素体共存的最高温度。
用A3表示。
3.Ac1:钢加热时~开始形成奥氏体的温度,4.Ac3:亚共析钢加热时~所有铁素体均转变为奥氏体的温度;5.Ar1:钢高温奥氏体化后冷却时~奥氏体分解为铁素体和珠光体的温度,6.Acm:过共析钢在平衡状态下~奥氏体和渗碳体或碳化物共存的最高温度~即过共析钢的上临界点。
即一般所说的下转变温度是A1或Ac1,上转变温度是A3或Ac3或Acm。
不同化学成分,有不同的临界点这些都是一个温度范围,根据冷却速度的不同范围可能不一样,如果缓慢加热冷却的话会接近理论值。
但是理论值也根据不同的材料,C含量不同这温度都不一样。
合金含量的不同,Ac1、Ac3、Ar1......等的温度是不同,在铁碳相图你可以根据C含量找到一个大致的温度,但这个温度只能作为参考,具体的温度要经过试验才能确定下来。
可以采用膨胀法测定或者根据经验公式计算,当然经验公式可能有偏差。
不同钢材受其成分影响,临界温度不同。
根据铁碳相图查找,不同种类的钢有不同的合金元素含量,也就有不同的奥氏体转变温度,大体上说是钢在加热或冷却时奥氏体转变的温度,各种钢各自的具体温度不一样。
Q245R钢:Ac1是735、Ac3是855、Ar1是680、Ar3是855.Q345R钢:Ac1是735、Ac3是863、Ar1是685、Ar3是840.45钢为: Ac1是740、Ac3是850、Ar1是735、Ar3是785.在完整的Fe-C和Fe-Fe3C的合金相图中,有三套曲线,以平衡状态下的相图为基点,相同材料在加热和冷却两个不同的过程中,相同相变点发生的温度是不同的,有一个滞后的作用,这是由于相变的过程都需要足够的驱动力。
碳氮共渗热处理工艺(一)碳氮共渗热处理工艺什么是碳氮共渗热处理工艺?碳氮共渗热处理工艺是指将碳和氮共同渗透到金属表面形成一定深度的复合渗层的热处理过程。
常见于钢铁制品,可增强材料硬度、耐腐蚀性、耐磨性等性能。
碳氮共渗的优点碳氮共渗相比单纯的碳渗和氮渗有以下优点:•提高硬度。
碳氮共渗后可形成较高硬度的表面层,增强了材料的抗磨性和耐用性。
•提高耐腐蚀性。
碳氮共渗后形成的表面层能够保护材料免受氧化和腐蚀的侵害。
•为材料提供淬火能力。
通过控制共渗液的温度和成分,可为材料提供合适的淬火性能,提高材料的强度和硬度。
碳氮共渗工艺碳氮共渗工艺常用的方法包括气体渗透法、电弧离子渗透法和盐浴渗透法等。
其中,气体渗透法是最为常见的方法,具体过程如下:1.准备共渗液。
将含有一定量的气体的共渗液加热至一定温度并保持一定时间,使气体分子分解并渗透到物品表面形成表面层。
2.选择适当的温度。
渗透液的温度是影响表面层厚度的重要因素,需要根据材料和要求的表面性能来确定。
3.渗透时间。
渗透时间与涂层厚度成正比,需要根据不同要求来确定。
碳氮共渗的应用碳氮共渗工艺被广泛应用于机械制造、汽车制造、航空航天等行业,如齿轮、轴承、涡轮叶片、气缸套等。
通过碳氮共渗可以改善这些零件的性能,提高它们的使用寿命和性能。
结语碳氮共渗热处理工艺的出现,极大地推动了材料科学和工业制造的进步。
通过研究和应用碳氮共渗工艺,我们可以为材料提供更优秀的性能和更可靠的保护层,同时提高工业产品的质量和市场竞争力。
注意事项在进行碳氮共渗工艺时,需要注意以下事项:1.渗透液的成分和温度需要根据材料和要求的表面性能来选择,需要遵守标准操作程序进行。
2.渗透时间需要根据需要确定,过短可能导致涂层不够厚,过长可能导致损坏物品表面。
3.在操作过程中需要严格控制温度,避免对材料产生不良影响。
4.碳氮共渗工艺需要在相应的设备和环境下进行,需要保证合适的设备和操作条件。
发展趋势碳氮共渗工艺自问世以来,不断得到完善和发展。
生产中所说的气体碳氮共渗就是指中温气体碳氮共渗
碳氮共渗的主要目的是提高工件的表面硬度、耐磨性和疲劳极限。
气体碳氮共渗的介质实际上就是渗碳和渗氮用的混合气体。目前我国
生产中最常用的是在井式气体渗碳炉中滴入煤油(或甲苯、丙酮等渗
碳剂),使其热分解出渗碳气体,同时往炉中通入渗氮所需的氨气。
在共渗温度下,煤油与氨气除了单独进行前述的渗碳和渗氮作用外,
它们相互间还可发生化学反应而产生生活性碳、氮原子。此外,有些
工厂也采用有机液体三乙醇胺、甲酰胺和甲醇+尿素等共渗介质,作
为滴入剂进行碳氮共渗。活性碳、氮原子被工件表面吸收,并逐渐向
内部扩散,结果获得了一定深度的碳氮共渗层。
气体渗氮共渗温度随钢种而异,常采用820-860℃,碳氮共渗时间取
决于渗层深度、共渗温度、所用的共渗介质及钢的化学成分。
在一般情况下,由于碳氮共渗温度比渗碳低,因此共渗后就可直接淬
火,然后再低温回火。
气体碳氮共渗的特点如下:
1 气体碳氮共渗的速度显著大于单独渗碳或渗氮的速度,因而可缩短
生产周期。但由于气体碳氮共渗的渗层深度一般不超过0.8mm,所以
不能满足承受很高压强和要求厚渗层的零件。
碳氮共渗适用于基体具有良好韧性,而表面硬度高、耐磨性好的模具
零件。塑料模具、陶瓷模中的凸模、凹模和型芯等型腔不部位零件,
以及冲裁模中的凸模和凹模等零件,有些就适合采用碳氮共渗处理。
如45钢制切边模,850℃碳氮共渗4h,淬火并180℃回火,表面硬度
927HV,使用寿命可达1.5万件,与Cr12MoV钢制的同样模具经类似处
理后的使用寿命相等。
2共渗层经热处理后获得含氮马氏体和少量氮化物,故比渗碳层热处
理后具有更高的硬度、耐磨性,同时还有一定的抗腐蚀性能,以及由
于共渗层存在残余压应力而提高了钢的疲劳极限,与渗氮层相比,共
渗层的深度要不渗氮层深,表面脆性小,抗压强度较好;共渗层的力
学性能兼有渗碳层和渗氮层的优点。
3由于碳、氮的渗入都能降低钢的相变点A1和A3,故共渗温度比单独
渗碳低,奥氏体晶粒不会明显长大,保证了零件的心部强度,并减小
了零件的淬火变形。碳氮共渗使共渗层的奥氏体相变温度降低。
4 C曲线右移,渗层的淬透性提高,这样共渗后不仅可以用冷却速度
较缓慢的介质进行淬火以减小变形外,还可以用较便宜的碳素钢代替
低合金钢制作某些模具。氮的渗入使共渗层的奥氏体稳定性提高.