C++虚函数表的工作原理
- 格式:docx
- 大小:206.11 KB
- 文档页数:13
虚函数原理虚函数是 C++ 中一个非常重要的特性,它为面向对象编程提供了很强的支持。
虚函数的实现原理是通过虚函数表实现的,本文将介绍虚函数的概念、使用方法以及实现原理。
一、虚函数概念虚函数是指在基类中使用 virtual 关键字声明的成员函数,它的作用是允许在子类中对该函数进行覆盖。
具体来说,虚函数允许在子类中定义一个与基类中同名的函数,当使用子类对象调用该函数时,程序会动态的选择调用子类中的函数。
虚函数的语法如下:```class Base {public:virtual void foo();};```虚函数可以被重写(覆盖),也可以被继承,但是不能被 static 和 friend 修饰。
二、虚函数的使用使用虚函数需要满足一下条件:1.虚函数必须在公有的类成员函数列表中声明,并在类声明的内部定义。
2.虚函数必须在基类和派生类中以相同的参数列表进行定义。
下面是一个使用虚函数的简单例子:class Square: public Shape {public:Square(double s) : side(s) {}double getArea() { return side * side; }Shape 是一个基类,Square 是它的一个派生类,Square 中重写了 getArea() 函数,计算正方形的面积。
虚函数的实现原理是通过虚函数表实现的。
虚函数表是一个指针数组,存储了每个类中的虚函数指针。
当对象被创建时,会在其内存空间中创建一个指向虚函数表的指针,这个指针通常称为虚函数表指针(vptr),虚函数的调用就是通过这个指针完成的。
每个含有虚函数的类都有一个独立的虚函数表,虚函数表智能在类的第一个对象中存储,它包含了该类中所有虚函数的地址。
在派生类中,虚函数表通常继承自它的直接基类,并在此基础上添加或修改虚函数的地址。
这样如果在派生类对象中调用虚函数时,程序会先获得对象的虚函数表指针,然后通过该指针找到对应的虚函数地址来执行函数。
c++虚表原理
C++虚表是一种实现动态多态性的机制,它通过在编译时生成虚函数表(vtable)来实现。
虚函数表是一个函数指针数组,其中每个指针指向一个虚函数的地址。
每个类都拥有一个虚表,并且每个类的虚表都包含该类中所有虚函数的地址。
在编译时,编译器会为每个类生成一个虚表,并将每个虚函数的地址添加到该表的相应位置。
当创建一个类的对象时,编译器将该对象的虚表指针设置为指向该类的虚表。
在运行时,当调用一个虚函数时,程序将使用对象的虚表指针来查找该函数的位置,并调用相应的函数实现。
由于虚表是在运行时动态生成的,因此可以实现动态多态性,即在运行时根据对象的类型来决定调用哪个函数实现。
通过使用虚表,C++可以实现更加灵活和动态的面向对象编程,使得代码更加可维护和可扩展。
同时,虚表也是C++中实现多态的一种重要手段。
1。
C++虚函数及虚函数表解析虚函数的定义: 虚函数必须是类的⾮静态成员函数(且⾮构造函数),其访问权限是public(可以定义为private or proteceted,但是对于多态来说,没有意义。
),在基类的类定义中定义虚函数的⼀般形式: virtual 函数返回值类型虚函数名(形参表) { 函数体 } 虚函数的作⽤是实现动态联编,也就是在程序的运⾏阶段动态地选择合适的成员函数,在定义了虚函数后, 可以在基类的派⽣类中对虚函数重新定义(形式也是:virtual 函数返回值类型虚函数名(形参表){ 函数体 }),在派⽣类中重新定义的函数应与虚函数具有相同的形参个数和形参类型。
以实现统⼀的接⼝,不同定义过程。
如果在派⽣类中没有对虚函数重新定义,则它继承其基类的虚函数。
当程序发现虚函数名前的关键字virtual后,会⾃动将其作为动态联编处理,即在程序运⾏时动态地选择合适的成员函数。
实现动态联编需要三个条件: 1、必须把需要动态联编的⾏为定义为类的公共属性的虚函数。
2、类之间存在⼦类型关系,⼀般表现为⼀个类从另⼀个类公有派⽣⽽来。
3、必须先使⽤基类指针指向⼦类型的对象,然后直接或者间接使⽤基类指针调⽤虚函数。
定义虚函数的限制: (1)⾮类的成员函数不能定义为虚函数,类的成员函数中静态成员函数和构造函数也不能定义为虚函数,但可以将析构函数定义为虚函数。
实际上,优秀的程序员常常把基类的析构函数定义为虚函数。
因为,将基类的析构函数定义为虚函数后,当利⽤delete删除⼀个指向派⽣类定义的对象指针时,系统会调⽤相应的类的析构函数。
⽽不将析构函数定义为虚函数时,只调⽤基类的析构函数。
