初三数学中考模拟试题(含答案)
- 格式:docx
- 大小:210.38 KB
- 文档页数:8
中考数学考试模拟卷(含答案解析)一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(3分)﹣3的绝对值是()A.﹣B.3 C.D.﹣32.(3分)冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.3.(3分)节肢动物是最大的动物类群,目前已命名的种类有120万种以上,将数据120万用科学记数法表示为()A.0.12×106B.1.2×107C.1.2×105D.1.2×1064.(3分)正多边形的每个内角为108°,则它的边数是()A.4 B.6 C.7 D.55.(3分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是()A.B.C.D.6.(3分)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM =35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°7.(3分)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2﹣18.(3分)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则cos∠ADC的值为()A.B.C.D.9.(3分)若关于x的分式方程:2﹣=的解为正数,则k的取值范围为()A.k<2 B.k<2且k≠0 C.k>﹣1 D.k>﹣1且k≠010.(3分)下列命题:①(m•n2)3=m3n5②数据1,3,3,5的方差为2③因式分解x3﹣4x=x(x+2)(x﹣2)④平分弦的直径垂直于弦⑤若使代数式在实数范围内有意义,则x≥1其中假命题的个数是()A.1 B.3 C.2 D.4二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.(4.00分)计算:()0﹣1= .12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= .14.(4.00分)不等式组的解集为.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= .16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.[来源:学,科,网]18.(5分)计算:•+4|1﹣|sin60°﹣()﹣1.19.(6分)先化简,再求值:(a﹣)÷,请从不等式组的整数解中选择一个合适的数求值.20.(7分)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)21.(6分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).22.(5分)某学校在本校开展了四项“课后服务”项目(项目A:足球;项目B:篮球;项目C:跳绳;项目D:书法),要求每名学生必选且只能选修其中一项,为了解学生的选修情况,学校决定进行抽样调查,并根据收集的数据绘制了图1和图2两幅不完整的统计图.(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是°;(2)将条形统计图补充完整;(3)若全校共有1200名学生,估计该校选修篮球和跳绳两个项目的总人数.23.(8分)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.参考答案与解析一、选择题1.【分析】应用绝对值的计算方法进行计算即可得出答案.【解答】解:|﹣3|=3.故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的计算方法进行求解是解决本题的关键.2.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:120万用科学记数法表示为:1.2×106.故选:D.4.【分析】方法一:根据相邻的内角与外角互为邻补角求出每一个外角的度数为72°,再用外角和360°除以72°,计算即可得解;方法二:设多边形的边数为n,然后根据多边形的内角和公式(n﹣2)•180°列方程求解即可.【解答】解:方法一:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,方法二:设多边形的边数为n,由题意得,(n﹣2)•180°=108°•n,解得n=5,所以,这个多边形的边数为5.故选:D.5.【分析】根据“每人出8钱,会多出3钱;每人出7钱,又差4钱”,即可得出关于x,y 的二元一次方程组,此题得解.【解答】解:依题意得:.故选:C.6.【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.7.【分析】根据图象的平移规律,可得答案.【解答】解:将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是y=(x﹣1+1)2+1﹣2,即y=x2﹣1.故选:D.8.【分析】由格点构造直角三角形,由直角三角形的边角关系以及圆周角定理可得答案.【解答】解:∵AB为直径,∴∠ACB=90°,又∵点A,B,C都在格点上,∴∠ADC=∠ABC,在Rt△ABC中,cos∠ABC====cos∠ADC,故选:B.9.【分析】先解分式方程可得x=2﹣k,再由题意可得2﹣k>0且2﹣k≠2,从而求出k的取值范围.【解答】解:2﹣=,2(x﹣2)﹣(1﹣2k)=﹣1,2x﹣4﹣1+2k=﹣1,2x=4﹣2k,x=2﹣k,∵方程的解为正数,∴2﹣k>0,∴k<2,∵x≠2,∴2﹣k≠2,∴k≠0,∴k<2且k≠0,故选:B.10.【分析】利用幂的运算性质、方差的计算公式、因式分解的方法、垂径定理及二次根式有意义的条件分别判断后即可确定正确的选项.【解答】解:①(m•n2)3=m3n6,故原命题错误,是假命题,符合题意;②数据1,3,3,5的方差为2,故原命题正确,是真命题,不符合题意;③因式分解x3﹣4x=x(x+2)(x﹣2),正确,是真命题,不符合题意;④平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,符合题意;⑤若使代数式在实数范围内有意义,则x≥1,正确,是真命题,不符合题意,假命题有2个,故选:C.二、细心填一填11.(4.00分)计算:()0﹣1= 0 .【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120 .【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.14.(4.00分)不等式组的解集为x>2 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m 代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b 是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S=AC•BC=m2+6,利用二次函数的性质即可△ABC求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.(5分)计算:•+4|1﹣|sin60°﹣()﹣1.【分析】先化简各式,然后再进行计算即可解答.【解答】解:•+4|1﹣|sin60°﹣()﹣1=2+4×(﹣1)×﹣2=2+2(﹣1)﹣2=2+6﹣2﹣2=4.【点评】本题考查了特殊角的三角函数值,负整数指数幂,绝对值,估算无理数的大小,二次根式的乘除法,实数的运算,准确熟练地化简各式是解题的关键.19.(6分)先化简,再求值:(a﹣)÷,请从不等式组的整数解中选择一个合适的数求值.【分析】先算括号里的异分母分式的减法,再算括号外,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(a﹣)÷=•=•=a(a+2)=a2+2a,,解得:﹣1<a≤2,∴该不等式组的整数解为:0,1,2,∵a≠0,a﹣2≠0,∴a≠0且a≠2,∴a=1,∴当a=1时,原式=12+2×1=1+2=3.【点评】本题考查了分式的混合运算,解一元一次不等式组,准确熟练地进行计算是解题的关键.20.(7分)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)【分析】(1)直接根据概率公式求解即可;(2)画出树状图,共有12个等可能的结果,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的结果有8个,再由概率公式求解即可.【解答】解:(1)吉祥物“冰墩墩”放在区域①的概率是;故答案为:;(2)根据题意画图如下:共有12种等可能的情况数,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域有8种,则吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率是=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).【分析】在Rt△BDE中求出ED,再在Rt△ACM中求出AM,最后根据线段的和差关系进行计算即可.【解答】解:如图,过点C、D分别作BE的平行线交BA的延长线于点M、N,在Rt△BDE中,∠BDE=90°﹣45°=45°,∴DE=BE=14m,在Rt△ACM中,∠ACM=60°,CM=BE=14m,∴AM=CM=14(m),∴AB=BM﹣AM=CE﹣AM=20+14﹣14≈10.2(m),答:AB的长约为10.2m.【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键.22.(5分)某学校在本校开展了四项“课后服务”项目(项目A:足球;项目B:篮球;项目C:跳绳;项目D:书法),要求每名学生必选且只能选修其中一项,为了解学生的选修情况,学校决定进行抽样调查,并根据收集的数据绘制了图1和图2两幅不完整的统计图.(1)本次调查的学生共有200 人;在扇形统计图中,B所对应的扇形的圆心角的度数是108 °;(2)将条形统计图补充完整;(3)若全校共有1200名学生,估计该校选修篮球和跳绳两个项目的总人数.【分析】(1)根据A项目的人数和所占的百分比,求出调查的总人数,再用360°乘以B所占的百分比即可得出答案;(2)用总人数减去其它项目的人数,求出C选项的人数,从而补全统计图;(3)用全校的总人数乘以选修篮球和跳绳两个项目的总人数所占的百分比即可.【解答】解:(1)本次调查的学生共有:30÷15%=200(人),在扇形统计图中,B所对应的扇形的圆心角的度数是:360°×=108°;故答案为:200,108;(2)C项目的人数有:200﹣30﹣60﹣20=90(人),补全统计图如下:(3)根据题意得:1200×=900(人),答:估计该校选修篮球和跳绳两个项目的总人数有900人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.【分析】(1)根据题意和题目中的数据,可以分别写出y甲,y乙关于x的函数关系式;(2)根据(1)中的结果和题意,令0.85x=0.7x+90,求出x的值,再求出相应的y的值,即可得到点A的坐标.(3)根据函数图象和(2)中点A的坐标,可以写出选择去哪个体育专卖店购买体育用品更合算.【解答】解:(1)由题意可得,y=0.85x,甲当0≤x≤300时,y乙=x,当x>300时,y乙=300+(x﹣300)×0.7=0.7x+90,则y乙=;(2)令0.85x=0.7x+90,解得x=600,将x=600代入0.85x得,0.85×600=510,即点A的坐标为(600,510);(3)由图象可得,当x<600时,去甲体育专卖店购买体育用品更合算;当x=600时,两家体育专卖店购买体育用品一样合算;当x>600时,去乙体育专卖店购买体育用品更合算.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.【分析】(1)先判断出BC∥DF,再利用同角的补角相等判断出∠F=∠PCB,即可得出结论;(2)先判断出四边形DHBC是平行四边形,得出BC=DH=1,再用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,即可得出结论.【解答】解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.【分析】(1)由抛物线经过点A可求出c=2,再代入(﹣,0)即可找出2a﹣b+2=0(a ≠0);(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出△ABC为等腰三角形,结合其有一个60°的内角可得出△ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,此题得解;②由①的结论可得出点M的坐标为(x1,﹣+2)、点N的坐标为(x2,﹣+2),由O、M、N三点共线可得出x2=﹣,进而可得出点N及点N′的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N′在直线PM上,进而即可证出PA平分∠MPN.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,[来源:Z。
吉林油田第十二中学初三第三次模拟考试数学试卷*试卷满分120分,时间120分钟*一、选择题(每题2分,共12分)1. 在3,0,-2,四个数中,最小的数是()A. 3 B. 0C. -2D. 2. 下列计算正确的是()A. B. C. D. 3. 某种零件模型如图所示,该几何体(空心圆柱)的俯视图是()A. B. C. D.4. 关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点;乙:函数图像经过第四象限;丙:当时,y 随x 的增大而增大.则这个函数表达式可能是()A. B. C. D. 5. 如图,PA ,PB 是切线,A ,B 为切点,点C 在优弧ACB 上,且,则等于( )(第5题图)A. B. C. D. 6. 如图,平行四边形ABCD 中,分别以点B ,D为圆心,大于的长为半径画弧,两弧交于点M ,223a a a +=()236a a -=()222a b a b =--3=±()1,1-0x >y x =-1y x =2y x =1y x=-O 70APB ∠=︒ACB ∠55︒110︒70︒125︒12BDN ,直线MN 分别交AD ,BC 于点E ,F ,连接BD 、EF ,若,,,则线段BF 的长是( )(第6题图)A. B. C. 3 D. 二、填空题(每题3分,共24分)7. 分解因式:______.8. 原子很小,1个氧原子的直径大约为0.000000000148m ,将0.000000000148用科学记数法表示为______.9. 如图所示,第四套人民币中菊花1角硬币.则该硬币边缘镌刻的正九边形的一个外角的度数为______.(第9题图)10. 已知一元二次方程有两个相等的实数根,则m 的值为______.11. 综合实践课上,小宇设计用光学原理来测量公园假山的高度,把一面镜子放在与假山AC 距离为21米的B 处,然后沿着射线CB 退后到点E ,这时恰好在镜子里看到山头A ,利用皮尺测量米,若小宇的身高是1.6米,则假山AC 的高度为______米.(结果保留整数)(第11题图)12. 若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是______.13. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,H 为BC 中点,,,则线段OH 的长为______.(第13题图)120BAD ∠=︒1AE =2AB=1++3222a a b ab -+=260x x m ++= 2.4BE =︒3AC =4BD =14. 如图,在扇形AOB 中,,半径.将扇形AOB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点C 处,折痕交OA 于点D ,则图中阴影部分的面积为______.(第14题图)三、解答题(每题5分,共20分)15. 先化简,再求值:,其中16. 如图,小妍同学做了一个可以自由转动的均匀转盘,转盘均分为三等份,分别标有1,2,3三个数字,她邀请小嘉同学一起玩游戏,规则如下:转动转盘,转盘停止后,指针指向一个数字所在的扇形得到对应的数字(若指针恰好指在分隔线上,则重转一次,直到指针指向某一个数字为止).(1)小妍转动一次转盘转到数字2的概率是______;(2)小妍同学先转动一次,然后小嘉同学同样转动转盘,再将两人转动的数字相加,如果两个数字的和是奇数则小妍同学胜,否则小嘉同学胜.请利用画树状图或者列表格的方法判断这个游戏对两人公平么?17. 《九章算术》是我国古代经典数学著作,奠定了中国传统数学的基本框架,书中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛,问大、小器各容几何?”译文“今有大容器5个,小容器1个,总容量为3斛;大容器1个、小容器5个,总容量为2斛,问大、小容器的容积各是多少斛?”18. 如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:.四、解答题(每题7分,共28分)19. 如图,在的方格纸中,线段AB 的端点在格点上,请按要求画图.图① 图② 图③90AOB ∠=︒4OA =22424412x x x x x x x -+-÷+-++-2x =OE OF =55⨯(1)如图①,画出一条线段AC ,使,C 在格点上;(2)如图②,画出一条线段EF 使EF 、AB 互相平分,E 、F 均在格点上;(3)如图③,以A 、B 为顶点画出一个四边形,使其是中心对称图形而不是轴对称图形,且顶点均在格点上.20. 2024年3月22日是第32届世界水日,学校开展了节约和保护水资源的知识竞赛,从全校2000名学生中随机抽取部分学生的竞赛成绩进行调查分析,并将成绩(满分:100分)制成如图所示的扇形统计图和条形统计图.请根据统计图回答下列问题:(1)本次调查共抽取了______名学生,这些学生成绩的中位数是______;(2)补全上面不完整的条形统计图;(3)根据比赛规则,98分及以上(含98分)的学生有资格进入第二轮知识竞赛环节,请你估计全校2000名学生进入第二轮知识竞赛环节的人数.21. 