固体激光器的特点及应用
- 格式:doc
- 大小:898.50 KB
- 文档页数:17
Nd-YAG陶瓷激光器原理、性能与应用1 前言固体激光器是最重要的一种激光器,不但激活离子密度大,振荡频带宽,能产生谱线窄的光脉冲,而且具有良好的机械性能和稳定的化学性能。
其体积小、效率高、性能稳定等特点使其成为当前光电子技术领域的一个研究热点。
对于固体激光器来说有3种重要的激光介质:单晶、玻璃和陶瓷。
单晶工作物质的激光器体积小,性能可靠、稳定,并适用于各种连续和脉冲激光器件。
但提拉法生长单晶由于其生长周期长、价格昂贵、尺寸小及掺杂浓度低,使其性能和应用范围受到限制。
多年来材料科学工作者一直试图用玻璃、微晶玻璃、多晶陶瓷作为激光工作物质来替代单晶。
激光玻璃的突出优点是制备成本低,易实现大尺寸以及高的光学均匀性,但是,玻璃的热导率[一般低于1 W/(m·K)]远低于绝大多数激光晶体的,导致激光玻璃在以高平均功率工作时,材料内部产生大的热致双折射和光学畸变;这一点在强激光领域应用时表现得尤其突出,而且其激光效率与单晶材料相比也较低。
而且玻璃的硬度不够高、荧光线宽较宽和激光振荡阈值较高,不利于作为高性能的激光材料。
激光透明陶瓷具有很多单晶和玻璃所不具备的优点:和单晶相比,透明陶瓷具有掺杂浓度高,掺杂均匀性好,烧结温度低,周期短,成本低,质量可控性强,尺寸大,形状自由度大以及可以实现多层多功能激光器等优点;和玻璃相比,透明陶瓷具有单色性好,结构组成更为理想,热导率高和可承受的辐射功率高等优点。
由于陶瓷是多晶,其内部的晶界、气孔、晶格的不完整性等都会导致材料的不透明性及增加光的散射损失,因此将其用于激光介质存在一定困难。
为了制备和单晶激光性能相当的高品质、高透明度的激光陶瓷,人们做了大量的研究工作。
在所有的材料中,立方晶系的晶体,譬如石榴石型的晶体和稀土倍半氧化物,它们在沿光轴方向上的折射率差等于零而且可以提供低对称性的格位,是制备透明陶瓷的最佳选择,其中最具代表性的是Nd:YAG 透明陶瓷。
2 激光的产生原理2.1 理论基础【波尔兹曼统计分布】根据统计力学原理,大量相同粒子(原子、离子、分子)集合处于热平衡温度下,粒子数按能级的分布服从波耳兹曼分布规律,即N 2/N1∝exp[-(E2- E1)/kT]其中N2、N1 分别为能级E2和E1 上的粒子数。
固态激光器的工作原理激光器作为一种重要的光学器件,在现代科技和工业应用中起到了至关重要的作用。
固态激光器作为其中的一种类型,在多个领域中展现出了广泛的应用前景。
本文将详细介绍固态激光器的工作原理,以及其在科学研究、医疗、通信等方面的应用。
一、固态激光器的基本构成和工作原理固态激光器由一个激光介质和一个泵浦源组成。
激光介质是固体材料,常见的材料包括Nd:YAG(氧化铝掺杂钕)、Nd:YVO4(钇钒酸钕)等。
泵浦源通常采用光源或者其他激光器来提供能量,使激光介质中的掺杂离子处于激发态。
1. 光子吸收与激发当泵浦光进入激光介质时,它与激光介质中的掺杂离子相互作用。
这种相互作用导致掺杂离子从基态跃迁到激发态,吸收入射光子的能量。
这种能量吸收过程是固态激光器工作的起点。
2. 辐射与受激辐射当掺杂离子处于激发态时,它会逐渐失去能量。
在这个过程中,掺杂离子通过辐射的形式传递能量,并以光子的形式释放出来。
这些光子的能量是特定波长和频率的激光光子,具有相同的相位和方向,符合激光的特性。
3. 扩散与增益当释放的激光光子经过多次的反射和扩散后,在固态激光器的谐振腔内产生共振放大。
在这个过程中,激光光子不断增加,并形成强大的激光束。
这种过程是通过谐振腔中的镜面反射实现的,其中一个镜子是部分透明的,用于输出激光。
二、固态激光器的应用固态激光器具有紧凑、高效、可靠等特点,因此在科学研究、医疗、通信等领域有广泛的应用。
1. 科学研究固态激光器在科学研究中扮演着重要角色。
其激光束的窄带宽和高功率使得它成为细分光谱研究、原子物理、分子光谱学等领域的理想工具。
此外,固态激光器还广泛应用于量子光学研究、量子计算和量子通信等领域。
2. 医疗器械固态激光器在医疗领域有着广泛的应用。
激光切割、激光刻蚀、激光焊接等技术在现代医疗器械的制造过程中发挥着重要作用。
此外,激光手术、激光疗法等应用也在眼科手术、皮肤整形和癌症治疗等方面展现出了巨大的潜力。
激光器产生激光的三个基本结构一、引言激光器是一种能够产生单色、高亮度、几乎无散射的光束的装置,广泛应用于科学研究、医疗、通信等领域。
激光器的基本结构有三种,分别是气体激光器、固体激光器和半导体激光器。
本文将详细介绍这三种激光器的基本结构及其工作原理。