(2)只需要在声明函数的类体中使⽤关键字“virtual”将函数声明为虚函数,⽽定义函数时不需要使⽤关键字“virtual”。
(3)如果声明了某个成员函数为虚函数,则在该类中不能出现和这个成员函数同名并且返回值、参数个数、参数类型都相同的⾮虚函数。
C++中虚函数工作原理和(虚)继承类的内存占用大小计算一、虚函数的工作原理虚函数的实现要求对象携带额外的信息,这些信息用于在运行时确定该对象应该调用哪一个虚函数。
典型情况下,这一信息具有一种被称为vptr(virtual table pointer,虚函数表指针)的指针的形式。
vptr 指向一个被称为vtbl(virtual table,虚函数表)的函数指针数组,每一个包含虚函数的类都关联到vtbl。
当一个对象调用了虚函数,实际的被调用函数通过下面的步骤确定:找到对象的vptr 指向的vtbl,然后在vtbl 中寻找合适的函数指针。
虚拟函数的地址翻译取决于对象的内存地址,而不取决于数据类型(编译器对函数调用的合法性检查取决于数据类型)。
如果类定义了虚函数,该类及其派生类就要生成一张虚拟函数表,即vtable。
而在类的对象地址空间中存储一个该虚表的入口,占4个字节,这个入口地址是在构造对象时由编译器写入的。
所以,由于对象的内存空间包含了虚表入口,编译器能够由这个入口找到恰当的虚函数,这个函数的地址不再由数据类型决定了。
故对于一个父类的对象指针,调用虚拟函数,如果给他赋父类对象的指针,那么他就调用父类中的函数,如果给他赋子类对象的指针,他就调用子类中的函数(取决于对象的内存地址)。
虚函数需要注意的大概就是这些个地方了,之前在More effective C++上好像也有见过,不过这次在Visual C++权威剖析这本书中有了更直白的认识,这本书名字很牛逼,看看内容也就那么回事,感觉名不副实,不过说起来也是有其独到之处的,否则也没必要出这种书了。
每当创建一个包含有虚函数的类或从包含有虚函数的类派生一个类时,编译器就会为这个类创建一个虚函数表(VTABLE)保存该类所有虚函数的地址,其实这个VTABLE的作用就是保存自己类中所有虚函数的地址,可以把VTABLE形象地看成一个函数指针数组,这个数组的每个元素存放的就是虚函数的地址。
IT公司笔试面试题系列(一)C++笔试题1.多态类中的虚函数表是Compile-Time,还是Run-Time时建立的?答案:虚拟函数表是在编译期就建立了,各个虚拟函数这时被组织成了一个虚拟函数的入口地址的数组.而对象的隐藏成员--虚拟函数表指针是在运行期--也就是构造函数被调用时进行初始化的,这是实现多态的关键.2.一个父类写了一个virtual 函数,如果子类覆盖它的函数不加virtual ,也能实现多态?在子类的空间里,有没有父类的这个函数,或者父类的私有变量? (华为笔试题)答案:只要基类在定义成员函数时已经声明了virtue关键字,在派生类实现的时候覆盖该函数时,virtue关键字可加可不加,不影响多态的实现。
子类的空间里有父类的所有变量(static除外)。
3.完成字符串拷贝可以使用sprintf、strcpy 及memcpy 函数,请问这些函数有什么区别,你喜欢使用哪个,为什么?答案:这些函数的区别在于实现功能以及操作对象不同。
1.strcpy 函数操作的对象是字符串,完成从源字符串到目的字符串的拷贝功能。
2.snprintf 函数操作的对象不限于字符串:虽然目的对象是字符串,但是源对象可以是字符串、也可以是任意基本类型的数据。
这个函数主要用来实现(字符串或基本数据类型)向字符串的转换功能。
如果源对象是字符串,并且指定 %s 格式符,也可实现字符串拷贝功能。
3.memcpy 函数顾名思义就是内存拷贝,实现将一个内存块的内容复制到另一个内存块这一功能。
内存块由其首地址以及长度确定。
程序中出现的实体对象,不论是什么类型,其最终表现就是在内存中占据一席之地(一个内存区间或块)。
因此,memcpy 的操作对象不局限于某一类数据类型,或者说可适用于任意数据类型,只要能给出对象的起始地址和内存长度信息、并且对象具有可操作性即可。
鉴于 memcpy 函数等长拷贝的特点以及数据类型代表的物理意义,memcpy 函数通常限于同种类型数据或对象之间的拷贝,其中当然也包括字符串拷贝以及基本数据类型的拷贝。
C/C++经典面试题面试题1:变量的声明和定义有什么区别为变量分配地址和存储空间的称为定义,不分配地址的称为声明。
一个变量可以在多个地方声明,但是只在一个地方定义。
加入extern修饰的是变量的声明,说明此变量将在文件以外或在文件后面部分定义。
说明:很多时候一个变量,只是声明不分配内存空间,直到具体使用时才初始化,分配内存空间,如外部变量。