在一次课外活动中,某数学兴趣小组测量一棵树CD 的高度.如图所示,测得斜坡BE 的坡度,坡底AE 的长为8米,在B 处测得树CD 顶部D 的仰角为,在E 处测得树CD 顶部D 的仰角为,求树高CD .(结果保留根号)22. 如图,在平面直角坐标系xOy 中,正比例函数与反比例函数的图象交于A ,B 两点,A 点的横坐标为2,轴于点C ,连接BC .(1)求反比例函数的解析式;(2)结合图象,直接写出时x 的取值范围;AC AB =1:4i =30︒60︒2y x =k y x=AC x ⊥2k x x>(3)若点P 是反比例函数图象上的一点,且满足与的面积相等,求出点P 的坐标.五、解答题(每题8分,共16分)23. 已知A 、B 两地之间有一条长300千米的公路,甲车从A 地出发匀速开往B 地,甲车出发两小时后,乙车从B 地出发匀速开往A 地,两车同时到达各自的目的地两车行驶的路程之和y (千米)与甲车行驶的时间x (小时)之间的函数关系如图所示.(1)a 的值为______;(2)求乙车出发后,y 与x 之间的函数关系式;(3)当甲、乙两车相距150千米时,直接写出甲车行驶的时间.24.【推理】如图1,在边长为10的正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连接BE ,CF ,延长CF 交AD 于点G ,BE 与CG 交于点M .图1图2 图3(1)求证:.【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H ,若,求线段DH 的长.【拓展】(3)如图3,在【推理】条件下,连接AM ,则线段AM 的最小值为______.六、解答题(每题10分,共20分)25. 如图,在中,,,动点P 从点A的速度沿AB 向终点B 运动,过点P 作交折线于点Q ,将点P 绕点Q 顺时针旋转至点D ,连结DQ 、PD .设点P 运动的时间为x (s ),与重叠部分图形的面积为.(1)AQ 长为______cm (用含x 的代数式表示);k y x=OPC △ABC △CE DG =6CE =ABC △90ACB ∠=︒4cm AC BC ==PQ AB ⊥AC CB -90︒PQD △ABC △()2cm y(2)当点D落在边BC上时,求x的值;(3)求y关于x的解析式,并写出自变量x的取值范围.26. 在平面直角坐标系xOy中,已知抛物线与x轴交于点,.(1)求抛物线的表达式.(2)若抛物线,当时,y有最大值12,求m的值.(3)若将抛物线平移得到新抛物线,当时,新抛物线与直线有且只有一个公共点,直接写出n的取值范围.参考答案1. C2. B3. C4. D5. A6. D7. 8. 1.48×10−109. 40° 10. 911. 14 12. 120 13. 14.15.解:原式=﹣=﹣+=……………………………………………………………………3分当x=2分16.解:(1);……………………………………………………………………1分(2)根据题意画树状图如下:……………………………………………………………………3分共有9种等可能的情况数,两个数字和是奇数的有4种,则小妍同学胜的概率是;∴小嘉同学胜的概率是,2y x bx c=++()1,0A-()5,0B22y x bx c mx=++-2123m x m-≤≤+2y x bx c=++2y x bx c n=+++23x-<< 1y=()2a a b-544π-2(2)(2)1(2)22x x x xx x x+-+⋅+-+-12xx+-2xx-12x--134959∵,∴这个游戏对两人不公平.……………………………………………………………………5分17.解:设大容器的容积是斛,小容器的容积是斛…………………………………………………1分依题意,得:……………………………………………………………………3分解得:,答:大容器的容积是斛,小容器的容积是斛.……………………………………………………5分18.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,OA =OC ……………………………………………………………………1分∴∠BAO =∠ACD ,即∠EAO =∠FCO ………………………………………………………2分又∵∠AOE =∠COF ,∴△AOE ≌△COF (ASA )……………………………………………………………………4分∴OE =OF .……………………………………………………………………5分19.【答案】如图所示:图① 图② 图③20.(1)故答案为:60,96分;……………………………………………………………………2分(2)解:补全统计图:;………………………………………………5分(3)解:2000×=900(名).答:估计全校2000名学生进入第二轮知识竞赛环节的人数是900名.……………………7分21.解:作于点,设米………………………………………………1分4599<x y 5352x y x y +=⎧⎨+=⎩1324724x y ⎧=⎪⎪⎨⎪=⎪⎩132472418960+BF CD ⊥F DF x =在中,,则(米………………………………………………2分∵,且AE =8∴∴………………………………………………3分在直角中,米,在直角中,,米.………………………………………………4分.解得:, (5)分则米.答:的高度是米.………………………………………………7分22.(1)………………………………………………2分(2)或………………………………………………4分(3)或……………………………………………7分23.(1)600;………………………………………………2分(2)设与之间的函数关系式为,………………………………………………3分由图可知,函数图象经过,,,解得,………………………………………………5分与之间的函数关系式为;………………………………………………6分Rt DBF ∆tan DF DBF BF ∠=tan 30DF BF ==︒)14AB AE =2AB =2CF AB ==DCE ∆(2)DC x CF x =+=+DCE ∆tan DC DEC EC ∠=22)tan 60x EC x +∴==+︒BF CE AE -= 2)8x +=1x =+123)CD =+=CD 3)+8y x=20x -<<2x >()1,8()1,8--y x y kx b =+(2,100)(6,600)∴21006600k b k b +=⎧⎨+=⎩125150k b =⎧⎨=-⎩y ∴x 125150(26)y x x =-≤≤(3)小时或小时.………………………………………………8分24.(1)………………………………………………3分(2)………………………………………………6分(3)………………………………………………7分25.(1)∵AC =BC ,∠ACB =90°∴∠A =45°∵PQ ⊥AB ,∴,∴,故答案为(2)当点D 落在BC 上时,如图①AP =QD =,AQ =,∵AB ⊥PQ ,DQ ⊥PQ ,∴PA ∥DQ ,∴∠DQC =∠BAC =45°,∴△DCQ 为等腰直角三角形∴,QC =x ∵AQ +QC =AC ∴∴图①(3)当时,如图②,PQ =DQ =∴即图②当时,如图③,∵PA =DQ ,PA ∥DQ ,∴四边形PAQD 是平行四边形,1252451435AP =cos AP A AQ ∠=2cos AQ AQ x A ===∠x2x 2x 222)2(2x QC =42=+x x 34=x 403x <≤x 22222121x x x DQ PQ y =⋅=⋅=2x y =234≤<x∴PE ∥AC ,PD =AQ =∴∵∴,∴∴整理得:图③当时,如图④,PB =PQ =∴sin ∠EPQ =,∴∴即图④26.(1)解:把点,代入抛物线得,,解得,x2ABBP AC PE =24442222=+=+=BC AC AB 242244x PE -=x PE -=443)4(2-=--==x x x EF ED 22)43(212121--=⋅-⋅=-=∆∆x x EF ED DQ PQ S S y DEF PQD 81242-+-=x x y 42≤<x x224-PQEQ x x EQ -=-⨯=4)224(45sin 08421)4(212122+-=-=⋅=x x x EP EQ y 84212+-=x x y ()1,0A -()5,0B y 2x bx c =++102550b c b c -+=⎧⎨++=⎩45b c =-⎧⎨=-⎩抛物线表达式为;(2)解:由()知,抛物线,∴抛物线的对称轴为直线,开口向上,∵时,有最大值,最大值只能在或时取得,当时,即,此时,有最大值,即,解得,符合题意;当时,即,此时,有最大值,即,解得,不合,舍去;当,即,当时,有最大值,即,解得,不合,舍去;当,有最大值,即,解得,不合,舍去;综上,的值为;(3)解:由题意得,新抛物线为是把抛物线平移个单位得到的,如图所示:当时,新抛物线与直线相交且有一个交点时,则∴245y x x =--1()22452425y x x mx x m x =---=-+-2x m =+2123m x m -≤≤+y 12∴21x m =-23x m =+232m m +≤+1m ≤-21x m =-y 12()()()2122142215m m m =--+--65m =-221m m +<-3m >23x m =+y 12()()()2122342235m m m =+-++-10m =-21223m m m -≤+≤+13m -≤≤21x m =-y 12()()()2122142215m m m =--+--65m =-23x m =+y 12()()()2122342235m m m =+-++-10m =-m 65-245y x x n =--+245y x x =--||n ①23x -<<1y =485191251n n +-+≥⎧⎨--+≤⎩解得;当抛物线与直线相切时,就是把抛物线,向上平移10个单位,即,的取值范围为或.69n -≤≤②245y x x =--1y =2245(2)9y x x x =--=--10n =n ∴69n -≤≤10n =。
初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7—16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ 的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P 的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2 B.4+ C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON 的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53。
镇海区2024年初三模拟考试试卷数学 学科考生须知:1.全卷共三个大题,24个小题.满分为120分,考试时间为120分钟.2.请将学校、姓名、班级填写在答题卡的规定位置上.3.请在答题卡的规定区域作答,在试卷上作答或超出答题卡的规定区域作答无效.试题卷Ⅰ一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1. 在实数,中,最小的数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了实数的大小比较,根据负数小于0,0小于正数,即可求解.【详解】解:∴最小,故选:D .2. 据统计,2024年春节期间,国内旅游出行474000000人次,其中数474000000用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法表示较大的数的方法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】解:数474000000用科学记数法表示为.故选:C .3. 下列计算正确的是( )102-102-201-<<<2-74.7410⨯747.410⨯84.7410⨯90.47410⨯10n a ⨯1||10a ≤<n n a n 84.7410⨯A. B. C. D. 【答案】C【解析】【分析】本题考查整式的运算.利用合并同类项法则,同底数幂乘法法则,幂的乘方法则,平方差公式逐项判断即可.【详解】解:与不是同类项,无法合并,则选项A 不符合题意;,则选项B 不符合题意;,则选项C 符合题意;,则选项D 不符合题意;故选:C .4. 一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化, 有四个苗圃生产基地投标(单株树的价格都一样). 采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:树苗平均高度(单位:m )标准差甲苗圃1.8 0.2乙苗圃1.8 0.6丙苗圃2.0 0.6丁苗圃2.0 0.2请你帮采购小组出谋划策,应选购( )A. 甲苗圃的树苗B. 乙苗圃的树苗;C. 丙苗圃的树苗D. 丁苗圃的树苗【答案】D【解析】【分析】根据标准差和方差可以反映数据的波动大小,选出合适苗圃的树苗;再比较它们的高度,进而确32a a a-=326a a a ⋅=()236a a =()()2212121a a a +-=-3a 2a 3256a a a a ⋅=≠()236a a =()()2221214121a a a a +-=-≠-定选购哪家的树苗.【详解】由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D .【点睛】考查了标准差,标准差也均称方差,方差是反映一组数据波动大小的特征数,方差越大,数据的波动性越大;方差越小,稳定性越好.5. 若点是第二象限的点,则a 的取值范围是( )A. B. C. D. 或【答案】A【解析】【分析】本题考查了象限内点的坐标特征,解不等式方程组,掌握第二象限内点的坐标特征是解题关键.根据第二象限内的点横坐标小于0,纵坐标大于0,列不等式组求解即可.【详解】解:点是第二象限的点,,解得:,故选:A .6. 如图是一架人字梯,已知米,AC 与地面BC 的夹角为,则两梯脚之间的距离BC 为( )A. 米B. 米C. 米D. 米【答案】A【解析】(),2G a a -a<02a <02a <<a<02a > (),2G a a -020a a <⎧∴⎨->⎩a<02AB AC ==α4cos α4sin α4tan α4cos α【分析】根据等腰三角形的性质得到,根据余弦的定义即可,得到答案.【详解】过点A 作,如图所示:∵,,∴,∵,∴,∴,故选:A .【点睛】本题考查的是解直角三角形的应用,明确等腰三角形的性质是解题的关键.7. 一次数学课上,老师让大家在一张长12cm ,宽5cm 的矩形纸片内,折出一个菱形;甲同学按照取两组对边中点的方法折出菱形见方案一,乙同学沿矩形的对角线AC 折出,的方法得到菱形见方案二,请你通过计算,比较这两种折法中,菱形面积较大的是( ).A. 甲B. 乙C. 甲乙相等D. 无法判断【答案】B【解析】【分析】方案一中,通过图可知四个小直角三角形全等,用矩形面积减去4个小直角三角形的面积,即可得菱形面积;方案二中,两个小直角三角形全等,设菱形边长为x ,在直角三角形中利用勾股定理可求x ,再利用底高可求菱形面积然后比较两者面积大小.12BD DC BC ==AD BC ⊥AB AC =AD BC ⊥BD DC =DC co ACα=cos 2cos DC AC αα=⋅=24cos BC DC α==(EFGH )CAE DAC ∠=∠ACF ACB ∠=∠(AECF )⨯.【详解】解:方案一中,、F 、G 、H 都是矩形ABCD 的中点,≌≌≌,,,,;方案二中,设,则,,,,≌,在中,,,,由勾股定理得,解得,,,,,,故甲乙.E HAE ∴ HDG △△FCG FBE 11111111551222222222HAE S AE AH AB AD =⋅=⨯⨯=⨯⨯⨯⨯= 4HAE ABCD EFGH S S S =- 矩形菱形1512542=⨯-⨯30=BE x =12CE AE x ==-AF EC = AB CD =AE CF =ABE ∴ CDF Rt ABE 5AB =BE x =12AE x =-222(12)5x x -=+11924x =111195955222448ABE S BE AB =⋅=⨯⨯= 2ABE ABCD EFGH S S S =- 矩形菱形595125248=⨯-⨯6025≈-3530=><故选B .【点睛】本题考查菱形的性质、勾股定理以及矩形的性质.注意掌握数形结合思想与方程思想的应用.8. 甲乙两人练习跑步,如果乙先跑10米,甲跑5秒就可追上乙;如果乙先跑2秒,甲跑4秒就可追上乙.设甲速度为x 米/秒,乙的速度为y 米/秒,则可列出的方程组为( )A. B. C. D. 【答案】B【解析】【分析】根据题意,确定等量关系即甲行驶路程等于乙的两次行驶路程的和,列出方程即可,本题考查了二元一次方程组的应用,熟练掌握方程组的应用是解题的关键.【详解】根据题意,得,故选B .9. 二次函数的图象如图所示.下列结论:①;②;③;④若图象上有两点,且,则.其中正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题主要考查了二次函数的图象与性质.依据题意,由抛物线开口向下,从而,又抛物线为,故,再结合抛物线与轴交于负半轴,可得,进而可以判断①;又,从而可以判断②;又当时,,又,故,进而可以判断的551046x y y x =+⎧⎨=⎩551046x y x y=+⎧⎨=⎩510546x y x y+=⎧⎨=⎩551046y x y x=+⎧⎨=⎩551046x y x y =+⎧⎨=⎩2(0)y ax bx c a =++≠0abc >40b a +=0b c +>()11,x y ()22,x y 1204x x <<<12y y <a<022b x a=-=40b a =->y 0c <4b a =-1x =0y a b c =++>a<00b c a +>->③;由抛物线的对称轴是直线,从而当时与当时函数值相等,进而可得当,则,故可以判断④.【详解】解:由题意,抛物线开口向下,.又抛物线为..抛物线与轴交于负半轴,.,故①正确.又,,故②正确.由题意,当时,.又,,故③正确.抛物线的对称轴是直线,当时与当时函数值相等.当,则,故④错误.综上,正确的有:①②③.故选:C .10. 