二、气体激光器1. 气体激光器的基本结构气体激光器由放电管和反射镜组成。
放电管是一个密闭的玻璃管,内部填有稀薄气体(如氦氖气),两端分别安装有高压电极和低压电极。
反射镜则是由两个平面镜或球面镜组成,其中一个反射镜具有一定透过率。
2. 气体激光器的工作原理当高压电极加上高电压时,放电管内的气体被电离,形成等离子体。
等离子体中的自由电子通过碰撞使得氦原子发生受激辐射,产生激光。
激光在反射镜间来回反射,形成一个稳定的激光束。
3. 气体激光器的应用气体激光器广泛应用于科学研究、医疗、通信等领域。
其中,二氧化碳激光器被广泛应用于工业加工领域,如切割、焊接和打孔等。
三、固体激光器1. 固体激光器的基本结构固体激光器由放电管和固态材料组成。
固态材料通常是掺有特定元素(如钕)的晶体或玻璃材料。
放电管则是一个密闭的腔体,内部填有闪烁物质(如氙气),两端分别安装有高压电极和低压电极。
2. 固体激光器的工作原理当高压电极加上高电压时,放电管内的闪烁物质被电离,形成等离子体。
等离子体中的自由电子通过碰撞使得掺杂元素发生受激辐射,产生激光。
激光在固态材料中来回反射,形成一个稳定的激光束。
3. 固体激光器的应用固体激光器广泛应用于科学研究、医疗、通信等领域。
其中,钕掺杂的固态激光器被广泛应用于医疗领域,如眼科手术和皮肤美容等。
四、半导体激光器1. 半导体激光器的基本结构半导体激光器由PN结和反射镜组成。
PN结是由P型半导体和N型半导体组合而成的结构,反射镜则是由两个端面反射镜组成。
2. 半导体激光器的工作原理当PN结加上正向电压时,电子从N型区域流向P型区域,与空穴复合产生辐射能量,产生激光。
yag激光器的能级结构特点,工作物质组成及各成分的作
用。
YAG激光器是一种固体激光器,其工作物质是掺有钕(Nd)离子的钇铝石榴石(Y3Al5O12)晶体。
YAG晶体的能级结构是由Nd离子的电子构成的。
Nd离子的电子具有四个能级,分别为基态能级、第一激发态、第二激发态和第三激发态。
在YAG激光器的激发过程中,用氙气气体放电使激光材料钇铝石榴石(YAG)晶体的Nd离子受到激发,处于基态的Nd离子吸收外界光或电子能量,电子从基态跃迁到第一激发态,在第一激发态时,Nd离子处于高能态,能量被积累并随时准备从基态返回,当Nd离子被持续激发,会随时从第一激发态向低能态跃迁,释放能量。
Nd离子到达第三激发态时,再弛豫到激光产生所需的第四激发态,从而产生激光。
YAG激光器中的Nd离子起到了激发和放射光子的作用。
Nd离子的浓度越高,则能够获取激光能力的晶体就越多,从而可以获得更高的激光输出功率。
激光器的衰减时间与Nd的原子密度、泵浦能量等因素有关,因此对于激光器的性能和稳定性也有很大影响。
YAG激光器技术原理及应用YAG 激光器是以钇铝石榴石晶体为基质的一种固体激光器。
钇铝石榴石的化学式是Y3 Al5 O15 ,简称为YAG。
在YAG基质中掺入激活离子Nd3+ (约1%)就成为Nd:YAG。
实际制备时是将一定比例的Al2 O3 、Y2 O3 和NdO3 在单晶炉中熔化结晶而成。
Nd:YAG属于立方晶系, 是各向同性晶体。
由于Nd:YAG属四能级系统, 量子效率高, 受激辐射面积大, 所以它的阈值比红宝石和钕玻璃低得多。
又由于Nd:YAG晶体具有优良的热学性能, 因此非常适合制成连续和重频器件。
它是目前在室温下能够连续工作的唯一固体工作物质,在中小功率脉冲器件中, 目前应用Nd:YAG的量远远超过其他工作物质。
和其他固体激光器一样, YAG 激光器基本组成部分是激光工作物质、泵浦源和谐振腔。
不过由于晶体中所掺杂的激活离子种类不同, 泵浦源及泵浦方式不同, 所采用的谐振腔的结构不同,以及采用的其他功能性结构器件不同,YAG激光器又可分为多种, 例如按输出波形可分为连续波YAG激光器、重频YAG激光器和脉冲激光器等; 按工作波长分为1.06μmYAG 激光器、倍频YAG激光器、拉曼频移YAG 激光器(λ=1.54μm)和可调谐YAG 激光器(如色心激光器)等; 按掺杂不同可分为Nd:YAG激光器、掺Ho、Tm、Er等的YAG激光器; 以晶体的形状不同分为棒形和板条形YAG 激光器;根据输出功率(能量)不同, 可分为高功率和中小功率YAG激光器等。
形形色色的YAG 激光器, 成为固体激光器中最重要的一个分支。
[相关技术]激光材料;泵浦技术;固体激光器技术;电子技术[技术难点]尽管以YAG晶体为基质的YAG 激光器从问世迄今已经20多年, 技术和工艺都比较成熟并得到广泛应用, 但随着相关技术的进步, YAG激光器的研究工作仍旧方兴未艾, 依然是目前激光器研究的热点。