面试题2:写出bool 、int、float、指针变量与“零值”比较的if语句bool型数据:if( flag ){A;}else{B;}int型数据:if( 0 != flag ){A;}else{B;}指针型数:if( NULL == flag ){A;}else{B;}float型数据:if ( ( flag >= NORM ) && ( flag <= NORM ) ){A;}注意:应特别注意在int、指针型变量和“零值”比较的时候,把“零值”放在左边,这样当把“==”误写成“=”时,编译器可以报错,否则这种逻辑错误不容易发现,并且可能导致很严重的后果。
面试题3:sizeof和strlen的区别sizeof和strlen有以下区别:❑sizeof是一个操作符,strlen是库函数。
❑sizeof的参数可以是数据的类型,也可以是变量,而strlen只能以结尾为‘\0‘的字符串作参数。
❑编译器在编译时就计算出了sizeof的结果。
而strlen函数必须在运行时才能计算出来。
并且sizeof 计算的是数据类型占内存的大小,而strlen计算的是字符串实际的长度。
❑数组做sizeof的参数不退化,传递给strlen就退化为指针了。
注意:有些是操作符看起来像是函数,而有些函数名看起来又像操作符,这类容易混淆的名称一定要加以区分,否则遇到数组名这类特殊数据类型作参数时就很容易出错。
最容易混淆为函数的操作符就是sizeof。
面试题4:C语言的关键字static 和C++ 的关键字static 有什么区别在C中static用来修饰局部静态变量和外部静态变量、函数。
虚函数表与虚表指针
普通函数的处理:一个特定的函数都会映射到特定的代码,无论时编译阶段还是连接阶段,编译器都能计算出这个函数的地址,调用即可。
虚函数的处理:被调用的函数不仅依据调用的特定函数,还依据调用的对象的种类。
通常是由虚函数表(vtable)来实现的。
虚函数表的结构:它是一个函数指针表,每一个表项都指向一个函数。
任何一个包含至少一个虚函数的类都会有这样一张表。
需要注意的是vtable只包含虚函数的指针,没有函数体。
实现上是一个函数指针的数组。
虚函数表既有继承性又有多态性。
每个派生类的vtable继承了它各个基类的vtable,如果基类vtable中包含某一项,则其派生类的vtable中也将包含同样的一项,但是两项的值可能不同。
如果派生类重载(override)了该项对应的虚函数,则派生类vtable的该项指向重载后的虚函数,没有重载的话,则沿用基类的值。
每一个类只有唯一的一个vtable,不是每个对象都有一个vtable,恰恰是每个同一个类的对象都有一个虚函数指针,这个指针指向该类的vtable(当然,前提是这个类包含虚函数)。
那么,每个对象只额外增加了一个指针的大小,一般说来是4字节。
在类对象的内存布局中,首先是该类的vtable指针,然后才是对象数据。
dynamic_cast底层原理
在C++中,dynamic_cast是一种动态转型运算符,用于在运行时进行类型转换,特别是在处理继承关系和多态性的情况下非常有用。
dynamic_cast底层原理涉及到类型信息和虚表(virtual table)的概念。
在编译阶段,编译器会为每个类生成一个type_info对象,该对象存储了类的类型信息,包括类的名称和基类的类型信息。
这些type_info对象以一种层次结构组织,形成了类型的继承关系。
每个类中都会有一个虚表,虚表中存储了该类和其基类的虚函数指针,用于实现多态性。
当使用dynamic_cast进行类型转换时,编译器首先会检查目标类型是否相符,如果不相符则返回nullptr(对于指针类型)或者抛出一个bad_cast异常(对于引用类型)。
如果目标类型是多态的(即含有虚函数),编译器会根据类的虚表来进行类型检查。
在运行时,dynamic_cast会检查源对象指针的类型信息,然后与目标类型的类型信息进行比较。
如果源对象实际的类型与目标类型相符或者是目标类型的派生类,则返回成功转换后的指针或引用;否则返回nullptr(对于指针类型)或者抛出一个bad_cast异常(对于引用类型)。
需要注意的是,dynamic_cast只能用于具有多态性的类层次结构中,即含有虚函数的继承关系。
对于非多态的类,使用dynamic_cast会产生编译错误。
此外,dynamic_cast的运行时开销较大,尽量避免频繁使用。
虚函数表工作原理C++中的虚函数的作用主要是实现了多态的机制。
关于多态,简而言之就是用父类型别的指针指向其子类的实例,然后通过父类的指针调用实际子类的成员函数。
这种技术可以让父类的指针有“多种形态”,这是一种泛型技术。