如图,点E 、F 分别是正方形的边、上的点,将正方形沿折叠,使得点B 的对应点恰好落在边上,则的周长等于( )A B. C. D. 【答案】A【解析】.2x =0x =4x =1204x x <<<12y y > <0a ∴22b x a=-=40b a ∴=-> y 0c ∴<0abc ∴>4b a =-40b a ∴+=1x =0y a b c =++>a<00b c a ∴+>-> 2x =∴0x =4x =∴1204x x <<<12y y >ABCD AD BC ABCD EF B 'CD DGB '△2AB ABBF+【分析】本题考查正方形的性质,全等三角形的判定与性质,如图,作,连接,,可证,,根据全等三角形的性质可得,,等量代换即可求解.【详解】解:如图,作,连接,,∵四边形是正方形,∴,由折叠可得,∴,∵ ∴,∴,∴,在和中,∴∴,,在和中,BH A B ''⊥BG BB 'BB C BB H ''≌ BHG BAG ≌ HB CB ''=GH AG =BH A B ''⊥BG BB 'ABCD 90ABC C A ∠=∠=∠=︒BF B F '=90FB A ABC ''∠=∠=︒23∠∠=BHG ∠=90FB A ''∠=︒BH FB ∥24∠∠=3=4∠∠BCB 'V BHB ' 9034BHB C BB BB ∠=∠=︒⎧⎪∠==''∠⎨'⎪⎩()AAS BB C BB H ''≌ BC BH =HB CB ''=Rt BAG Rt BHG BG BG BH AB=⎧⎨=⎩∴,∴,∴,故选:A .试题卷Ⅱ二、填空题(每小题4分,共24分)11. 若分式的值为0,则x 的值是______.【答案】2【解析】【分析】根据分式的值为0,即分母不为0,分子为0得到x-2=0,且x+3≠0,求出x 即可.【详解】解:∵分式的值为0,∴x-2=0,且x+3≠0,∴x=2.故答案为:2.【点睛】本题考查了分式的值为0的条件:分式的值为0,要满足分母不为0,分子为0.也考查了解方程和不等式.12. 分解因式:_____.【答案】【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,首先提取公因式,进而利用平方差公式分解因式即可,正确应用平方差公式是解题关键.【详解】解:,,故答案为:.13. 在平行四边形中,,的平分线交边于点E ,则的长为______.()HL BHG BAG ≌ GH AG =2DGB C DG GH B H B D AD CD AD '''=+++=+= 23x x -+23x x -+24mx m -=()()22m x x +-m ()2244mx m m x -=-()()22m x x =+-()()22m x x +-ABCD 58AB BC ==,B ∠BE AD DE【答案】3【解析】【分析】本题考查平行四边形的性质、等腰三角形的判定和性质.根据平行四边形的性质可得,则,再由角平分线的定义可得,从而求得,则,从而求得结果.【详解】解:∵四边形是平行四边形,∴,∴,∵的平分线交于点E ,∴,∴,∴,∵,∴,故答案为:3.14. 一个圆锥的高为4,母线长为6,则这个圆锥的侧面积是______.【答案】【解析】【分析】本题考查了圆锥的计算.先利用勾股定理计算出这个圆锥的底面圆的半径,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【详解】解:这个圆锥的底面圆的半径,所以这个圆锥的侧面积.故答案为:.15. 有三面镜子如图放置,其中镜子和相交所成的角,已知入射光线经反射后,反射光线与入射光线平行,若,则镜子和相交所成的角AD BC ∥AEB CBE ∠=∠ABE CBE ∠=∠AEB ABE ∠=∠AE AB =ABCD AD BC ∥AEB CBE ∠=∠B ∠BE AD ABE CBE ∠=∠AEB ABE ∠=∠AE AB =58AB BC ==,853DE AD AE BC AB =-=-=-===1262π=⨯⨯=AB BC 110ABC ∠=︒EF ,,AB BC CD EF AEF α∠=BC CD______.(结果用含的代数式表示)【答案】【解析】【分析】本题考查了入射角和反射角、平行线以及三角形内角和等知识,解题的关键在于正确画出辅助线【详解】根据入射光线画出反射光线,交于点,同理根据入射光线画出反射光线,交于点,根据入射光线画出反射光线,过点作的平行线,使得.入射角等于反射角入射角等于反射角根据入射角等于反射角,可知:的BCD ∠=α90α︒+FE EG BC G EG GH CD H GH HK G EF GP EF HK BEG AEF α∴∠=∠=1802GEF α∴∠=︒-110ABC ∠=︒18011070BGE αα∴∠=︒-︒-=︒- 70HGC BGE α∴∠=∠=︒-()180270402EGH αα∴∠=︒-⨯︒-=︒+GP EF HK180,180GEF EGP PGH GHK ∴∠+∠=︒∠+∠=︒402EGP PGH EGH α∠+∠=∠=︒+ 360GEF EGH GHK ∴∠+∠+∠=︒()()3601802402140GHK αα∴∠=︒-︒--︒+=︒()1180140202GHC KHD ∠=∠=︒-︒=︒18090BCD CGH GHC α∴∠=︒-∠-∠=︒+故答案为:.16. 如图,已知矩形,过点A 作交的延长线于点E ,若,则______.【解析】【分析】利用矩形的性质,证明,,,变形计算,结合勾股定理,解方程,正切函数解答即可.【详解】∵矩形,∴,∴,,∵,∴,∴,,∴,∴,∴,∴,90α︒+ABCD AE AC ⊥CB AED ACB ∠=∠2tan BAE ∠=1-ADF CEF △∽△ADE FEC ∽BAE BCA △△∽ABCD ,,90,AD BC AB CD ABC BCD AD BC ==∠=∠=︒ ADF CEF △∽△ADE CEF ∠=∠AED ACB ∠=∠ADE FEC ∽AD DF EC EF=EF EC AD ED =AD ED EF EC EF-=ED EC EF AD EC =+ ()·ED EC EC AD AD EC ED=+22ED AD AD EC =+根据勾股定理,得,∴,∴,∴,∴,∵,∴,∵,∴,∴,∴,∴,解得,解得(舍去),∵∴,.【点睛】本题考查了矩形的性质,三角形相似的判定和性质,勾股定理,正切函数,直角三角形的性质,解方程,熟练掌握三角形相似的判定和性质,正切函数,勾股定理,解方程是解题的关键.三、解答题(第17-19题每小题6分,第20、21题每小题8分,第22、23题每小题10分,第24题12分,共66分)17. 计算:(1)222ED CD EC =+222CD EC AD AD EC +=+ ()()222·AB EB BC BC BC EB BC ++=++222222AB EB EB BC BC BC EB BC BC +++=++ 2220AB EB EB BC BC ++-= AE AC ⊥90BAE AEB BCA ∠︒-∠=∠=90ABE CBA ∠∠=︒=BAE BCA △△∽AB BE BC AB=2AB BE BC = 2220EB EB BC BC +-= (1EB BC ==-±1,1EB EB BC BC=-=tan BE BAE AB ∠=2222tan 1BE BE BE BAE AB BE BC BC ∠====- 102212024(3)33-+-⨯--(2)先化简,再求值:,其中【答案】(1) (2),2【解析】【分析】本题主要考查了实数的运算,整式的化简求值,对于(1),根据,,,,再根据有理数运算法则计算;对于(2),先根据整式的乘法法则及公式化简,再代入求值即可.【小问1详解】;【小问2详解】原式.当时,原式.18. 某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分10分,成绩均记为整数分),并按测试成绩m (单位:分)分成四类:类,类,类,类,绘制出如图两幅不完整的统计图,请根据图中信息,解答下列问题:(1)本次抽样调查的人数为______,并补全条形统计图:(1)(1)(2)x x x x +-++12x =5312x +020241=2(93)-=2139-=1133-=02212024(3)33-+-⨯--111993=+⨯-213=+53=2212x x x=-++12x =+12x =11222=+⨯=A (10)m =B (79)m ≤≤C (46)m ≤≤D (3)m ≤(2)扇形统计图中A 类所对的圆心角是______°,测试成绩的中位数落在______类;(3)若该校九年级男生有500名,请估计该校九年级男生“引体向上”项目成绩为A 类或B 类的共有多少名?【答案】(1)50人,图见解析(2)72,B (3)估计该校九年级男生“引体向上”项目成绩为类或类的约有320名.【解析】【分析】本题考查条形统计图,扇形统计图,用样本估计总体,中位数;通过统计图之间的联系求出样本容量是解题的关键.(1)由统计图之间的联系求出样本容量,进一步求出组人数,补齐图形;(2)由组的占比求出对应圆心角;根据中位数定义,可知第25,26个数在组,故中位数在组;(3)由样本占比估计总本的人数.【小问1详解】解:本次抽样调查的人数为(人),组人数为(人),补全的条形统计图如图;故答案为:50人;【小问2详解】解:类所对的圆心角是;样本量为50,可知数据从大到小排列,第25,26个数在组,故中位数在类;故答案为:72,;小问3详解】解:类或类的共有(名),答:估计该校九年级男生“引体向上”项目成绩为类或类的共有320名.19. 如图,直线与双曲线相交于点.【A B C A B B 1020%50÷=C 501022315---=A 36020%72︒⨯=︒B B B A B 500(20%44%)320⨯+=A B y kx b =+(0)m y x x=>()()2,6,1A n B(1)求直线及双曲线对应的函数表达式;(2)直接写出关于x 的不等式的解集;(3)求的面积.【答案】(1)直线:,双曲线: (2)(3)8【解析】【分析】本题主要考查了一次函数,反比例函数的交点坐标,将点的坐标代入函数关系式是确定函数关系式的常用方法,理解交点坐标与不等式解集之间的关系是解本题的关键.(1)将代入到反比例函数解析式可得其解析式;先根据反比例函数解析式求得点的坐标,再由,坐标可得直线解析式;(2)根据图象得出不等式的解集即可;(3)设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,根据题意可得,,从而求出,和,进而求出的值.【小问1详解】把代入,得:,∴反比例函数的解析式为;把代入,得:,∴,(0)m kx b x x +>>ABO 142y x =-+6(0)y x x =>26x <<()6,1B ()2,3A A B (0)m kx b x x+>>C D A B AE y ⊥E BF x ⊥F 2,1AE BF ==48OC OD ==,AOC S BOD S COD S △AOB S ()6,1B m y x=6m =6y x=()2,A n 6y x =3n =()2,3A把、代入,得:,解得:,∴一次函数的解析式为;故答案为:;.【小问2详解】由图象可知当时,,∴不等式的解集是,【小问3详解】设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,∵、,∴,∵一次函数的解析式为,当时,,当当时,,解得,,∴点C 的坐标是,点D 的坐标是∴.∴,,()2,3A ()6,1B y kx b =+2361k b k b +=⎧⎨+=⎩124k b ⎧=-⎪⎨⎪=⎩142y x =-+5y x =-+4y x =26x <<(0)m kx b x x+>>(0)m kx b x x+>>26x <<C D A B AE y ⊥E BF x ⊥F ()2,3A ()6,1B 2,1AE BF ==142y x =-+0x =4y =0y =1042x =-+8x =()0,4()8,048OC OD ==,114,422AOC BOD S OC AE S OD BF =⋅==⋅= 1162COD S OC OD =⋅=△∴.20. 如图,已知和均是等边三角形,F 点在上,延长交于点D ,连接.(1)求证:四边形是平行四边形;(2)当点D 在线段上什么位置时,四边形是矩形?请说明理由.【答案】(1)见解析(2)当点D 在中点时,四边形是矩形,见解析【解析】【分析】本题考查了等边三角形的性质,平行四边形的判定与性质,矩形的判定等知识.熟练掌握等边三角形的性质,平行四边形的判定与性质,矩形的判定是解题的关键.(1)由和均是等边三角形,可得,则,进而可证四边形是平行四边形;(2)由,点D 在中点,可得,则,可证四边形是平行四边形,由,可证四边形是矩形.【小问1详解】证明:∵和均是等边三角形,∴,∴,∴四边形是平行四边形;【小问2详解】解:当点D 在中点时,四边形是矩形,理由如下;∵,点D 在中点,∴,∵四边形是平行四边形,∴,∴,∵,16448AOB COD AOC BOD S S S S =--=--= ABC AEF △AC EF BC AD CE ,ABDE BC ADCE BC ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE AB AC =BC AD BC BD CD ⊥=,AE CD =ADCE AD BC ⊥ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE BC ADCE AB AC =BC AD BC BD CD ⊥=,ABDE AE BD =AE CD =AE CD ∥∴四边形是平行四边形,∵,∴四边形是矩形.21. 如图的正方形网格中,每个小正方形的边长均为,的各个顶点都在格点上.(1)在边上作一点,使得的面积是,并求出的值;(2)作出边上的高,并求出高的长.(说明:只能使用没有刻度尺的直尺进行作图,并保留画图痕迹)【答案】(1)画图见解析,; (2)见解析,.【解析】【分析】()根据网格特征作即可;()根据网格特征作即可,本题考查了无刻度尺的直尺作图—作垂线,熟练掌握无刻度尺的直尺作图的方法是解题的关键.【小问1详解】如图,由网格的特征可知:,∴,∴,∴面积为,∴即为所求;ADCE AD BC ⊥ADCE 1ABC BC M ABM 83BM CMAC BD BD 12BM CM =165BD =112BM CM =2BD AC ⊥BG CH ∥CHM BGM ∽12BG BM CH CM ==ABM 1118443323ABC S =⨯⨯⨯= ABM【小问2详解】如图,根据网格作垂线的方法即可,∴即为所求,由网格的特征可知:,∴,∴.22. 星期日上午,小明从家里出发步行前往离家的镇海书城参加读书会活动,他以的速度步行了后发现忘带入场券,于是他停下来.打电话给家里的爸爸寻求帮助,爸爸骑着自行车从家里出发,沿着同一路线以的速度行进,同一时刻小明继续按原速步行赶往目的地.爸爸追上小明后载上他以相同的车速前往书城(停车载人时间忽略不计),到达书城后爸爸原速返回家.爸爸和小明离家的路程与小明所用时间的函数关系如图所示.(1)求爸爸在到达镇海书城前,他离开家的路程s 关于t 的函数表达式及a 的值.(2)爸爸出发后多长时间追上小明?此时距离镇海书城还有多远?【答案】(1),(2)爸爸出发3分钟后追上小明,此时距离镇海书城1275米【解析】【分析】本题考查一次函数的应用以及路程、速度、时间之间关系的应用,关键是用待定系数法求出函数解析式.(1)根据爸爸行驶的路程和爸爸的速度,求出爸爸到达书城所用时间,再根据待定系数法求函数解析式,再求出的值;BD 5AC ==1144522ABC S BD =⨯⨯=⨯⨯ 165BD =9:00 2.4km 75m/min 12min 9:15375m/min ()m s ()min t 3755625s t =-27.8a =a(2)设爸爸出发后分钟追上小明,根据两人路程相等列出方程,解方程求出,并求出距离书城的距离.【小问1详解】解:爸爸到达达镇海书城所用时间为,设爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为,把,代入,得:,解得,爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为;爸爸的速度不变,他返回家的时间和到达书城的时间均为,;【小问2详解】设爸爸出发后分钟追上小明,则,解得,此时,,答:爸爸出发后3分钟追上小明,此时距离镇海书城还有1275米.23. 根据以下素材,探索完成任务.设计跳长绳方案素材1:某校组织跳长绳比赛,要求如下:(1)每班需报名跳绳同学9人,摇绳同学2人;(2)跳绳同学需站成一路纵队,原地起跳,如图1.素材2:某班进行赛前训练,发现:(1)当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.已知摇绳同学之间水平距离为,绳子最高点为,摇绳同学的出手高度均为,如图x x 2400 6.4(min)375=s t s kt b =+(15,0)(21.4,2400)s kt b =+15021.42400k b k b +=⎧⎨+=⎩3755625k b =⎧⎨=-⎩∴s t 3755625s t =- ∴ 6.4min 152 6.427.8a ∴=+⨯=x 37575(12)x x =+3x =240037531275(m)-⨯=6m 2m 1m2;(2)9名跳绳同学身高如右表.【答案】任务1:;任务2:当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:方案可行【解析】【分析】本题考查了二次函数的应用,任务1:建立平面直角坐标系,待定系数法求解析式,即可求解;任务2,得出最右侧同学横坐标为代入解析式,结合按照排列方式可知最右(左)侧同学屈膝后身高即可求解;任务3,求得平移后的抛物线解析式,进而将代入,结合题意,即可求解.【详解】解:任务1:以两个摇绳人的中点所在直线与地面的交点为原点,地面所在直线为轴,建立直角坐标系,如图:由已知可得,在抛物线上,且抛物线顶点的坐标为,设抛物线解析式为,∴,解得:,∴抛物线的函数解析式为:任务2:∵抛物线的对称轴为直线,名同学,以轴为对称轴,分布在对称轴两侧,将同学按“中间高,两边低”的方式对称排列,同时保持的间距,则最右边侧的同学的坐标为即,当时,的21129y x =-+()1.8,1.7 1.8x =x ()()3,1,3,1-()0,222y ax =+192a =+19a =-21129y x =-+3x =9y 0.45m ()0.454,1.70⨯()1.8,1.71.8x =211.82 1.649y =-⨯+=按照排列方式可知最右(左)侧同学屈膝后身高:∴当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:∵当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.