为了提高YAG 激光器的效率、输出功率和光束质量, 扩展其频谱范围, 人们在激光材料、结构和泵浦源及泵浦方式等技术和工艺方面继续开展研究和改进工作, 要解决的关键技术主要有:1、寻求新的激光材料。
固体激光器的工作原理
固体激光器是一种利用固体材料作为工作介质产生激光的装置。
它的工作原理是通过激发固体材料中的原子或分子,使其处于激发态,然后在激发态和基态之间进行能级跃迁,产生激光输出。
固体
激光器通常由泵浦源、固体激发材料和谐振腔三部分组成。
首先,固体激光器的泵浦源通常采用激光二极管或者弧光灯等
高能量光源,用来提供能量以激发固体材料中的原子或分子。
这些
泵浦源产生的光能会被聚焦到固体激发材料上,激发材料吸收光能后,内部的原子或分子就会处于激发态。
其次,固体激光器的固体激发材料是产生激光的关键部分。
常
见的固体激发材料包括Nd:YAG晶体、Nd:YVO4晶体、Nd:glass等。
这些材料在受到泵浦源激发后,内部的原子或分子会处于激发态,
形成激发粒子团。
最后,固体激光器的谐振腔是激光放大和输出的关键部分。
谐
振腔由两个反射镜构成,其中一个是部分透射的输出镜,另一个是
全反射的输入镜。
激发粒子团在谐振腔中来回多次反射,不断受到
激发和放射,最终形成激光输出。
综上所述,固体激光器的工作原理是通过泵浦源激发固体激发材料中的原子或分子,使其处于激发态,然后在谐振腔内进行能级跃迁,产生激光输出。
固体激光器具有结构简单、稳定性好、寿命长的特点,被广泛应用于医疗、通信、材料加工等领域。
希望本文能够帮助大家更好地了解固体激光器的工作原理。
激光的种类种类及应用激光(Laser)原指具有高效率,窄束,高单色性(即色散小),高相干性(即随机性小)的光。
自1964年发明激光以来,激光技术在多个领域得到广泛应用。
根据不同激光产生机制、波长范围和功率等特性的不同,激光可以分为多种种类。
1. 气体激光器(Gas Laser)气体激光器是最早被开发和应用的激光器之一。
根据不同的气体填充和激发方式,气体激光器可以分为氦氖激光器(He-Ne),二氧化碳激光器(CO2),氙离子激光器(Xe-ion)等。
氦氖激光器广泛应用于测量、光学实验、医学等领域;二氧化碳激光器在加工和切割材料、医学手术、雷达等领域得到广泛应用;氙离子激光器适合生物医学、光化学、实验等领域。
2. 固体激光器(Solid-State Laser)固体激光器是利用一些固态材料来产生激射光的装置。
常见的固体激光器包括钕:锗酸玻璃激光器(Nd:glass)、二极管激光器(Diode laser)、钕:YAG激光器(Nd:YAG)、掺铒光纤激光器(Er-doped fiber laser)等。
固体激光器在材料加工、激光雷达、医学手术、通信等领域得到广泛应用。
3. 半导体激光器(Semiconductor Laser)半导体激光器是利用半导体材料来产生激射光的装置。
半导体激光器又称为激光二极管(Laser Diode),它具有尺寸小、寿命长、高效率等特点。
半导体激光器广泛应用于通信、照明、显示、激光打印等领域。
4. 纤维激光器(Fiber Laser)纤维激光器是利用光纤结构的光介质来产生激射光的激光器。
纤维激光器具有体积小、易于集成、输出功率稳定等特点。
纤维激光器在制造业、材料加工、通信、医疗等领域得到广泛应用。
5. 液体激光器(Liquid Laser)液体激光器是利用液体介质来产生激射光的装置。
由于液体特性的不稳定性,液体激光器并不常见,但在一些特殊领域如核聚变、舰船激光武器等方面得到应用。
激光的种类和激光器的用途激光是一种由激活的原子、分子或离子产生的高度聚焦的光束。
根据激光的产生机制、波长、功率等不同特点,激光可以分为多种不同类型。
以下是常见的一些激光器种类及其应用。
1.气体激光器:气体激光器利用气体体积放电、电离、碰撞激发等原理产生激光。
其中,最常见的激光器是二氧化碳激光器(CO2激光器),它的波长为10.6微米。
CO2激光器广泛应用于切割和焊接金属材料、医学手术、纹身移除、装饰等领域。
2.固体激光器:固体激光器使用固体材料(如晶体或玻璃)作为激发介质,通过显微光泵或一个或多个便激光器激励来产生激光。
当固体材料受到外部能量激发时,光子被激发到高能级,并在经典的自发辐射下退回到较低的能级,产生激光。
常见的固体激光器有Nd:YAG激光器和Er:YAG激光器等。
Nd:YAG激光器工作在1064纳米,常用于望远镜、瞄准器、激光光纤通信等领域。
3.半导体激光器:半导体激光器是利用半导体材料和pn结构的特性产生激光。