所谓泛型技术,说白了就是试图使用不变的代码来实现可变的算法。
比如:模板技术,RTTI技术,虚函数技术,要么是试图做到在编译时决议,要么试图做到运行时决议。
关于虚函数的使用方法,我在这里不做过多的阐述。
大家可以看看相关的C++的书籍。
在这篇文章中,我只想从虚函数的实现机制上面为大家一个清晰的剖析。
当然,相同的文章在网上也出现过一些了,但我总感觉这些文章不是很容易阅读,大段大段的代码,没有图片,没有详细的说明,没有比较,没有举一反三。
不利于学习和阅读,所以这是我想写下这篇文章的原因。
也希望大家多给我提意见。
言归正传,让我们一起进入虚函数的世界。
虚函数表对C++ 了解的人都应该知道虚函数(Virtual Function)是通过一张虚函数表(Virtual Table)来实现的。
简称为V-Table。
在这个表中,主是要一个类的虚函数的地址表,这张表解决了继承、覆盖的问题,保证其容真实反应实际的函数。
这样,在有虚函数的类的实例中这个表被分配在了这个实例的内存中,所以,当我们用父类的指针来操作一个子类的时候,这张虚函数表就显得由为重要了,它就像一个地图一样,指明了实际所应该调用的函数。
这里我们着重看一下这张虚函数表。
在C++的标准规格说明书中说到,编译器必需要保证虚函数表的指针存在于对象实例中最前面的位置(这是为了保证正确取到虚函数的偏移量)。
这意味着我们通过对象实例的地址得到这张虚函数表,然后就可以遍历其中函数指针,并调用相应的函数。
听我扯了那么多,我可以感觉出来你现在可能比以前更加晕头转向了。
没关系,下面就是实际的例子,相信聪明的你一看就明白了。
假设我们有这样的一个类:class Base {public:virtual void f() { cout << "Base::f" << endl; }virtual void g() { cout << "Base::g" << endl; }virtual void h() { cout << "Base::h" << endl; }};按照上面的说法,我们可以通过Base的实例来得到虚函数表。
下面是实际例程:typedef void(*Fun)(void);Base b;Fun pFun = NULL;// //得到Vprt的地址,取出它的值就是Vtable的地址,如何取出呢它指向的值呢?//只要把它转换为指针,解引用就可以了//是那种类型的指针呢?//一个指针4字节,故只要是4字节的类型就可以long* vptrAdd=(long*)(&b);cout << "虚函数表地址:" << (int*)(&b) << endl;cout << "虚函数表—第一个函数地址:" << (int*)*(int*)(&b) << endl;// Invoke the first virtual functionpFun = (Fun)*((int*)*(int*)(&b));pFun();实际运行经果如下:(Windows XP+VS2003, Linux 2.6.22 + GCC 4.1.3)虚函数表地址:0012FED4虚函数表—第一个函数地址:0044F148Base::f通过这个示例,我们可以看到,我们可以通过强行把&b转成int *,取得虚函数表的地址,然后,再次取址就可以得到第一个虚函数的地址了,也就是Base::f(),这在上面的程序中得到了验证(把int* 强制转成了函数指针)。
通过这个示例,我们就可以知道如果要调用Base::g()和Base::h(),其代码如下:(Fun)*((int*)*(int*)(&b)+0); // Base::f()(Fun)*((int*)*(int*)(&b)+1); // Base::g()(Fun)*((int*)*(int*)(&b)+2); // Base::h()这个时候你应该懂了吧。
什么?还是有点晕。
也是,这样的代码看着太乱了。
没问题,让我画个图解释一下。
如下所示:注意:在上面这个图中,我在虚函数表的最后多加了一个结点,这是虚函数表的结束结点,就像字符串的结束符“\0”一样,其标志了虚函数表的结束。
这个结束标志的值在不同的编译器下是不同的。
在WinXP+VS2003下,这个值是NULL。
而在Ubuntu 7.10 + Linux 2.6.22 + GCC 4.1.3下,这个值是如果1,表示还有下一个虚函数表,如果值是0,表示是最后一个虚函数表。
下面,我将分别说明“无覆盖”和“有覆盖”时的虚函数表的样子。
没有覆盖父类的虚函数是毫无意义的。
我之所以要讲述没有覆盖的情况,主要目的是为了给一个对比。
在比较之下,我们可以更加清楚地知道其内部的具体实现。