设开口向上的抛物线解析式为,对称轴为直线,则的顶点坐标为,∵,的开口大小不变,开口方向相反,∴当绳子摇至最低处时,抛物线的解析式为:∵将出手高度降低至.∴抛物线向下平移∴改变方案后的抛物线解析式为将,代入因此,方案可行24. 如图1,已知四边形内接于,且为直径.作交于点E ,交于点F .(1)证明:;(2)若,,求半径r ;(3)如图2,连接并延长交于点G ,交于点H .若,.①求;②连接,设,用含x 的式子表示的长.(直接写出答案)【答案】(1)见解析 (2) (3)①;②191.70 1.615 1.6420⨯=<2y1y =2y ()0,01y 2y 2219y x =-0.85m 10.850.15-=2310.159y x =--1.8x =223110.15 1.80.150.210.2599y x =-=⨯-=<ABCD O BD AF BC ∥CD O AF CD ⊥4cos 5DAF ∠=4AC =BE DF O AF CD =AEB BDC ∠=∠tan BDC ∠OE OE x =GH 52r =1tan 2BDC ∠=GH x =【解析】【分析】(1)根据圆周角定理得出,根据平行线的得出,即可证明结论;(2)证明,得出,根据,得出,根据,求出结果即可;(3)①过点O 作于点P ,于点Q ,证明矩形是正方形,设,,得出,,证明,得出,求出,得出;②连接,证明,得出,即,求出,证明,得出,根据,得出,证明,得出,证明,得出【小问1详解】证明:∵为直径,∴,∵,∴,即.【小问2详解】解:∵,∴,又∵,∴,90BCD ∠=︒90AED BCD ∠=∠=︒AEC DAB ∽ AC AE BD AD =4cos 5AE DAF AD ∠==45AC BD =4AC =OP DC ⊥OQ AF ⊥OPEQ OP a PE ==CE b =2BC a =()22CD PC a b ==+BEC DBC ∽ 2BC CE CD =⋅1b a =1tan 2OP a BDC DP a b ∠===+HF ODP MDE ∽OP DP ME DE ==ME x =AMN CBN ∽ 37AN AC x ==ODP MDE ∽CEB CBD ∠∠=DEG DAN ∽ AN AD EG DE ==EG AN ==ABE HFE ∽ EH AE ==BD 90BCD ∠=︒AF BC ∥90AED BCD ∠=∠=︒AF CD ⊥AF BC ∥EAC ACB ∠=∠ACB ADB Ð=ÐEAC ADB ∠=∠∵,∴,∴,∴,∴,∵,∴,即.【小问3详解】①如图2,过点O 作于点P ,于点Q ,如图所示:∵,∴四边形是矩形,∵,∴,∴矩形是正方形设,,∵,∴,∵,90AEC BAD ∠=∠=︒AEC DAB ∽ AC AE BD AD=4cos 5AE DAF AD ∠==45AC BD =4AC =5BD =52r =OP DC ⊥OQ AF ⊥90OPE PEQ OQE ∠=∠=∠=︒OPEQ AF CD =OP OQ =OPEQ OP a PE ==CE b =OP CD ⊥DP CP =DO OB =∴,,∵,∴,∵,∴,∵,∴,∴,∴,即:,解得:,∴;②如图,连接,由(3)①得,四边形为正方形,2BC a =()22CD PC a b ==+AF BC ∥AEB EBC ∠=∠AEB BDC ∠=∠EBC BDC ∠=∠BCE BCD ∠=∠BEC DBC ∽ BC EC DC BC=2BC CE CD =⋅()()222a b a b =⋅+1b a=1tan 2OP a BDC DP a b ∠===+HF OPEQ∵,∴,由,得,∴,∴,,∵,,∴为等腰直角三角形,∴,,∴,∵,,∴,∴,,解得:,∴,∵,∴,∴,∴,OE x =OP PE QE x ===1tan 2BDC ∠=DP =CP DP ==CE CP EP x =-=CD =AF CD =AF CD ⊥ADE V x AE DE ==EF CE x ==AC ==90OPD DEM ∠=∠=︒ODP MDE ∠=∠ODP MDE ∽OP DP ME DE==ME x =AM AE ME x x x =-==AF BC ∥AMN CBN ∽ 34AN AM NC BC ===37AN AC x ==∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∴∴,∵,∴,∵,∴,∴∴,∴.【点睛】本题主要考查了相似三角形的判定和性质,勾股定理,圆周角定理,等腰三角形的判定和性质,ODP MDE ∽CEB CBD∠∠= CDCD =CBD CAD ∠=∠CEB DEG ∠=∠DAN DEG ∠=∠ CFCF =EDG CAE ∠=∠AF BC ∥CAE ACB ∠=∠ AB AB =ADN ACB ∠=∠ADN EDG ∠=∠DEG DAN ∽ AN AD EG DE==EG AN x == BFBF =EAB EHF ∠=∠AEB HEF ∠=∠ABE HFE ∽ EH EF AE BE ==EH AE ==GH EH EG x =-=解题的关键是熟练掌握相关的判定和性质,数形结合,作出辅助线.。
九年级中考数学二模考试试题满分150分 时间:120分钟一、单选题。
(每小题4分,共40分) 1.|﹣2023|等于( )A.-2024B.﹣2023C.2024D.20232.如图是由5个相同的正方体搭成的几何体,这个几何体的主视图是( )3.“有一种三体文明距地球大约400 000 000千米,它们之间被大量氢气和暗物质纽带连接,看起来似乎是连在一起的三体星系,其中“400 000 000”用科学记数法表示为( ) A.4×108B.4×106C.0.4×108D.4000×1044.如图,两条直线a ,b 被第三条直线l 所截,若a ∥b ,∠1=55°,则∠2的度数为( ) A.55° B.105° C.125° D.135°(第3题图) (第9题图) (第10题图) 5.下列运算正确的是( )A.(3a 2)3=9a 6B.a 3÷a 3=aC.a 2+a 2=a 4D.a 2•a 3=a 5 6.化简m -1m÷m -1m 2的结果是( )A.mB.1m C.m -1 D.1m -17.一个不透明的口袋中有三个完全相同的小球,分别标号为1,2,3,随机摸取一个小球然后放回,再随机摸取一个球,则两次取出的小球标号相同的概率为( ) A.29 B.19 C.13 D.498.在同一平面直角坐标系中,函数y=kx-k与y=kx的大致图象可能是()9.在平面直角坐标系中,矩形ABCD的边BC在x轴上,O为线段BC的中点,矩形ABCD的顶点D(2,3),连接AC按照下列方法作图:(1)以点C为圆心,适当的长度为半径画弧分别交CA,CD于点E,F;(2)分别以E,F为圆心,大于12EF的长为半径画弧交于点G;(3)做射线CG交AD于H,则线段DH的长为()A.158 B.1 C.32D.5410.如图,抛物线y=x2+2x与直线y=x+2交于A,B两点,与直线x=2交于点P,将抛物线沿着射线AB平移3√2个单位,在整个平移过程中,点P经过的路程为()A.6B.132 C.254D.14二.填空题。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟.一、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)22.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x24.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角8.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>09.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.2110.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是.13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为.三、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?参考答案四、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)2【解答】解:A、原式=﹣6,符合题意;B、原式=1,不符合题意;C、原式=5,不符合题意;D、原式=1,不符合题意.故选:A.2.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.【解答】解:从上面看,底层右边是一个小正方形,上层是两个小正方形.故选:B.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x2【解答】解:A,x3+x2≠x5,故A运算错误;B,(x3)2=x3×2=x6,故B运算错误;C,(x+y)2=x2+2xy+y2,故C运算错误;D,3x2+2x2=5x2,故D运算正确.故选:D.4.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角【解答】解:矩形具有而菱形不一定具有的性质是对角线相等,故选:B.5.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.【解答】解:根据题意画图如下:共有20种等情况数,其中两次摸出的球上的汉字是“不”“停”的有4种,则随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是=;故选:D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°【解答】解:∵A为中点,∴,∵AB=CD,∴,∴,∴∠ADB=∠CBD=∠ABD,∵∠ABC+∠ADC=180°,∴∠ADB+∠CBD+ABD=180°﹣∠BDC=180°﹣54°=126°,∴3∠ADB=126°,∴∠ADB=42°.故选:A.7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人【解答】解:由直方图可知,成绩低于60分的人数是1+2=3,故选:A.8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>0【解答】解:由a,b所表示的数在数轴上的位置可知,a<0且|a|>1,b>0且0<|b|<1,则ab<0,a+b<0则选项C,D不正确;∵b>0,﹣a>0,∴b﹣a=b+(﹣a)>0,则选项A不正确;∵a<0且|a|>1,b>0且0<|b|<1,∴0<|b﹣1|<1,∴|a|>1>|b﹣1,故选项B正确.故选:B.9.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.21【解答】解:连接OC,∵点O是边BC,AC的垂直平分线的交点,∴OB=OC,OA=OC,∴OA=OB,∵OB=5,∴OA=OB=5,∵AB=8,∴△AOB的周长是AB+OA+OB=8+5+5=18,故选:C.10.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3【解答】解:由二次函数y=ax2+bx+1知c=1,即二次函数和y轴交于点(0,1),而二次函数图象与x轴没有交点,故抛物线开口向上,点B、C的纵坐标相同,则二次函数的对称轴为直线x=(﹣3+1)=﹣1,而点离函数对称轴的距离从大到小的顺序是D、B(C)、A,故y3>y2>y1,故选:B.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是(﹣3,﹣1).【解答】解:如图所示:棋子③的坐标是(3,﹣1).故答案为:(3,﹣1).13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.【解答】解:根据题意画图如下:共有42种等情况数,其中摸出两个球为一个黑球和一个白球的有24种,则随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是=;故答案为:.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是16.【解答】解:∵PA、PB、EF分别与⊙O相切于点A、B、C,∴AE=CE,FB=CF,PA=PB=8,∴△PEF的周长=PE+EF+PF=PA+PB=16.故答案为:16.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为12.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵BD为AC边上的中线,∠ABC=90°,∴BD=DF=AC,∴四边形BGFD是菱形,∴BD=DF=GF=BG=10,则AF=AG﹣GF=26﹣10=16,AC=2BD=20,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即162+CF2=202,解得:CF=12.故答案是:12.六、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.【解答】解:(1)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(2)由题意得m﹣6=0,n﹣8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.【解答】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p==;(2)∵当温度大于等于25℃时,需求量为500,Y=450×2=900元;当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元;当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元;∴当温度大于等于20时,Y>0,∵由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P==.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DE,EF分别是△ABC 的中位线,∴DE∥AC,EF∥AB,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形;(2)解:∵D是AB的中点,F是AC的中点,AB=10cm,AB=AC,∴AD=AF=AB=5(cm),∵四边形ADEF是平行四边形,∴四边形ADEF是菱形,∴四边形ADEF的周长为4AD=4×5=20(cm).19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.【解答】解:(1)任选一个景点,选中以人文景观为主的概率为=;(2)把自然风光记为A,人文景观记为B,画树状图如图:共有24个等可能的结果,亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的结果有4个,∴亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率为=.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【解答】解:(1)设计划调配36座新能源客车x辆,该校共有y名走读生.由题意,得,解得,答:计划调配36座新能源客车6辆,该校共有218名走读生.(2)设36座和22座两种车型各需m,n辆.由题意,得36m+22n=218,且m,n均为非负整数,经检验,只有m=3,n=5符合题意.答:需调配36座客车3辆,22座客车5辆.21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【解答】解:(1)由题意可知:∠BAD=18°,在Rt△ABD中,AB=18≈≈5.6(m),答:应在地面上距点B约5.6m远的A处开始斜坡的施工;(2)能,理由如下:如图,过点C作CE⊥AD于点E,则∠ECD=∠BAD=18°,在Rt△CED中,CE=CD•cos18°≈2.8×0.95=2.66(m),∵2.66>2.5,∴能保证货车顺利进入地下停车场.22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.【解答】解:(1)∵点C(1,m)在一次函数y=x+3的图象上,∴m=1+3=4;(2)设一次函数图象l2相应的函数表达式为y=kx+b,把点A(3,0),C(1,4)代入得,解得,∴一次函数图象l2相应的函数表达式y=﹣2x+6;(3)∵一次函数y=x+3的图象l1与x轴交于点B,∴B(﹣3,0),∵A(3,0),C(1,4),∴AB=6,∴S△ABC=×6×4=12.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.【解答】(1)证明:如图1,连接BF,∴∠AFB=∠C,∵∠C=∠E,∴∠AFB=∠E,∴BF∥DE,∵DE为⊙O的切线,AD为⊙O的直径,∴AD⊥DE,∴AD⊥BF,∴AD平分BF,∴AB=AF;(2)解:如图2,连接BD,∴∠C=∠ADB,∵∠C=∠E,∴∠ADB=∠E,∵AD为⊙O的直径,∴∠ABD=90°,∴∠ABD=∠ADE,∴△ABD∽△ADE,∴=,∴AE=,∴DE==.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.【解答】解:(1)y=mx2+(m2﹣m)x﹣2m+1顶点D的横坐标为1,∴=1,解得m=﹣1,∴二次函数的表达式为y=﹣x2+2x+3,令y=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)过B作BH⊥AC于H,过F作FG⊥y轴于G,如图:∵二次函数y=﹣x2+2x+3与y轴交点C(0,3),且A(﹣1,0),B(3,0),∴AB=4,OC=3,AC=,BC=3,∵S△ABC=AB•OC=AC•BH,∴BH=,Rt△BHC中,sin∠HCB===,Rt△EFC中,EF=CF•sin∠HCB=CF,∴FE=•CF=CF,设P(n,﹣n2+2n+3),由B(3,0),C(0,3)得BC解析式为y=﹣x+3,∴△BCO是等腰直角三角形,F(n,﹣n+3),∴△GFC是等腰直角三角形,GF=n,∴CF=GF=n,∴CF=2n,即FE=2n,∴m=PF+FE=PF+2n=(﹣n2+2n+3)﹣(﹣n+3)+2n=﹣n2+5n,∴当n==时,m最大,最大为﹣()2+5×=,此时P(,);(3)直线y=kx+k﹣6总过(﹣1,﹣6),k<0时,它和新图象G不可能有4个公共点,如图:k>0时,若二次函数的表达式为y=﹣x2+2x+3刚好经过B(3,0),由(﹣1,﹣6),B(3,0)可得直线解析式为y=x﹣,此时直线y=x﹣与新图象G有3个交点,∴直线y=kx+k﹣6与新图象G有4个公共点,需满足k<,而抛物线y=﹣x2+2x+3关于x轴对称的抛物线解析式为y=x2﹣2x﹣3,若直线y=kx+k﹣6与抛物线y=x2﹣2x﹣3有两个交点,即是有两组解,∴x2﹣(2+k)x+3﹣k=0有两个不相等的实数根,∴△>0,即[﹣(2+k)]2﹣4(3﹣k)>0,解得k>﹣4+2或k<﹣4﹣2(小于0,舍去),∴k>﹣4+2,因此,直线y=kx+k﹣6与新图象G有4个公共点,﹣4+2<k<.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。