半导体激光器通常体积小且寿命长,因此广泛用于信息存储、激光指示器、激光打印机、激光读取器、医疗设备等领域。
此外,半导体激光器还广泛应用于激光雷达、光通信和工业材料加工等领域。
4.光纤激光器:光纤激光器是一种利用光纤作为反馈介质产生激光的激光器。
相较于传统的固体激光器,光纤激光器具有更高的效率、更小的尺寸和更长的使用寿命。
光纤激光器广泛应用于医学手术、材料加工、激光测距、光纤通信等领域。
5.自由电子激光器:自由电子激光器是一种利用加速带电粒子(电子或电子束)产生激光的激光器。
自由电子激光器的波长范围广,功率高,可用于材料加工、电子束刻蚀、粒子加速器、原子核物理研究等领域。
除了上述激光器类型外,还有衍射光束激光器、液体激光器等特殊类型的激光器。
总结起来,激光器有着广泛的应用领域。
例如,激光器在医学领域中,可用于激光手术、激光治疗、激光诊断等;在通信领域中,激光器可用于光纤通信、激光雷达等;在材料加工领域中,激光器可用于切割、打孔、焊接、雕刻等;在科研领域中,激光器可用于光谱分析、粒子加速等。
固体激光器原理
固体激光器是一种基于固态物理学原理的高能量发射装置,它可以产生高能量、高精度、高稳定性的光束。
固体激光器是一种激光器,它使用固态物理学原理产生辐射,而不是使用激光器来产生辐射。
固态激光器的原理可以归结为三个基本步骤:1.能量投入;2.激发;
3.发射。
首先,固体激光器需要有一个能源来投入能量,比如电池,从而使激光器的晶体管具有一定的能量,以便激发晶体管中的原子。
当晶体管内部的能量足够时,原子就会发生激发,从而把能量转换成光能。
其次,激发过程实际上是一种量子效应,这意味着一个原子只有在足够的能量被投入到晶体管中,才能使原子进入激发状态。
在这个过程中,晶体管中的能量会被激发的原子所吸收,从而使晶体管中的能量充满。
最后,激发的原子会把能量转换成光能,并通过晶体管中的光学元件发射出去,这是固态激光器的最后一步。
发射的光束是高能量、高精度、高稳定性的,它可以用来实现各种技术和工业应用。
固态激光器是一种基于固态物理学原理的发射装置,它可以产生高能量、高精度、高稳定性的光束,在各种技术和工业应用中发挥着
重要作用。
激光器的种类及应用激光器是一种能够产生高强度、单色、相干光的装置,被广泛应用于科研、医学、工业、军事等领域。
根据激光器的工作原理和应用领域的不同,可以分为以下几种类型:1.气体激光器气体激光器利用气体电离放电激发基态原子或分子,从而产生激光。
常见的气体激光器包括CO2激光器、氦氖激光器、氩离子激光器等。
气体激光器具有较大的功率输出和较高的效率,被广泛应用于材料加工、医学、通信等领域。
2.固体激光器固体激光器利用固体材料中的色心离子或稀土离子来实现激光的产生。
常见的固体激光器有Nd:YAG激光器、Nd:YVO4激光器等。
固体激光器具有较高的光学效率和较长的寿命,在材料加工、医学、研究等领域有广泛应用。
3.半导体激光器半导体激光器利用半导体材料中的电子与空穴的复合辐射产生激光。
常见的半导体激光器有激光二极管和垂直腔面发射激光器(VCSEL)。
半导体激光器具有小体积、高效率、低功率消耗等优点,被广泛应用于光通信、激光打印、激光雷达等领域。
4.光纤激光器光纤激光器是利用光纤介质中的掺杂离子来产生激光。
常见的光纤激光器有光纤光栅激光器、光纤拉曼激光器等。
光纤激光器具有输出光束质量好、稳定性高、易于集成等优点,被广泛应用于通信、激光加工等领域。
5.势能激发激光器势能激发激光器利用电能、化学能等形式的势能转化为激光的能量。
其中,化学激光器通过化学反应释放能量来产生激光,常见的有二氧化碳化学激光器;核聚变激光器通过核聚变反应释放能量来产生激光。
6.自由电子激光器自由电子激光器利用电子在磁场中的轨道运动来产生激光。
自由电子激光器具有宽波谱、高亮度和超短脉冲等优点,被广泛应用于材料表面处理、生物医学和物理研究等领域。
激光器在各个领域具有广泛的应用:1.医疗领域激光器在医学诊断和治疗中发挥着重要作用。
例如,激光刀在手术中用于切割和凝固组织;激光眼科手术用于矫正视力;激光美容仪器用于皮肤治疗和脱毛等。
2.材料加工激光器在材料切割、焊接、打孔、刻蚀等方面发挥着重要作用。
各功率激光的特点功率激光是一种产生高能量和高功率输出的激光器。
它们通常用于工业、医学、国防等领域,具有许多独特的特点。
下面将详细介绍一些常见功率激光的特点。
1.CO2激光器CO2激光器使用碳气混合物来产生激光束,通常工作在10.6微米的波长。