一般继承(无虚函数覆盖)下面,再让我们来看看继承时的虚函数表是什么样的。
假设有如下所示的一个继承关系:请注意,在这个继承关系中,子类没有重载任何父类的函数。
那么,在派生类的实例中,其虚函数表如下所示:对于实例:Derive d; 的虚函数表如下:上图为作者制作此图为VC6.0验证后结果(此时是虚继承基类,而作者不是虚继承)class Base {public:virtual void f() { cout << "Base::f" << endl; }virtual void g() { cout << "Base::g" << endl; }virtual void h() { cout << "Base::h" << endl; }private :int a,b;};class Derive : public virtual Base{public:virtual void f1() { cout << "Derive::f1" << endl; }virtual void g1() { cout << "Derive::g1" << endl; }virtual void h1() { cout << "Derive::h1" << endl; }private:int c,d;};typedef void(*Fun)(void);int main(int argc, char* argv[]){Derive *p = new Derive();//得到Vprt的地址,取出它的值就是Vtable的地址,如何取出呢它指向的值呢?//只要把它转换为指针,解引用就可以了.//是那种类型的指针呢?//一个指针4字节,故只要是4字节的类型就可以long* vptrAdd = (long*)(Base*)p;cout << "虚函数表地址:" << vptrAdd << endl;//得到Vtable的地址,取到它的值,就是具体函数的地址,然后用函数指针保存,就能得到//真实的函数地址.如何得到它的值呢?//把它转换为指针,再解引用就行.int* vtableAddr=(int*)*vptrAdd;cout << "虚函数表 - 第一个函数地址:" << vtableAddr << endl;cout << "虚函数表 - 第二个函数地址:" << vtableAddr+1 << endl;int* funAddr1=(int*)(*vtableAddr);Fun pf1 = (Fun)funAddr1; //base::fpf1();int* funAddr2=(int*)(*(vtableAddr+1));Fun pf2 = (Fun)(funAddr2); //base::gpf2();int* funAddr4=(int*)(*(vtableAddr+4));Fun pf4 = (Fun)funAddr4; //Derive::f1pf4();delete p;return 0;}我们可以看到下面几点:1)虚函数按照其声明顺序放于表中。
2)父类的虚函数在子类的虚函数前面。
我相信聪明的你一定可以参考前面的那个程序,来编写一段程序来验证。
一般继承(有虚函数覆盖)覆盖父类的虚函数是很显然的事情,不然,虚函数就变得毫无意义。
下面,我们来看一下,如果子类中有虚函数重载了父类的虚函数,会是一个什么样子?假设,我们有下面这样的一个继承关系。
为了让大家看到被继承过后的效果,在这个类的设计中,我只覆盖了父类的一个函数:f()。
那么,对于派生类的实例,其虚函数表会是下面的一个样子:我们从表中可以看到下面几点,1)覆盖的f()函数被放到了虚表中原来父类虚函数的位置。
2)没有被覆盖的函数依旧。
这样,我们就可以看到对于下面这样的程序,Base *b = new Derive();b->f();由b所指的内存中的虚函数表的f()的位置已经被Derive::f()函数地址所取代,于是在实际调用发生时,是Derive::f()被调用了。
这就实现了多态。
多重继承(无虚函数覆盖)下面,再让我们来看看多重继承中的情况,假设有下面这样一个类的继承关系。
注意:子类并没有覆盖父类的函数。
对于子类实例中的虚函数表,是下面这个样子:我们可以看到:1)每个父类都有自己的虚表。
2)子类的成员函数被放到了第一个父类的表中。
(所谓的第一个父类是按照声明顺序来判断的)这样做就是为了解决不同的父类类型的指针指向同一个子类实例,而能够调用到实际的函数。
多重继承(有虚函数覆盖)下面我们再来看看,如果发生虚函数覆盖的情况。
下图中,我们在子类中覆盖了父类的f()函数。
下面是对于子类实例中的虚函数表的图:我们可以看见,三个父类虚函数表中的f()的位置被替换成了子类的函数指针。