2024届浙江省金华市兰溪市中考数学全真模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC2.将抛物线绕着点(0,3)旋转180°以后,所得图象的解析式是().A.B.C.D.x的取值范围是()32xA.x>0 B.x≥0C.x≠0D.任意实数4.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a值为()A.1 B.﹣1 C.±1 D.05.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为()A.﹣1 B.0 C.1或﹣1 D.2或06.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣77.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定8.如图,在△ABC 中,AB=AC=5,BC=8,D 是线段BC 上的动点(不含端点B ,C).若线段AD 长为正整数,则点D 的个数共有( )A .5个B .4个C .3个D .2个9.如图,矩形OABC 有两边在坐标轴上,点D 、E 分别为AB 、BC 的中点,反比例函数y =kx(x <0)的图象经过点D 、E .若△BDE 的面积为1,则k 的值是( )A .﹣8B .﹣4C .4D .810.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为( ) A .28×109B .2.8×108C .2.8×109D .2.8×1010二、填空题(共7小题,每小题3分,满分21分)11.ABCD 为矩形的四个顶点,AB =16 cm ,AD =6 cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm/s 的速度向D 移动,P 、Q 两点从出发开始到__________秒时,点P 和点Q 的距离是10 cm.12.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .13.小亮同学在搜索引擎中输入“叙利亚局势最新消息”,能搜到与之相关的结果的个数约为 3550000,这个数用科学记数法表示为 .14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____. 15.抛物线y=2x 2+4x ﹣2的顶点坐标是_______________.16.如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)17.如图,在每个小正方形边长为1的网格中,ABC △的顶点A ,B ,C 均在格点上,D 为AC 边上的一点.线段AC 的值为______________;在如图所示的网格中,AM 是ABC △的角平分线,在AM 上求一点P ,使CP DP +的值最小,请用无刻度的直尺,画出AM 和点P ,并简要说明AM 和点P 的位置是如何找到的(不要求证明)___________. 三、解答题(共7小题,满分69分)18.(10分)计算:01113(π3)3tan30()2----+-.19.(5分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B :46.5~53.5;C :53.5~60.5;D :60.5~67.5;E :67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg 至53kg 的学生大约有多少名.20.(8分)如图,半圆O 的直径AB =5cm ,点M 在AB 上且AM =1cm ,点P 是半圆O 上的动点,过点B 作BQ ⊥PM 交PM (或PM 的延长线)于点Q .设PM =xcm ,BQ =ycm .(当点P 与点A 或点B 重合时,y 的值为0)小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表: x /cm 1 1.5 2 2.5 3 3.5 4 y /cm3.7______3.83.32.5______(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ 与直径AB 所夹的锐角为60°时,PM 的长度约为______cm .21.(10分) “六一”期间,小张购述100只两种型号的文具进行销售,其中A 种型号的文具进价为10元/只,售价为12元,B 种型号的文具进价为15元1只,售价为23元/只. (1)小张如何进货,使进货款恰好为1300元? (2)如果购进A 型文具的数量不少于B 型文具数量的910倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?22.(10分)如图,⊙O 的半径为4,B 为⊙O 外一点,连结OB ,且OB =6.过点B 作⊙O 的切线BD ,切点为点D ,延长BO 交⊙O 于点A ,过点A 作切线BD 的垂线,垂足为点C . (1)求证:AD 平分∠BAC ; (2)求AC 的长.23.(12分)小马虎做一道数学题,“已知两个多项式24A x x =-,2234B x x =+-,试求2A B +.”其中多项式A 的二次项系数印刷不清楚.小马虎看答案以后知道2228A B x x +=+-,请你替小马虎求出系数“”;在(1)的基础上,小马虎已经将多项式A 正确求出,老师又给出了一个多项式C ,要求小马虎求出A C -的结果.小马虎在求解时,误把“A C -”看成“A C +”,结果求出的答案为262x x --.请你替小马虎求出“A C -”的正确答案.24.(14分)如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.【题目点拨】本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.2、D【解题分析】将抛物线绕着点(0,3)旋转180°以后,a的值变为原来的相反数,根据中心对称的性质求出旋转后的顶点坐标即可得到旋转180°以后所得图象的解析式.【题目详解】由题意得,a=-.设旋转180°以后的顶点为(x′,y′),则x′=2×0-(-2)=2,y′=2×3-5=1,∴旋转180°以后的顶点为(2,1),∴旋转180°以后所得图象的解析式为:.故选D.【题目点拨】本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转180°以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.3、C【解题分析】根据分式和二次根式有意义的条件进行解答.【题目详解】解:依题意得:x2≥1且x≠1.解得x≠1.故选C.【题目点拨】考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.4、B【解题分析】根据一元二次方程的定义和一元二次方程的解的定义得出:a﹣1≠0,a2﹣1=0,求出a的值即可.【题目详解】解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故选:B.本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0,a2﹣1=0,不要漏掉对一元二次方程二次项系数不为0的考虑.5、A【解题分析】把x=﹣1代入方程计算即可求出k的值.【题目详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【题目点拨】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6、B【解题分析】因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,故选B.7、B【解题分析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.8、C【解题分析】试题分析:过A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是线段BC上的动点(不含端点B,C),∴AE≤AD<AB,即3≤AD<5,∵AD为正整数,∴AD=3或AD=4,当AD=4时,E的左右两边各有一个点D满足条件,∴点D的个数共有3个.故选C.考点:等腰三角形的性质;勾股定理.9、B根据反比例函数的图象和性质结合矩形和三角形面积解答. 【题目详解】解:作EH OA H 于⊥,连接AE .22ABE BDEBD AD S S=∴==∵四边形AHEB ,四边形ECOH 都是矩形,BE =EC , ∴ABEH ECOH S S 矩形矩形==24ABE S ∆=||4,04k k k ∴=<∴=- 故选B . 【题目点拨】此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键. 10、D 【解题分析】根据科学计数法的定义来表示数字,选出正确答案. 【题目详解】解:把一个数表示成a (1≤a<10,n 为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D. 【题目点拨】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.二、填空题(共7小题,每小题3分,满分21分) 11、85或245作PH ⊥CD ,垂足为H ,设运动时间为t 秒,用t 表示线段长,用勾股定理列方程求解. 【题目详解】设P ,Q 两点从出发经过t 秒时,点P ,Q 间的距离是10cm , 作PH ⊥CD ,垂足为H , 则PH =AD =6,PQ =10, ∵DH =PA =3t ,CQ =2t , ∴HQ =CD −DH −CQ =|16−5t |, 由勾股定理,得222(165)610t -+=, 解得124.8, 1.6.t t ==即P ,Q 两点从出发经过1.6或4.8秒时,点P ,Q 间的距离是10cm . 故答案为85或245. 【题目点拨】考查矩形的性质,勾股定理,解一元二次方程等,表示出HQ =CD −DH −CQ =|16−5t |是解题的关键. 12、10.5 【解题分析】先证△AEB ∽△ABC ,再利用相似的性质即可求出答案. 【题目详解】解:由题可知,BE ⊥AC ,DC ⊥AC ∵BE //DC , ∴△AEB ∽△ADC , ∴BE AB CD AC=, 即:1.2 1.61.612.4CD =+, ∴CD =10.5(m ).故答案为10.5.【题目点拨】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.13、3.55×1.【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【题目详解】3550000=3.55×1,故答案是:3.55×1.【题目点拨】考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.14、1【解题分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【题目详解】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;故腰长为1.故答案为:1.【题目点拨】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.15、(﹣1,﹣1)【解题分析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【题目详解】x=-422=-1,把x=-1代入得:y=2-1-2=-1.则顶点的坐标是(-1,-1).故答案是:(-1,-1).【题目点拨】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.16、6.2【解题分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【题目详解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.【题目点拨】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.17、(Ⅰ)5(Ⅱ)如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P.【解题分析】(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出AM 是ABC的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,连接DF交AM于+的值最小.点P,此时CP DP【题目详解】(Ⅰ)根据勾股定理得5=;故答案为:1.(Ⅱ)如图,如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P,则点P即为所求.说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的ABC的角平分线,在AB上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.【题目点拨】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.三、解答题(共7小题,满分69分)18、234.【解题分析】利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案.【题目详解】解:原式3 31132 -+=234.故答案为234.【题目点拨】本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键.19、576名【解题分析】试题分析:根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg的学生大约有多少名.试题解析:本次调查的学生有:32÷16%=200(名),体重在B组的学生有:200﹣16﹣48﹣40﹣32=64(名),补全的条形统计图如右图所示,我校初三年级体重介于47kg至53kg的学生大约有:1800×64200=576(名),答:我校初三年级体重介于47kg至53kg的学生大约有576名.20、(1)4,1;(2)见解析;(3)1.1或3.2【解题分析】(1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1.(2)利用描点法画出函数图象即可;(3)根据直角三角形31度角的性质,求出y=2,观察图象写出对应的x的值即可;【题目详解】(1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1.故答案为4,1.(2)函数图象如图所示:(3)如图,在Rt△BQM中,∵∠Q=91°,∠MBQ=61°,∴∠BMQ =31°,∴BQ =12BM =2, 观察图象可知y =2时,对应的x 的值为1.1或3.2.故答案为1.1或3.2.【题目点拨】本题考查圆的综合题,垂径定理,直角三角形的性质,解题的关键是灵活运用所解题的关键是理解题意,学会用测量法、图象法解决实际问题.21、(1)A 种文具进货40只,B 种文具进货60只;(2)一共有三种购货方案,购买A 型文具48只,购买B 型文具52只使销售文具所获利润最大.【解题分析】(1)设可以购进A 种型号的文具x 只,则可以购进B 种型号的文具(100)x -只,根据总价=单价×数量结合A 、B 两种文具的进价及总价,即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据题意列不等式,解之即可得出x 的取值范围,再根据一次函数的性质,即可解决最值问题.【题目详解】(1)设A 种文具进货x 只,B 种文具进货(100)x -只,由题意得:1015(100)1300x x +-=,解得:x =40,10060x -=,答:A 种文具进货40只,B 种文具进货60只;(2)设购进A 型文具a 只,则有9(100)10a a ≥-,且28(100)500a a +-≥; 解得:9005019a ≤≤, ∵a 为整数,∴a =48、49、50,一共有三种购货方案;利润28(100)6800wa a a +--+==, ∵60k -<=,w 随a 增大而减小,当a =48时W 最大,即购买A 型文具48只,购买B 型文具52只使销售文具所获利润最大.【题目点拨】本题主要考查了一次函数的实际问题,熟练掌握一次函数表达式的确定以及自变量取值范围的确定,最值的求解方法是解决本题的关键.22、(1)证明见解析;(2)AC=. 【解题分析】(1)证明:连接OD .∵BD 是⊙O 的切线,∴OD ⊥BD .∵AC ⊥BD ,∴OD ∥AC ,∴∠2=∠1.∵OA =OD .∴∠1=∠1,∴∠1=∠2,即AD 平分∠BAC .(2)解:∵OD ∥AC ,∴△BOD ∽△BAC , ∴OD BO AC BA =,即4610AC =. 解得203AC =.23、(1)-3; (2)“A -C”的正确答案为-7x 2-2x+2.【解题分析】(1)根据整式加减法则可求出二次项系数;(2)表示出多项式A ,然后根据A C +的结果求出多项式C ,计算A C -即可求出答案.【题目详解】(1)由题意得2:4A x x =-,2234B x x =+-, ∴A+2B=(4+)2x +2x -8, 2228A B x x +=+-, ∴4+=1,=-3,即系数为-3. (2)A+C=262x x --,且A=234x x --,∴C=4222x x --,∴A -C=2722x x --+ 【题目点拨】本题主要考查了多项式加减运算,熟练掌握运算法则是解题关键.24、(1)详见解析;(2)OF =254. 【解题分析】(1)连接OC ,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明△ABC ∽△ABD ,利用相似比得到AD=252,然后证明OF 为△ABD 的中位线,从而根据三角形中位线性质求出OF 的长.【题目详解】(1)证明:连接OC ,如图,∵CF 为切线,∴OC ⊥CF ,∴∠1+∠3=90°,∵BM ⊥AB ,∴∠2+∠4=90°,∵OC =OB ,∴∠1=∠2,∴∠3=∠4,∵AB 为直径,∴∠ACB =90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)在Rt△ABC中,AC8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴AB ACAD AB=,即10810AD=,∴AD=252,∵∠3=∠4,∴FC=FB,而FC=FD,∴FD=FB,而BO=AO,∴OF为△ABD的中位线,∴OF=12AD=254.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.。