CO2激光器具有以下特点:-高功率输出:CO2激光器可以产生高达几千瓦的功率输出,是一种非常强大的激光器。
-高效率:CO2激光器的光电转换效率通常在10-30%之间,能够最大限度地将电能转换为光能。
-较低的光束质量:CO2激光器的光束质量较差,通常具有较大的光斑尺寸和较差的光束射准度。
2.光纤激光器光纤激光器是一种使用光纤作为激光体的激光器,产生的激光束通常工作在1微米以下的波长。
光纤激光器具有以下特点:-高功率输出:光纤激光器具有较高的功率输出,通常为几千瓦。
-高效率:光纤激光器的光电转换效率较高,通常在30-40%之间。
-高光束质量:光纤激光器可以产生具有较小光斑尺寸和出色光束质量的激光束。
-可靠性和耐用性:光纤激光器具有较长的寿命和较高的可靠性,适用于长时间运行和恶劣环境。
3.二极管激光器二极管激光器是一种使用半导体材料作为激活介质的激光器,常见的波长包括808nm、940nm和980nm。
二极管激光器具有以下特点:-小巧轻便:二极管激光器体积小,重量轻,便于安装和携带。
-高效率:二极管激光器的光电转换效率通常在50%以上,具有优秀的能源利用率。
-窄光谱:二极管激光器产生的光束具有相对较窄的光谱线宽,适用于许多精密应用。
-快速调制:由于二极管激光器具有快速的调制特性,它们常用于通信和数据传输领域。
4.固体激光器固体激光器使用固体材料(如Nd:YAG、Nd:YVO4等)作为激活介质,并通过泵浦光源来激活材料产生激光束。
固体激光器具有以下特点:-高功率输出:固体激光器通常可以产生较高功率,从几十瓦到几千瓦不等。
-高光束质量:固体激光器可以产生较小的光斑尺寸和出色的光束质量。
固体紫外激光器原理一、概述固体紫外激光器是利用固体材料产生紫外激光的一种激光器。
其原理是通过激发固体材料中的活性离子或分子,使其跃迁到高能级,然后在受激辐射的作用下发射出紫外激光。
固体紫外激光器具有紫外光束质量好、光束稳定性高、脉冲宽度短等特点,广泛应用于光谱分析、材料加工、生物医学等领域。
二、固体材料选择固体紫外激光器的关键是选择适合的固体材料。
通常选择具有高能级跃迁能级的材料,如三氧化二铼、氟化氢钠、溴化锌等。
这些材料的能级跃迁能量与所需的紫外光能量匹配较好,能够有效地产生紫外激光。
三、能级跃迁过程固体紫外激光器的工作原理是通过能级跃迁过程来实现。
在固体材料中,活性离子或分子处于基态能级时,通过外界激发能量,使其跃迁到激发态能级。
然后,在受激辐射的作用下,激发态能级的活性离子或分子会发射出紫外激光,返回到基态能级。
这一过程是通过固体材料中的能级结构和激发源的作用来实现的。
四、激发源固体紫外激光器的激发源通常采用脉冲激光器。
脉冲激光器可以提供足够的能量,将固体材料中的活性离子或分子激发到激发态能级,从而产生紫外激光。
常用的脉冲激光器有Nd:YAG激光器、二极管激光器等。
这些激光器具有高能量、高功率、短脉冲宽度等优点,适合用于固体紫外激光器的激发源。
五、激光输出固体紫外激光器的激光输出通常是通过光学谐振腔来实现的。
光学谐振腔由输出镜和反射镜构成,能够将激发态能级发射的紫外激光进行反射和放大,形成激光输出。
输出镜通常具有高反射率,反射镜具有一定的透射率。
输出镜的反射率和反射镜的透射率可以根据需要进行调节,以控制激光的输出功率和波长。
六、应用领域固体紫外激光器具有紫外光束质量好、光束稳定性高、脉冲宽度短等特点,被广泛应用于光谱分析、材料加工、生物医学等领域。
在光谱分析中,固体紫外激光器可以用于荧光光谱、紫外吸收光谱等的检测。
在材料加工中,固体紫外激光器可以用于微细加工、激光打标等。
在生物医学中,固体紫外激光器可以用于细胞检测、组织成像等。
yag激光器的能级结构特点工作物质组成及各成分的作用激光器是一种能够产生高强度、纯净、相干的激光光束的装置。
YAG激光器是一种常用的固体激光器,其特点主要体现在其能级结构和工作物质组成上。
以下是关于YAG激光器的能级结构特点、工作物质组成及各成分的作用的详细解释。
一、能级结构特点:1.YAG晶体的能级结构是由铈离子(Ce3+)和铬离子(Cr3+)组成的,其中铈离子的能级结构决定了YAG激光器的散热性能和工作波长,而铬离子的能级结构则决定了YAG激光器的激发和放射过程。
2.YAG晶体中的铈离子处于3价的价态,其基态能级是一个与铪离子(Hf4+)相同的能级,而激发态能级则由一系列高激发态和低激发态构成。
铈离子的激发态能级与其激发过程有关,当铈离子处于其基态能级时,光子能量不足以激发它,而当它处于激发态能级时,光子能量足以激发它,从而产生激光。
3.YAG晶体中的铬离子处于3价的价态,其能级结构主要由一个基态和两个激发态能级构成。
铬离子的基态能级与铈离子的基态能级相同,但激发态能级与铈离子的激发态能级不同。
铬离子的激发态能级能够吸收铈离子产生的激发光子并进一步激发自身,从而帮助铈离子将激光能量传递给YAG晶体。
二、工作物质组成:YAG激光器的工作物质主要包括YAG晶体、铈离子和铬离子。
YAG晶体是二氧化钇(Y2O3)和三氧化铝(Al2O3)的复合物,它为激光器提供了工作平台,并承载了铈离子和铬离子。
1.YAG晶体:YAG晶体是激光器的主体,具有良好的光学和热学性能。
它能够对激光进行放大和发射,同时能够散热,防止激光器过热。
2.铈离子:铈离子是YAG激光器的激发源,其能级结构使其能够吸收其它光源的能量并激发铬离子。
铈离子的激发态能级具有较长的寿命,可以提供稳定持久的激发能量。
3.铬离子:铬离子是YAG激光器的放射源,其能级结构使其能够吸收铈离子激发产生的能量并进一步激发自身。
铬离子的激发态能级具有较短的寿命,可以快速地发射激光能量。
固体紫外激光器原理引言:固体紫外激光器是一种基于固体材料的紫外激光器,具有较短的波长和高能量密度,被广泛应用于生物医学、材料加工、光谱分析等领域。
本文将介绍固体紫外激光器的工作原理及其相关技术。
一、固体紫外激光器的基本原理固体紫外激光器采用固体材料作为激光介质,其工作原理基于激光的受激辐射效应。
当固体介质受到外界能量激发时,处于基态的固体分子将吸收能量,其中的电子被激发到激发态。
然后,这些激发态的电子通过非辐射跃迁或受激辐射跃迁回到基态,释放出辐射能量。
这种辐射能量就是激光光子。
二、固体紫外激光器的结构和组成固体紫外激光器一般由激光介质、泵浦源、谐振腔和输出耦合器等部分组成。
1. 激光介质固体紫外激光器的激光介质通常采用具有较高激发态寿命和宽放大带宽的固体材料,如Nd:YAG、Nd:YVO4等。
这些固体材料具有优异的光学性能和较高的热导率,能够实现高效能量转换和热量散射。
2. 泵浦源固体紫外激光器的泵浦源一般采用强泵浦光源,如激光二极管、氙灯等。
这些泵浦光源能够提供足够的能量,将固体介质激发到激发态。
3. 谐振腔谐振腔是固体紫外激光器中的一个重要组成部分,用于增强激光的放大和反射。
谐振腔通常由两个反射镜构成,其中一个镜子具有较高的反射率,另一个镜子具有较低的反射率。
4. 输出耦合器输出耦合器用于从谐振腔中耦合出激光输出。
输出耦合器通常由一个半透明镜组成,能够将一部分光线透过,而反射一部分光线。
三、固体紫外激光器的工作过程固体紫外激光器的工作过程通常包括泵浦、激光放大和激光输出三个阶段。
1. 泵浦泵浦阶段是通过外界能量激发固体介质的过程。
泵浦光源产生的泵浦光通过输入端进入激光介质,将固体介质中的电子激发到激发态。
2. 激光放大激光放大阶段是指激发态的电子通过受激辐射跃迁或非辐射跃迁回到基态的过程。
在这个过程中,激发态的电子释放出辐射能量,并引起固体介质中的其他电子跃迁,形成激光放大。
3. 激光输出激光输出阶段是指经过谐振腔增强和输出耦合器耦合后,激光从激光器中输出的过程。
第一章引言激光是人类在上个世纪所创造的最杰出的技术成就之一。
自上世纪60年代,梅曼发明了全球首台激光器以来,激光技术的发展至今已经硕果累累,并且已经在人类社会的各行各业中普遍应用。
从固体激光器的出现到今天,一直都特别的备受大家的关注。
因为它具有峰值功率高,输出能量大,以及结构紧凑耐用等特点,所以在各个方面都有广大的用途,具有不可估量的价值。
有了这些优异的特点,固体激光器在科学研究、国防军工、工业生产、医疗健康等领域获得了大量的运用,使我们的日常生活越来越美好。
目前激光器的研究重点方向是使器件的体积愈来愈小、器件的重量愈来愈轻、效率愈来愈高、光束质量愈来愈好、可靠性愈来愈高、寿命愈来愈长、运转愈来愈敏捷的全固态激光器。
全固态激光器的应用扩展到了我们生活的各个领域,它是应用领域中基础的、特别重要的核心器件,已经成为了我们日常活动中不可或缺的帮手。
它的结构、输出功率、转换效率以及光束质量都取得了非常大的进步,具有强大的生命力。
全固态激光器汇聚了半导体激光器和固体激光器的特点,具有体积小、效率高、光束质量好、可靠性高、寿命长、运转灵便等优点,所以是前途光明的激光研究方向,它通过变频获得宽波段输出、便于模块化和电激励等应用优势,已经在科研、医疗、工业加工、军事等领域获得了广泛的应用,是新一代性能卓越的绿色、节能光源[1]。
现如今,激光技术在各个领域的广泛应用,已经是企业向信息化转型的不可缺少的推动力量,而且推动了一个完整的高新技术链条的有序成长。