2024年中考第二次模拟考试数 学(考试时间:120分钟 试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.1.截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A .723.910⨯B .82.3910⨯C .92.3910⨯D .90.23910⨯2.下列图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .3.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒4.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a -<C .22a b >D .22a b +<+5.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒6.已知关于x 的一元二次方程220x x a -+=有两个相等的实数根,则实数a 的值是( )A .1-B .1C .2D .37.不透明的袋子中装有2个红球和3个黄球,两种球除颜色外无其他差别,从中随机摸出一个小球,摸到黄球的概率是( )A .23B .34C .25D .358.如图,点A 、B 、C 在同一条线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB BC <,90A C ∠=∠=︒,EAB BCD ≌△△,连接DE ,设AB a =,BC b =,DE c =,给出下面三个结论:①a b c +<;②a b +>)a b c +>;上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③第Ⅱ卷 非选择题二、填空题(共16分,每小题2分)9x 可取的一个数是 .10.将2327m n n -因式分解为 .11.方程12131x x =+-的解为 .12.在平面直角坐标系xOy 中,点(A 1-1)y ,,()22B y ,在反比例函数()0k y k x =≠的图象上,且12y y >,请你写出一个符合要求的k 的值 .13.如图,在O 中,AB 是直径,CD AB ⊥,ACD ∠=60︒,2OD =,那么DC 的长等于 .14.如图,《九章算术》是中国古代数学专着,是《算经十书》(汉唐之间出现的十部古算书)中最重要的一种.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”,大意是:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?(椽,装于屋顶以支持屋顶盖材料的木杆)设这批椽有x株,根据题意可列分式方程为.CE=.连接15.如图,在矩形ABCD中,4AB=,5BC=,E点为BC边延长线一点,且3⊥于点H,则DH=.AE交边CD于点F,过点D作DH AE16.有黑、白各6张卡片,分别写有数字1至6把它们像扑克牌那样洗过后,数字朝下,如图排成两行,排列规则如下:①左至右,按数字从小到大的顺序排列;②黑、白卡片数字相同时,黑卡片放在左边.将第一行卡片用大写英文字母按顺序标注,第二行卡片用小写英文字母按顺序标注,则白卡片数字1摆在了标注字母 的位置,标注字母e 的卡片写有数字 .三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(本题5分)计算:()20211π 3.144cos302-⎛⎫-+--︒+ ⎪⎝⎭18.(本题5分)解不等式组:221352x x x x +<-⎧⎪⎨-<⎪⎩.19.(本题5分)先化简,再求值:21221121x x x x x x --⎛⎫+-÷ ⎪+++⎝⎭,其中1x =.20.(本题5分)如图,在ABC 中,60,ACB CD ∠=︒平分ACB ∠,过点D 作DE BC ⊥于点,E DF AC ⊥于点F ,点H 是CD 的中点,连接HE FH 、.(1)判断四边形DFHE的形状,并证明;(2)连接EF,若EF CD的长.21.(本题5分)已知,图①是一张可以缓解眼睛疲劳的视力远眺回形图,它是由多个大小不等的正方形构成的二维空间平面图,利用心理学空间知觉原理,通过变化图案可不断改变眼睛晶状体的焦距,强烈显示出三维空间的向远延伸的立体图形,调节人们的睫状体放松而保护视力.其中阴影部分是由能够缓解视疲劳的绿色构成,阴影之间的部分是空白区域.某体检中心想定做一张回形图,图②是选取的部分回形图的示意图,其中最大的正方形边长、两部分的面积相等,若空白区域需要三种不同的护眼浅色贴纸,铺为3m,且空白区域A B贴用纸费用分别为:A区域10元2/m,铺贴三个区域/m,B区域15元2/m,C区域20元2共花费150元,求C区域的面积.22.(本题5分)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2-,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.23.(本题6分)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a .这30名学生第一次竞赛成绩和第二次竞赛成绩得分统计图:b .这30名学生两次知识竞赛获奖情况相关统计表:参与奖优秀奖卓越奖人数101010第一次竞赛平均数828795人数21216第二次竞赛平均数848793(规定:分数90≥,获卓越奖;85≤分数90<,获优秀奖:分数85<,获参与奖)c .第二次竞赛获卓越奖的学生成绩如下:90 90 91 91 91 91 92 93 93 94 94 94 95 95 96 98d .两次竞赛成绩样本数据的平均数、中位数、众数如下表:平均数中位数众数第一次竞赛m 87.588第二次竞赛90n91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出,m n 的值;(3)哪一次竞赛中初三年级全体学生的成绩水平较高?请说明你的理由(至少两个方面).24.(本题6分)如图,圆内接四边形ABCD 的对角线AC ,BD 交于点E ,BD 平分ABC ∠,BAC ADB ∠=∠.(1)求证DB 平分ADC ∠,并求BAD ∠的大小;(2)过点C 作CF AD ∥交AB 的延长线于点F .若AC AD =,2BF =,求此圆半径的长.25.(本题6分)兴寿镇草莓园是北京最大的草莓基地,通过一颗颗小草莓,促进了农民增收致富,也促进了农旅融合高质量发展.小梅家有一个草莓大棚,大棚的一端固定在离地面高1m 的墙体A 处,另一端固定在离地面高1m 的墙体B 处,记大棚的截面顶端某处离A 的水平距离为m x ,离地面的高度为m y ,测量得到如下数值:/mx 01245/m y 18311311383小梅根据学习函数的经验,发现y 是x 的函数,并对y 随x 的变化而变化的规律进行了探究.下面是小梅的探究过程,请补充完整:(1)在下边网格中建立适当的平面直角坐标系,描出表中各组数值所对应的点(),x y ,并画出函数的图象;解决问题:(2)结合图表回答,大棚截面顶端最高处到地面的距离高度为___________m ;此时距离A 的水平距离为___________m ;(3)为了草莓更好的生长需要在大棚内安装补光灯,补光灯采用吊装模式悬挂在顶部,已知补光灯在距离地面1.5m 时补光效果最好,若在距离A 处水平距离1.5m 的地方挂补光灯,为使补光效果最好补光灯悬挂部分的长度应是多少m ?(灯的大小忽略不计)26.(本题6分)在平面直角坐标系xOy 中,已知抛物线()22230y ax a x a =--≠.(1)求该抛物线的对称轴(用含a 的式子表示);(2)若1a =,当23x -<<时,求y 的取值范围;(3)已知()121,A a y -,()2,B a y ,()32,C a y +为该抛物线上的点,若()()13320y y y y -->,求a 的取值范围.27.(本题7分)如图,在ABC 中,AB AC =,()24590BAC αα∠=︒<<︒,D 是BC 的中点,E 是BD 的中点,连接AE .将射线AE 绕点A 逆时针旋转α得到射线AM ,过点E 作EF AE ⊥交射线AM 于点F .(1)①依题意补全图形;②求证:B AFE ∠=∠;(2)连接CF ,DF ,用等式表示线段CF ,DF 之间的数量关系,并证明.28.(本题7分)在平面直角坐标系xOy 中,O 的半径为1,对于直线l 和线段AB ,给出如下定义:若将线段AB 关于直线l 对称,可以得到O 的弦A B ''(A ',B '分别为A ,B 的对应点),则称线段AB 是O 的关于直线l 对称的“关联线段”.例如:在图1中,线段AB 是O 的关于直线l 对称的“关联线段”.(1)如图2,点1A ,1B ,2A ,2B ,3A ,3B 的横、纵坐标都是整数.①在线段11A B ,22A B ,33A B 中,O 的关于直线2y x =+对称的“关联线段”是______;②若线段11A B ,22A B ,33A B 中,存在O 的关于直线y x m =-+对称的“关联线段”,则m =______;(2)已知()0y b b =+>交x 轴于点C ,在ABC 中,3AC =,AB =若线段AB 是O的关于直线()0y b b =+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.2024年中考第二次模拟考试数学·全解全析第Ⅰ卷 选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.1.截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为( )A .723.910⨯B .82.3910⨯C .92.3910⨯D .90.23910⨯2.下列图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此项不合题意;D.既是中心对称图形,又是轴对称图形,故此项符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒【答案】B 【分析】根据∠AOC 和∠BOC 的度数得出∠AOB 的度数,从而得出答案.【详解】∵∠AOC =70°,∠BOC =30°,∴∠AOB =70°-30°=40°,∴∠AOD =∠AOB +∠BOD =40°+70°=110°.故选:B .【点睛】本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.4.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是( )A .0a b +<B .0b a -<C .22a b >D .22a b +<+22a b <,∴C 选项的结论不成立;22a b +<+,∴D 选项的结论成立.故选:D .【点睛】本题主要考查了不等式的性质,有理数大小的比较法则,利用点在数轴上的位置确定出a ,b 的取值范围是解题的关键.5.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒【答案】C【分析】根据多边形的内角和公式()2180n -∙︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】 正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选:C .【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.6.已知关于x 的一元二次方程220x x a -+=有两个相等的实数根,则实数a 的值是( )A .1-B .1C .2D .3【答案】B【分析】本题考查一元二次方程根与判别式的关系,根据方程有两个相等的实数根,判别式等于0列式求解即可得到答案;【详解】解:∵一元二次方程220x x a -+=有两个相等的实数根,∴2(2)410a --⨯⨯=,解得:1a =,故选:B .7.不透明的袋子中装有2个红球和3个黄球,两种球除颜色外无其他差别,从中随机摸出一个小球,摸到黄球的概率是( )A .23B .34C .25D .358.如图,点A 、B 、C 在同一条线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB BC <,90A C ∠=∠=︒,EAB BCD ≌△△,连接DE ,设AB a =,BC b =,DE c =,给出下面三个结论:①a b c +<;②a b +>)a b c +>;上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③==+,∴DF AC a b∵DF DE<,+<,①正确,故符合要求;∴a b c∵EAB BCD≌△△,第Ⅱ卷非选择题二、填空题(共16分,每小题2分)9x可取的一个数是.∴x ﹣3≥0,∴x ≥3,∴x 可取x ≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.10.将2327m n n -因式分解为.【答案】()()333n m m +-【分析】先提公因式,再利用平方差公式可进行因式分解.【详解】解:2327m n n -=()239n m -=()()333n m m +-故答案为:()()333n m m +-.【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.11.方程12131x x =+-的解为 .【答案】x =3【分析】根据分式方程的解法解方程即可;【详解】解:去分母得:3x ﹣1=2x +2,解得:x =3,检验:把x =3代入得:(x +1)(3x ﹣1)≠0,∴分式方程的解为x =3.故答案为:x =3.【点睛】本题考查了解分式方程:先将方程两边乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.12.在平面直角坐标系xOy 中,点(A 1-1)y ,,()22B y ,在反比例函数()0k y k x=≠的图象上,且12y y >,请你写出一个符合要求的k 的值 .13.如图,在O 中,AB 是直径,CD AB ⊥,ACD ∠=60︒,2OD =,那么DC 的长等于 .AB是直径,CD丄AB∴=,CE DE=BD BC=60︒,∠ACDA∴∠=︒,30∴∠=∠=︒,DOE A26014.如图,《九章算术》是中国古代数学专着,是《算经十书》(汉唐之间出现的十部古算书)中最重要的一种.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”,大意是:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?(椽,装于屋顶以支持屋顶盖材料的木杆)设这批椽有x株,根据题意可列分式方程为.CE=.连接15.如图,在矩形ABCD中,4AB=,5BC=,E点为BC边延长线一点,且3⊥于点H,则DH=.AE交边CD于点F,过点D作DH AE16.有黑、白各6张卡片,分别写有数字1至6把它们像扑克牌那样洗过后,数字朝下,如图排成两行,排列规则如下:①左至右,按数字从小到大的顺序排列;②黑、白卡片数字相同时,黑卡片放在左边.将第一行卡片用大写英文字母按顺序标注,第二行卡片用小写英文字母按顺序标注,则白卡片数字1摆在了标注字母的位置,标注字母e的卡片写有数字.【答案】B;4【分析】根据排列规则依次确定白1,白2,白3,白4的位置,即可得出答案.【详解】解:第一行中B与第二行中c肯定有一张为白1,若第二行中c为白1,则左边不可能有2张黑卡片,∴白卡片数字1摆在了标注字母B的位置,∴黑卡片数字1摆在了标注字母A的位置,;第一行中C与第二行中c肯定有一张为白2,若第二行中c为白2,则a,b只能是黑1,黑2,而A为黑1,矛盾,∴第一行中C为白2;第一行中F与第二行中c肯定有一张为白3,若第一行中F为白3,则D,E只能是黑2,黑3,此时黑2在白2右边,与规则②矛盾,∴第二行中c 为白3,∴第二行中a 为黑2,b 为黑3;第一行中F 与第二行中e 肯定有一张为白4,若第一行中F 为白4,则D ,E 只能是黑3,黑4,与b 为黑3矛盾,∴第二行中e 为白4.故答案为:①B ,②4.【点睛】本题考查图形类规律探索,解题的关键是理解题意,根据所给规则依次确定出白1,白2,白3,白4的位置.三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(本题5分)计算:()20211π 3.144cos302-⎛⎫-+--︒+ ⎪⎝⎭18.(本题5分)解不等式组:221352x x x x +<-⎧⎪⎨-<⎪.∴不等式组的解集为35x <<.【点睛】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.19.(本题5分)先化简,再求值:21221121x x x x x x --⎛⎫+-÷ ⎪+++,其中1x =.20.(本题5分)如图,在ABC 中,60,ACB CD ∠=︒平分ACB ∠,过点D 作DE BC ⊥于点,E DF AC ⊥于点F ,点H 是CD 的中点,连接HE FH 、.(1)判断四边形DFHE 的形状,并证明;(2)连接EF ,若EF =CD 的长.四边形DFHE 是菱形,12OH OD DH ∴==,60HDE ∠=︒ ,633OE OD ∴===21.(本题5分)已知,图①是一张可以缓解眼睛疲劳的视力远眺回形图,它是由多个大小不等的正方形构成的二维空间平面图,利用心理学空间知觉原理,通过变化图案可不断改变眼睛晶状体的焦距,强烈显示出三维空间的向远延伸的立体图形,调节人们的睫状体放松而保护视力.其中阴影部分是由能够缓解视疲劳的绿色构成,阴影之间的部分是空白区域.某体检中心想定做一张回形图,图②是选取的部分回形图的示意图,其中最大的正方形边长为3m ,且空白区域AB 、两部分的面积相等,若空白区域需要三种不同的护眼浅色贴纸,铺贴用纸费用分别为:A 区域10元2/m ,B 区域15元2/m ,C 区域20元2/m ,铺贴三个区域共花费150元,求C 区域的面积.【答案】25m 【分析】本题考查一元一次方程的应用,设A 区域的面积为m x ,根据题意得出101520(92)150x x x ++-=,解得2x =,再求出C 区域的面积即可.【详解】解:设A 区域的面积为m x ,101520(92)150x x x ++-=,解得2x =,9225-⨯=,答:C 区域的面积是25m .22.(本题5分)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2-,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.23.(本题6分)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a.这30名学生第一次竞赛成绩和第二次竞赛成绩得分统计图:b .这30名学生两次知识竞赛获奖情况相关统计表:参与奖优秀奖卓越奖人数101010第一次竞赛平均数828795人数21216第二次竞赛平均数848793(规定:分数90≥,获卓越奖;85≤分数90<,获优秀奖:分数85<,获参与奖)c .第二次竞赛获卓越奖的学生成绩如下:90 90 91 91 91 91 92 93 93 94 94 94 95 95 96 98d .两次竞赛成绩样本数据的平均数、中位数、众数如下表:平均数中位数众数第一次竞赛m 87.588第二次竞赛90n 91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出,m n 的值;(3)哪一次竞赛中初三年级全体学生的成绩水平较高?请说明你的理由(至少两个方面).【答案】(1)见详解;(2)88m =,90n =;(3)第二次【分析】(1)根据30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图可得横坐标(2)8210871095108830m ⨯+⨯+⨯==,∵第二次竞赛获卓越奖的学生有16人,成绩从小到大排列为:90,90,91,91,91,91,92,93,93,94,其中第1个和第2个数是30名学生成绩中第∴1(9090)902n =⨯+=,∴88m =,90n =;24.(本题6分)如图,圆内接四边形ABCD 的对角线AC ,BD 交于点E ,BD 平分ABC ∠,BAC ADB ∠=∠.(1)求证DB 平分ADC ∠,并求BAD ∠的大小;(2)过点C 作CF AD ∥交AB 的延长线于点F .若AC AD =,2BF =,求此圆半径的长.25.(本题6分)兴寿镇草莓园是北京最大的草莓基地,通过一颗颗小草莓,促进了农民增收致富,也促进了农旅融合高质量发展.小梅家有一个草莓大棚,大棚的一端固定在离地面高1m 的墙体A 处,另一端固定在离地面高1m 的墙体B 处,记大棚的截面顶端某处离A 的水平距离为m x ,离地面的高度为m y ,测量得到如下数值:/mx 01245/m y 18311311383小梅根据学习函数的经验,发现y是x的函数,并对y随x的变化而变化的规律进行了探究.下面是小梅的探究过程,请补充完整:(1)在下边网格中建立适当的平面直角坐标系,描出表中各组数值所对应的点(),x y,并画出函数的图象;解决问题:(2)结合图表回答,大棚截面顶端最高处到地面的距离高度为___________m;此时距离A的水平距离为___________m;(3)为了草莓更好的生长需要在大棚内安装补光灯,补光灯采用吊装模式悬挂在顶部,已知补光灯在距离地面1.5m时补光效果最好,若在距离A处水平距离1.5m的地方挂补光灯,为使补光效果最好补光灯悬挂部分的长度应是多少m?(灯的大小忽略不计)【答案】(1)见解析;(2)4;3;(3)为使补光效果最好补光灯悬挂部分的长度应是1.75m.【分析】(1)描点,连线,即可画出函数的图象;(2)结合图表回答,即可解答;x=,求得函数值,即可解答.(3)利用待定系数法求得抛物线的解析式,令 1.5【详解】(1)解:描点,连线,函数的图象如图所示,(2)解:根据图表知,大棚截面顶端最高处到地面的距离高度为距离为3m ;故答案为:4;3;(3)解:设抛物线的解析式为2y ax bx c =++,把()01,,813⎛⎫ ⎪⎝⎭,,1123⎛⎫⎪⎝⎭,,代入得,18342c a b c a b c ⎧⎪=⎪⎪++=⎨⎪⎪++=⎪⎩26.(本题6分)在平面直角坐标系xOy 中,已知抛物线()22230y ax a x a =--≠.(1)求该抛物线的对称轴(用含a 的式子表示);(2)若1a =,当23x -<<时,求y 的取值范围;(3)已知()121,A a y -,()2,B a y ,()32,C a y +为该抛物线上的点,若()()13320y y y y -->,求a 的取值范围.()32,C a y +在对称轴的右侧,当()121,A a y -在对称轴右侧时,21+2a a ->,解得:3a >,不符合题意,当()121,A a y -在对称轴左侧时,()21+2a a a a -->-,解得:1a <-;∴a 的取值范围是1a <-;综上所述:a 的取值范围是3a >或1a <-.【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.27.(本题7分)如图,在ABC 中,AB AC =,()24590BAC αα∠=︒<<︒,D 是BC 的中点,E 是BD 的中点,连接AE .将射线AE 绕点A 逆时针旋转α得到射线AM ,过点E 作EF AE ⊥交射线AM 于点F .(1)①依题意补全图形;②求证:B AFE ∠=∠;(2)连接CF ,DF ,用等式表示线段CF ,DF 之间的数量关系,并证明.【答案】(1)①见解析;②见解析;(2)CF DF =【分析】(1)①根据题意画出图形即可求解;②连接AD ,则AD BC ⊥于点D ,AD 平分BAC ∠,根据等腰三角形的性质以及三角形内角和定理得出BAD ∠=α,90B α∠=︒-,根据90AEF ∠=︒,得出90AFE α∠=︒-,则B AFE ∠=∠;(2)延长FE 至点H ,使得EH EF =,连接,BH AH ,CF ,倍长中线法证明HBE FDE ≌,进而证明AHB AFC ≌,即可得证.【详解】(1)解:①如图所示,②连接AD ,∵AB AC =,D 是BC 的中点,∴AD BC ⊥于点D ,AD 平分BAC ∠,∵()24590BAC αα∠=︒<<︒∴BAD ∠=α,90B α∠=︒-,∵EF AE ⊥,∴90AEF ∠=︒,90AFE α∠=︒-,∴B AFE ∠=∠;(2)CF DF =;证明如下,延长FE 至点H ,使得EH EF =,连接,BH AH ,CF ,∵E 为BD 的中点,E 为HF 的中点∴,EH EF EB ED ==,又HEB FED ∠=∠,∴HBE FDE ≌()SAS ,∴BH FD =,∵AE HF ⊥,EH EF =,∴AHF △是等腰三角形,则AH AF =,HAE FAE α∠=∠=,,∵2BAC HAF α∠=∠=,∴HAF BAF BAC BAF ∠-∠=∠-∠,即BAH CAF ∠=∠,∴AHB AFC ≌()SAS ,∴CF BH =,∴CF FD =.【点睛】本题考查了等腰三角形的性质与判定,旋转的性质,全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.28.(本题7分)在平面直角坐标系xOy 中,O 的半径为1,对于直线l 和线段AB ,给出如下定义:若将线段AB 关于直线l 对称,可以得到O 的弦A B ''(A ',B '分别为A ,B 的对应点),则称线段AB 是O 的关于直线l 对称的“关联线段”.例如:在图1中,线段AB 是O 的关于直线l 对称的“关联线段”.(1)如图2,点1A ,1B ,2A ,2B ,3A ,3B 的横、纵坐标都是整数.①在线段11A B ,22A B ,33A B 中,O 的关于直线2y x =+对称的“关联线段”是______;②若线段11A B ,22A B ,33A B 中,存在O 的关于直线y x m =-+对称的“关联线段”,则m =______;(2)已知()0y b b =+>交x 轴于点C ,在ABC 中,3AC =,AB =若线段AB 是O的关于直线()0y b b =+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.发现线段11A B 的对称线段是⊙O 的弦,∴线段11A B ,22A B ,33A B 中,⊙O 的关于直线故答案为:11A B ;(2)已知()30y x b b =-+>交x 轴于点是O 的关于直线()30y x b b =-+>对称的以及相应的BC 长.解:∵直线()30y x b b =-+>交x 轴于点当0y =时,()030x b b =-+>,将点C 代入直线3y x b =-+中,得0解得:23b =,∵点B B ',关于323y x =-+对称∴22125BC B C '==+=,∴当A '为()10,时,如图,OC 最大,此时2024年中考第二次模拟考试数学·参考答案 第Ⅰ卷 选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.12345678BDBDCBDD第Ⅱ卷 非选择题二、填空题(共16分,每小题2分)9.如4等(答案不唯一,3x ≥)10.()()333n m m +-11.x =312.2-(答案不唯一)13.14.()621031x x-=1516.B ;4三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)【详解】解:原式1144=-+-+....................(2分)114=-++-....................(4分)4=.....................(5分)18.(5分)【详解】解:221352x xxx+<-⎧⎪⎨-<⎪⎩①②,解不等式①得:3x>,....................(2分)解不等式②得:5x<,....................(4分)∴不等式组的解集为35x<<.....................(5分)19.(5分)【详解】解:原式22121211(1)x x xx x x⎛⎫---=+÷⎪+++⎝⎭()()22112x x xx x-+=⋅+-....................(2分)()1x x=-+....................(3分)2x x=--,....................(4分)当1x=时,原式)1113=--+=-....................(5分)20.(5分)【详解】(1)解:四边形DFHE是菱形,理由如下:CD平分ACB∠,过点D作DE BC⊥于点E,DF AC⊥于点F,60ACB∠=︒,DF DE∴=,30FCD DCE∠=∠=︒,....................(1分)点H是CD的中点,FH CH DH∴==,EH CH DH==,FH HE∴=,30DCE∠=︒,DE CB⊥,60HDE∴∠=︒,DHE∴ 是等边三角形,DE HE DH∴==,DF DE HE FH∴===,∴四边形DFHE 是菱形;....................(2分)(2)解:连接EF ,交DH 于点O ,四边形DFHE 是菱形,12OH OD DH ∴==,12OF OE EF ===EF DH ⊥,....................(3分)60HDE ∠=︒,OD ∴===....................(4分)24CD DH OD ∴===....................(5分)21.(5分)【详解】解:设A 区域的面积为m x ,101520(92)150x x x ++-=,....................(1分)解得2x =,....................(2分)9225-⨯=,....................(3分)答:C 区域的面积是25m .....................(5分)22.(5分)【详解】(1)解: 一次函数(0)y kx b k =+≠的图象经过点(0,1),(2,2)-,∴122b k b =⎧⎨-+=⎩,解得121k b ⎧=-⎪⎨⎪=⎩,....................(1分)该一次函数的表达式为112y x =-+,....................(2分)令0y =,得1012x =-+,2x ∴=,(2,0)A ∴;....................(3分)(2)解:当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数(0)y kx b k =+≠的值,1212x m x ∴+>-+,....................(4分)4m ∴>-.....................(5分)23.(6分)【详解】(1)解:如图所示;....................(2分)(2)8210871095108830m ⨯+⨯+⨯==,....................(3分)∵第二次竞赛获卓越奖的学生有16人,成绩从小到大排列为:90,90,91,91,91,91,92,93,93,94,94,94,95,95,96,98,其中第1个和第2个数是30名学生成绩中第15和第16个数,∴1(9090)902n =⨯+=,∴88m =,90n =;....................(4分)(3)第二次竞赛,学生成绩的平均数、中位数和众数均高于第一次竞赛,故第二次竞赛中初三年级全体学生的成绩水平较高.....................(6分)24.(6分)【详解】(1)解:∵BAC ADB∠=∠∴ AB BC =,....................(1分)∴ADB CDB ∠=∠,即DB 平分ADC ∠.∵BD 平分ABC ∠,∴ABD CBD ∠=∠,....................(2分)∴ AD CD =,∴ AB AD BC CD +=+,即 BAD BCD =,∴BD 是直径,∴90BAD ∠=︒;....................(3分)(2)解:∵90BAD ∠=︒,CF AD ∥,∴180F BAD ∠+∠=︒,则90F ∠=︒.∵ AD CD =,∴AD DC =.∵AC AD =,∴AC AD CD ==,∴ADC △是等边三角形,则60ADC ∠=︒.....................(4分)∵BD 平分ADC ∠,∴1302CDB ADC ∠=∠=︒.∵BD 是直径,∴90BCD ∠=︒,则12BC BD =.∵四边形ABCD 是圆内接四边形,∴180ADC ABC ∠+∠=︒,则120ABC ∠=︒,∴60FBC ∠=︒,∴906030FCB ∠=︒-︒=︒,∴12FB BC =.....................(5分)∵2BF =,∴4BC =,∴28BD BC ==.∵BD 是直径,∴此圆半径的长为142BD =.....................(6分)25.(6分)【详解】(1)解:描点,连线,函数的图象如图所示, ....................(1分)(2)解:根据图表知,大棚截面顶端最高处到地面的距离高度为4m ;此时距离A 的水平距离为3m ;故答案为:4;3;....................(3分)(3)解:设抛物线的解析式为2y ax bx c =++,把()01,,813⎛⎫ ⎪⎝⎭,,1123⎛⎫ ⎪⎝⎭,,代入得,18311423c a b c a b c ⎧⎪=⎪⎪++=⎨⎪⎪++=⎪⎩,解得1321a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,....................(4分)∴抛物线的解析式为21213y x x =-++,令 1.5x =,则21331321 3.253224y ⎛⎫=-⨯+⨯+== ⎪⎝⎭,()3.25 1.5 1.75m -=,....................(5分)答:为使补光效果最好补光灯悬挂部分的长度应是1.75m .....................(6分)26.(6分)【详解】(1)解:∵抛物线解析式为()22230y ax a x a =--≠,。
中考数学模拟测试题(附有答案)(满分:120分考试时间120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。