根据国外的相关资料统计,国外的激光产业发展状况呈现出繁荣昌盛的景象,市场需求不断上涨,每年以百分之二十以上的速度上升。
如今,我国的激光市场发展稳定、增长速度飞快。
根据统计报告,我国的激光产品在1999年的市场销售额仅为14.13亿,2005年达到了47.75亿。
所以固体激光器的发展呈现出非常好的趋势,具有非常广阔的市场,有很大的发展空间。
第二章激光与激光器2.1激光2.1.1激光(LASER)它是指在受激辐射的作用下把光变强的现象,英语称号为Laser。
2.1.2激光产生的条件激光产生的条件有三个:1)具备能够实现能级跃迁的工作介质,叫做激活介质,它能让上、下两个能级之间处于粒子数反转的状态;2)有提供光反馈的光学谐振腔,其作用一是延长工作物质的长度,使工作物质进行持续的受激辐射,达到给光子加速这个目标;二是能够对于激光的发射方向进行干涉现象;三是对于输出的波长进行控制。
3)有能够使工作物质从低级向高级转化所需要的能量,从而能够使得激光达到发生的条件。
2.1.3激光的特性激光产生的机理与普通光源的发光有区别,所以激光具备不同于普通光的特性:高度的方向性、单色性、相干性和高亮度[2]。
单色性是指光的强度依照其频率进行排列的方式。
这个指标可以通过频谱分布的宽度进行衡量,频谱越宽,说明其性能越差。
方向性是指光能够按照要求在某个位置进行分布。
这样我们就可以使光在很远的距离也能够有很高的强度,这是光传播距离的指标,方向性越好,说明其照射的距离越远。
单色亮度是衡量光源的发光能力的指标,它的物理意义是单位截面、频宽和立体角内,光源的发射功率。
2.2激光器的发明与发展上世纪20年代,Albert Einstein的光子受激辐射原理为激光的出现提供了巨大的帮助,这个原理是指处于高能态的光子受到低能态的光子作用,转变成低能态,并且产生第二个,同之前的光子一起发射[3]。
1951年,汤斯提出了微波激射器的概念。
1954年,美国科学家汤斯和俄国科学家普罗霍罗夫得到了氨分子的粒子束发转现象,不久之后他们又发现了微波的受激发射。
1956年,荷兰物理学家Bloembergen创造了通过光泵浦三能级原子系统能够将粒子束进行反向排列的概念。
1958年,美国物理学家Schawlow和Townes通过谐振腔的作用得到了激光器以及俄国科学家普罗霍罗夫也研制成功了振荡器和放大器,这两个发明对于激光的发现提供了非常伟大的帮助。
1960年,在前人激光理论基础上,美国物理学家Maiman研发了全球首台激光器。
1965年,人类历史上首台CO2激光器在美国被顺利研发成功,这是有史以来世界上首台可以生产大功率的激光器。
紧接着两年后X射线激光器也被顺利的研发出来。
现在我们生活的各个领域对激光技术基本上都有普遍的运用。
而对于我国激光器具体的研制成功的发展情况,由下表2.1可以清晰的看到:2.3激光器的类型自上世纪60年代激光器发明至今,有关这方面的科学技术已经得到了很大的进步,现在各行各业都有激光技术的成功运用。
激光器的类型较多,我们可以遵循以下的分类手段将其类别:1)工作物质:按照这种方式我们可以将其主要分为固体、气体、染料、半导体、光纤以及自由电力等六种激光器。
2)激励方式:按照这种方式可以将其分为光泵式、化学以及核泵浦三种激光器[4];3)运转方式:按照这种方式可以将其分为连续、单脉冲、锁模以及可调谐等四类激光器。
4)按输出波长的长度为标准来对其进行区别,包括红外激光器、可见激光器、紫外激光器和X射线激光器四类。
如下表2.2所示:表2 .2 激光器的分类分类方式工作物质激励方式运转方式输出波长气体激光器固体激光器 半导体激光器染料激光器 光泵式激光器核泵浦激光器 化学激光器化学激光器 其他激光器连续激光器单次脉冲激光器 锁模激光器可调谐激光器 红外激光器可见激光器 紫外激光器 X 射线激光器第三章固体激光器3.1固体激光器的工作原理和基本结构这种激光器的作用原理是工作物质通过能量吸收后达到激发态,为了能够使得粒子束反转以及保持这种状态提供体检,进而使得光放大然后输出。
这类激光器的结构如下图3.1所示:1)工作物质aa工作物质是激光器能够产生作用不可缺少的关键构成成员,它包括激活粒子和基质两种构成成分。
激光中的很多重要的性能参数都是由激活粒子能级构造作用而成,基质主要是对物质的性能产生影响。
2)泵浦系统泵浦系统工作的时候需要的前提工作条件有两个必要条件:一是泵浦的发光效率一定要满足系统的运行;二是对于受激辐射光的属性一定要和工作物质的光谱属性相一致。
我们还有经常使用的泵浦源有:太阳能、惰性气体等和激光二极管等。
现在惰性气体是最经常使用的泵浦源,而在小型的功率器件中太阳能这类的泵浦源经常用到,现在我们在这方面的技术正在朝着LD泵浦的方向迈进,它的优良特点比较明显:具有很强的光转换率、功率大、稳定性好、安全可靠、使用时间长以及体积小等,现在它已经是固体激光发展中最有发展前景的泵浦源。
LD激光器可以分为端面、侧面、边面以及混合泵等分类形式[5],图3.2为端面和侧面的泵浦结构图。
3)聚光系统该部分主要有以下两个功能:首先是把工作物质和泵浦系统结合起来;第二个功能则是对于工作物质的光密度排列方式起着决定作用,进而可以对光束的各种参数性能指标进行干扰。
聚光腔内由工作物质以及泵浦源组成,所以泵浦的性能好坏影响程度主要受到聚光腔的影响。
现在一些比较小的固体激光器常常采用如图3.3所示的椭圆形腔。
图3.3 椭圆形聚光腔4)光学谐振腔反射镜是固体激光器非常重要的构成成员,反射镜的主要作用是通过保持激光的连续振荡形式来完成激光发生,而且对于光束的振动方向以及频率予以约束,从而达到激光的高性能指标参数。
5)冷却与滤光系统这一部分是激光器中最不可或缺的辅导设备。
由于固体激光器在发生作用时容易造成非常剧烈的热效应,故一般必须使用冷却的方法。
为了使得激光器和其他构件的安全,我们一般都是通过对工作物质、泵浦系统以及聚光腔的降温冷却来实现对其的保护作用。
现在的冷却有液体、气体和传导三种方法,但是液体冷却法是现在最喜欢使用的一种。
在高单色性能的光获取过程中,滤光系统起了重要的作用,它的作用原理是能够把泵浦光中的大部分或者有影响的光能够成功的去除,从而能够获得高单色性能的光。
3.2典型的固体激光器随着这类技术多年的成长积累,现在固体激光器的类型更是各种各样都有,但是我们最经常使用的主要还是泵浦源为红宝石、掺钕钇铝石榴石和二极管的固体激光器以及可调谐固体激光器等这几类。
3.2.1红宝石激光器(Cr3+:Al2O3)红宝石是掺有少量Cr3+离子的蓝宝石(Al2O3),红宝石激光器的工作物质是红宝石晶体(Cr3+:Al2O3), 其中Cr3+是发光的激活粒子,它属于三能级系统,决定着输出激光的光谱特性;而Al2O3是基质晶体[6]。
如下图3.4为红宝石中铬离子的能级结构。
a 这类激光器具有如下的优点:1)激光器机械硬度大、稳定性较好,能够接受功率密度较大的激光,而且生产的光的尺寸也较大;2)使用时间长,内存大,能够有大能量的激光发射;3)激光频谱较大,能够轻易的获得高能量的单膜;4)它的性能稳定、可以输出波长为400~760nm 的光。
在我们实际的工程领域,这类激光器具有较好的市场,因为大多数的传感器能够响应的波长在可见光处,并且很多的稀土类四能级的工作波长也都是处于400~760nm附近。
当然任何事物都有两面性,它也难免会有缺点:首先它是三能级的构造,因此它所需要构建的阈值较大;其次红宝石的特性目标对于温度非常的敏感;然后,对于它的激发频率比较低,这就导致了它能够长时间的工作;发散角输出通常在三到十毫弧这个范围内,稍微偏大。
如下图3.5所示,这是我国首台红宝石激光器,这台激光器在光的激发形式上,处于世界级领先水平。
3.2.2掺钕钇铝石榴石激光器(Nd3+:YAG)这类是四能级系统的激光器,它的工作效率较高,使用时间长以及工作的阈值较低,输出的波长较低,所以能够长时间的进行工作。
它的结构与前面那种激光器的构造根本上是一致的。
由于它的工作物质和与其对应的光泵不同,所以能够实现长时间的工作。
这类激光器的晶体是以YAG为基础材质,混入适当的Nd3+共同组成了晶体结构。
这种晶体有许多优良特性,例如:热的传导效率较快,这样就对激光器的连续工作创造了非常好的基础;三价稀土离子的钇铝石榴石晶体具有1970℃的熔点,能够承受较大的辐射;它的荧光宽度仅为6.5cm,所以它的工作阈值较小;荧光量子的工作效率可近似接近于1,成为了现在的固体激光器内极其优秀的工作物质。
它通常把氪灯当作是泵浦光源。
氪灯与氙灯的构造基本相同,区别是它的灯管内充有大气压为2到4的氪气。
该一类晶体是属于四级能系统,它能够通过荧光发射而产生激光以及三价的稀土离子,图3.6所示为该类激光器的能级构造图。
在实现4F3/2-4I11/2、4F3/2-4I13/2、4F3/2-4I9/2能级间跃迁时,生成了三条不同的荧光谱线,由下图3.6所示,其中1.06um的谱线能量要比其它两条的大。
所以1.06um首先达到阈值形成激光振荡。
Nd:YAG能级结构图3.6 33.2.3掺铒钇铝石榴石激光器(Er:YAG)最近几年,由于这类激光器的波长比较独特,引起了科学家的广泛关注,并且在医学应用方面也取得了较大的应用,对于未来的发展有很好的前景。