在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分. 211.下列实数中有理数是()A. √12B. √13C. √14D. √152.下列计算正确的是()A. a3+a2=a5B. a3÷a2=aC. 3a3⋅2a2=6a6D. (a−2)2=a2−43.如图AB//CD点E F在AC边上已知∠CED=70°∠BFC=130°则∠B+∠D的度数为()A. 40°B. 50°C. 60°D. 70°(第3题图)4.如图是我们数学课本上采用的科学计算器面板利用该型号计算器计算√23cos35°按键顺序正确的是()A.B.C.D.5.如图二次函数y=ax2+bx+c的图象的对称轴为x=−12且经过点(−2,0)下列说法错误的是()A. bc<0B. a=bC. 当x1>x2≥−12时D. 不等式ax 2+bx +c <0的解集是−2<x <32(第5题图)6. 《九章算术》是古代中国第一部自成体系的数学专著 其中《卷第八方程》记载:“今有甲乙二人持钱不知其数 甲得乙半而钱五十 乙得甲太半而亦钱五十 问甲 乙持钱各几何?”译文是:今有甲 乙两人持钱不知道各有多少 甲若得到乙所有钱的12 则甲有50钱 乙若得到甲所有钱的23 则乙也有50钱.问甲 乙各持钱多少?设甲持钱数为x 钱 乙持钱数为y 钱 列出关于x y 的二元一次方程组是( )A. {x +2y =5032x +y =50B. {x +12y =5023x +y =50B. C. {x +12y =5032x +y =50D. {x +23y =5012x +y =507. 如图 直角坐标系中 以5为半径的动圆的圆心A 沿x 轴移动 当⊙A 与直线l :y =512x 只有一个公共点时 点A 的坐标为( )A. (−12,0)B. (−13,0)C. (±12,0)D. (±13,0)(第7题图)8. 已知反比例函数y =bx 的图象如图所示 则一次函数y =cx +a 和二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A. B.C. D.9. 对于任意的有理数a b 如果满足a 2+b 3=a+b 2+3那么我们称这一对数a b 为“相随数对” 记为(a,b).若(m,n)是“相随数对” 则3m +2[3m +(2n −1)]=( ) A. −2B. −1C. 2D. 310. 如图 在正方形ABCD 中 E F 分别是AB BC 的中点 CE DF 交于点G 连接AG.下列结论:①CE =DF ②CE ⊥DF ③∠AGE =∠CDF.其中正确的结论是( ) A. ①② B. ①③ C. ②③ D. ①②③(第10题图)第Ⅱ卷(非选择题 共90分)二 填空题:本大题共8小题 其中11-14题每小题3分 15-18题每小题4分 共28分.只要求填写最后结果.11. “先看到闪电 后听到雷声” 那是因为在空气中光的传播速度比声音快.科学家发现 光在空气里的传播速度约为3×108米/秒 而声音在空气里的传播速度大约为3×102米/秒 在空气中声音的速度是光速的_______倍.(用科学计数法表示) 12. 分解因式:ax 2+2ax +a =______.13. “共和国勋章”获得者 “杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻 中国境外种植面积达800万公顷.某村引进了甲 乙两种超级杂交水稻品种 在条件(肥力 日照 通风…)不同的6块试验田中同时播种并核定亩产 统计结果为:x 甲−=1042kg/亩 s 甲2=6.5 x 乙−=1042kg/亩 s 乙2=1.2 则______ 品种更适合在该村推广.(填“甲”或“乙”)14. 从不等式组{x −3(x −2)≤42+2x 3≥x −1的所有整数解中任取一个数 它是偶数的概率是______.15. 如图 △ABC 中 ∠B =30° 以点C 为圆心 CA 长为半径画弧 交BC 于点D 分别以点A D 为圆心大于12AD 的长为半径画弧两弧相交于点E 作射线CE 交AB 于点F FH ⊥AC 于点H.若FH =√2 则BF 的长为______.16.如图从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形则此扇形的面积为______dm2.17.如图在Rt△OAB中∠AOB=90°OA=OB AB=1作正方形A1B1C1D1使顶点A1B1分别在OA OB上边C1D1在AB上类似地在Rt△OA1B1中作正方形A2B2C2D2在Rt△OA2B2中作正方形A3B3C3D3…依次作下去则第n个正方形A n B n C n D n的边长是______.(15题图)(16题图)(17题图)18.已知正方形ABCD的边长为3E为CD上一点连接AE并延长交BC的延长线于点F过点D作DG⊥AF交AF于点H交BF于点G N为EF的中点M为BD上一动点分别连接MC MN.若S△DCGS△FCE =14则MN+MC的最小值为______.(18题图)三解答题:本大题共7小题共62分.解答要写出必要的文字说明证明过程或演算步骤.19.(本题满分8分第(1)题3分第(2)题5分)(1)计算:(π−2021)0−3tan30°+|1−√3|+(12)−2.(2)先化简再求值:x−3x2−8x+16÷x−3x2−16−xx−4其中x=√2+4.20.(本题满分8分)为引导学生知史爱党知史爱国某中学组织全校学生进行“党史知识”竞赛该校德育处随机抽取部分学生的竞赛成绩进行统计将成绩分为四个等级:优秀良好一般不合格并绘制成两幅不完整的统计图.(第20题图)根据以上信息解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩在扇形统计图中表示“一般”的扇形圆心角的度数为______(2)将条形统计图补充完整(3)该校共有1400名学生估计该校大约有多少名学生在这次竞赛中成绩优秀?(4)德育处决定从本次竞赛成绩前四名学生甲乙丙丁中随机抽取2名同学参加全市“党史知识”竞赛请用树状图或列表法求恰好选中甲和乙的概率.21.(本题满分8分)如图△ABC内接于⊙O AB是⊙O的直径E为AB上一点BE=BC延长CE交AD于点D AD=AC.(1)求证:AD是⊙O的切线(2)若tan∠ACE=1OE=3求BC的长.3(第21题图)22.(本题满分8分)某工厂生产并销售A B两种型号车床共14台生产并销售1台A型车床可以获利10万元如果生产并销售不超过4台B型车床则每台B型车床可以获利17万元如果超出4台B型车床则每超出1台每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时完成以下两个问题:①请补全下面的表格:②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元问:生产并销售B型车床多少台?(2)当0<x≤14时设生产并销售A B两种型号车床获得的总利润为W万元如何分配生产并销售AB两种车床的数量使获得的总利润W最大?并求出最大利润.23.(本题满分8分)如图在景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度测得斜坡AB=105米坡度i=1:2在B处测得电梯顶端C的仰角α=45°求观光电梯AC的高度.(参考数据:√2≈1.41√3≈1.73√5≈2.24.结果精确到0.1米)(第23题图)24.(本题满分10分)已知正方形ABCD E F为平面内两点.(第24题图)【探究建模】(1)如图1当点E在边AB上时DE⊥DF且B C F三点共线.求证:AE=CF【类比应用】(2)如图2当点E在正方形ABCD外部时DE⊥DF AE⊥EF且E C F三点共线.猜想并证明线段AE CE DE之间的数量关系【拓展迁移】(3)如图3当点E在正方形ABCD外部时AE⊥EC AE⊥AF DE⊥BE且D F E三点共线DE与AB交于G点.若DF=3AE=√2求CE的长.x2+bx+c与坐标轴交于A(0,−2)B(4,0) 25.(本题满分12分)如图在平面直角坐标系中抛物线y=12两点直线BC:y=−2x+8交y轴于点C.点D为直线AB下方抛物线上一动点过点D作x轴的垂线垂足为G DG分别交直线BC AB于点E F.x2+bx+c的表达式(1)求抛物线y=12(2)当GF=1时连接BD求△BDF的面积2(3)①H是y轴上一点当四边形BEHF是矩形时求点H的坐标②在①的条件下第一象限有一动点P满足PH=PC+2求△PHB周长的最小值.(第25题图)参考答案与解析1.【答案】C【解析】解:A.√12=√22不是有理数不合题意B.√13=√33不是有理数不合题意C.√14=12是有理数符合题意D.√15=√55不是有理数不合题意故选:C.2.【答案】B【解析】解:a3a2不是同类项因此不能用加法进行合并故A项不符合题意根据同底数幂的除法运算法则a3÷a2=a故B项符合题意根据单项式乘单项式的运算法则可得3a3⋅2a2=6a5故C项不符合题意根据完全平方公式展开(a−2)2=a2−4a+4故D项不符合题意.故选:B.3.【答案】C【解析】解:∵∠BFC=130°∴∠BFA=50°又∵AB//CD∴∠A+∠C=180°∵∠B+∠A+∠BFA+∠D+∠C+∠CED=360°∴∠B+∠D=60°故选:C.4.【答案】B【解析】解:根据计算器功能键正确的顺序应该是B.故选:B.5.【答案】D【解析】解:由图象可得b>0c<0则bc<0故选项A正确∵该函数的对称轴为x=−12∴−b2a =−12化简得b=a故选项B正确∵该函数图象开口向上 该函数的对称轴为x =−12 ∴x ≥−12时 y 随x 的增大而增大当x 1>x 2≥−12时 y 1>y 2 故选项C 正确 ∵图象的对称轴为x =−12 且经过点(−2,0) ∴图象与x 轴另一个交点为(1,0)不等式ax 2+bx +c <0的解集是−2<x <1 故选项D 错误 故选:D .6.【答案】B【解析】解:设甲 乙的持钱数分别为x y 根据题意可得:{x +12y =5023x +y =50故选:B .7.【答案】D【解析】解:当⊙A 与直线l :y =512x 只有一个公共点时 直线l 与⊙A 相切 设切点为B 过点B 作BE ⊥OA 于点E 如图∵点B 在直线y =512x 上 ∴设B(m,512m) ∴OE =−m在Rt △OEB 中 tan∠AOB =BEOE =512. ∵直线l 与⊙A 相切 ∴AB ⊥BO .在Rt△OAB中tan∠AOB=ABOB =512.∵AB=5∴OB=12.∴OA=√AB2+OB2=√52+122=13.∴A(−13,0).同理在x轴的正半轴上存在点(13,0).故选:D.8.【答案】D【解析】解:∵反比例函数的图象在二四象限∴b<0A∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限A错误B∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾B错误C∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾C错误D∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限D正确.故选:D.9.【答案】A【解析】解:因为(m,n)是“相随数对”所以m2+n3=m+n2+3所以3m+2n6=m+n5即9m+4n=0所以3m+2[3m+(2n−1)]=3m+2[3m+2n−1]=3m+6m+4n−2=9m+4n−2=0−2=−2故选:A.10.【答案】D【解析】解:∵四边形ABCD是正方形∴AB=BC=CD=AD∠B=∠BCD=90°∵E F分别是AB BC的中点∴BE=12AB CF=12BC∴BE=CF在△CBE与△DCF中{BC=CD∠B=∠BCD BE=CF∴△CBE≌△DCF(SAS)∴∠ECB=∠CDF CE=DF故①正确∵∠BCE+∠ECD=90°∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF故②正确∴∠EGD=90°在Rt△CGD中取CD边的中点H连接AH交DG于K ∴HG=HD=12CD∴Rt△ADH≌Rt△AGH(HL)∴AG=AD∴∠AGD=∠ADG∵∠AGE+∠AGD=∠ADG+∠CDF=90°∴∠AGE=∠CDF故③正确故选:D .11.【答案】1×10−6【解析】【解答】解:3×102米/秒÷(3×108)米/秒=10−6故答案为1×10−6.12.【答案】a(x +1)2【解析】解:ax 2+2ax +a=a(x 2+2x +1)--(提取公因式)=a(x +1)2.--(完全平方公式)13.【答案】乙【解析】解:∵x 甲−=1042kg/亩 x 乙−=1042kg/亩 s 甲2=6.5s 乙2=1.2∴x 甲−=x 乙− S 甲2>S 乙2∴产量稳定 适合推广的品种为乙故答案为:乙.14.【答案】25 【解析】解:∵{x −3(x −2)≤4①2+2x3≥x −1②由①得:x ≥1由②得:x ≤5∴不等式组的解集为:1≤x ≤5∴整数解有:1 2 3 4 5∴它是偶数的概率是25.故答案为25.15.【答案】2√2【解析】解:过F 作FG ⊥BC 于G由作图知 CF 是∠ACB 的角平分线∵FH ⊥AC 于点H.FH =√2∴FG=FH=√2∵∠FGB=90°∠B=30°.∴BF=2FG=2√2故答案为:2√2.16.【答案】2π【解析】解:连接AC∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形即∠ABC=90°∴AC为直径即AC=4dm AB=BC(扇形的半径相等)∵AB2+BC2=22∴AB=BC=2√2dm∴阴影部分的面积是90⋅π⋅(2√2)2360=2π(dm2).故答案为:2π.17.【答案】13n【解析】解:法1:过O作OM⊥AB交AB于点M交A1B1于点N如图所示:∵A1B1//AB∴ON⊥A1B1∵△OAB为斜边为1的等腰直角三角形∴OM=12AB=12又∵△OA1B1为等腰直角三角形∴ON=12A1B1=12MN∴ON:OM=1:3∴第1个正方形的边长A1C1=MN=23OM=23×12=13同理第2个正方形的边长A2C2=23ON=23×16=132则第n个正方形A n B n D n C n的边长13n法2:由题意得:∠A=∠B=45°∴AC1=A1C1=C1D1=B1D1=BD1AB=1∴C1D1=13AB=13同理可得:C2D2=13A1B1=132AB=132依此类推C n D n=13n.故答案为13n.18.【答案】2√10【解析】解:∵四边形ABCD是正方形∴A点与C点关于BD对称∴CM=AM∴MN+CM=MN+AM≥AN∴当A M N三点共线时MN+CM的值最小∵AD//CF∴∠DAE=∠F∵∠DAE+∠DEH=90°∵DG⊥AF∴∠CDG+∠DEH=90°∴∠DAE=∠CDG∴∠CDG=∠F∴△DCG∽△FCE∵S△DCGS△FCE =14∴CDCF =12∵正方形边长为3∴CF=6∵AD//CF∴ADCF =DECE=12∴DE=1CE=2在Rt△CEF中EF2=CE2+CF2∴EF=√22+62=2√10∵N是EF的中点∴EN=√10在Rt△ADE中EA2=AD2+DE2∴AE=√32+12=√10∴AN=2√10∴MN+MC的最小值为2√10故答案为:2√10.19.(1)【答案】解:(π−2021)0−3tan30°+|1−√3|+(12)−2=1−3×√33+√3−1+4=1−√3+√3−1+4=4.(2)【答案】解:原式=x−3(x−4)2⋅(x+4)(x−4)x−3−xx−4=x+4x−4−xx−4=4x−4.把x=√2+4代入原式=√2+4−4=2√2.20.【答案】40108°【解析】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名)则在条形统计图中成绩“一般”的学生人数为:40−10−16−2=12(名)∴在扇形统计图中成绩“一般”的扇形圆心角的度数为:360°×1240=108°故答案为:40108°(2)把条形统计图补充完整如下:(3)1400×1040=350(名)即估计该校大约有350名学生在这次竞赛中成绩优秀(4)画树状图如图:共有12种等可能的结果恰好选中甲和乙的结果有2种∴恰好选中甲和乙的概率为212=16.21.【答案】解:(1)∵AB是⊙O的直径∴∠ACB=90°即∠ACE+∠BCE=90°∵AD=AC BE=BC∴∠ACE=∠D∠BCE=∠BEC又∵∠BEC=∠AED∴∠AED+∠D=90°∴∠DAE=90°即AD⊥AE∵OA是半径∴AD是⊙O的切线(2)由tan∠ACE=13=tan∠D可设AE=a则AD=3a=AC ∵OE=3∴OA=a+3AB=2a+6∴BE=a+3+3=a+6=BC在Rt△ABC中由勾股定理得AB2=BC2+AC2即(2a+6)2=(a+6)2+(3a)2解得a1=0(舍去)a2=2∴BC=a+6=8.22.【答案】解:(1)①由题意得生产并销售B型车床x台时生产并销售A型车床(14−x)台当x>4时每台B型车床可以获利[17−(x−4)]=(21−x)万元.故答案应为:14−x21−x②由题意得方程10(14−x)+70=[17−(x−4)]x解得x1=10x2=21(舍去)答:生产并销售B型车床10台(2)当0<x≤4时总利润W=10(14−x)+17x整理得W=7x+140∵7>0∴当x=4时总利润W最大为7×4+140=168(万元)当x>4时总利润W=10(14−x)+[17−(x−4)]x整理得W=−x2+11x+140∵−1<0=5.5时总利润W最大∴当x=−112×(−1)又由题意x只能取整数∴当x=5或x=6时∴当x=5时总利润W最大为−52+11×5+140=170(万元)又∵168<170∴当x=5或x=6时总利润W最大为170万元而14−5=914−6=8答:当生产并销售A B两种车床各为9台5台或8台6台时使获得的总利润W最大最大利润为170万元.23.【答案】解:过B作BM⊥水平地面于M BN⊥AC于N如图所示:则四边形AMBN是矩形∴AN=BM BN=MA∵斜坡AB=105米坡度i=1:2=BMAM∴设BM=x米则AM=2x米∴AB=√BM2+AM2=√x2+(2x)2=√5x=105∴x=21√5∴AN=BM=21√5(米)BN=AM=42√5(米)在Rt△BCN中∠CBN=α=45°∴△BCN是等腰直角三角形∴CN=BN=42√5(米)∴AC=AN+CN=21√5+42√5=63√5≈141.1(米)答:观光电梯AC的高度约为141.1米.24.【答案】(1)证明:如图1中∵四边形ABCD是正方形∴DA=DC∠A=∠ADC=∠DCB=∠DCF=90°∵DE⊥DF∴∠EDF=∠ADC=90°∴∠ADE=∠CDF在△DAE和△DCF中{∠ADE=∠CDF DA=DC∠A=∠DCF∴△DAE≌△DCF(ASA)∴AE=CF.(2)解:结论:EA+EC=√2DE.理由:如图2中连接AC交DE于点O过点D作DK⊥EC于点K DJ⊥EA交EA的延长线于点J.∵四边形ABCD是正方形△DEF是等腰直角三角形∴∠DAO=∠OEC=45°∵∠AOD=∠EOC∴△AOD∽△EOC∴AOEO =ODOC∴AOOD =OEOC∵∠AOE=∠DOC∴△AOE∽△DOC∴∠AEO=∠DCO=45°∴∠DEJ=∠DEK∵∠J=∠DKE=90°ED=ED∴△EDJ≌△EDK(AAS)∴EJ=EK DJ=DK∵∠J=∠DKC=90°DJ=DK DA=DC∴Rt△DJA≌Rt△DKC(HL)∴AJ=CK∴EA+EC=EJ−AJ+EK+CK=2EJ∵DE=√2EJ∴EA+EC=√2DE.(3)解:如图3中连接AC取AC的中点O连接OE OD.∵四边形ABCD是正方形AE⊥EC∴∠AEC=∠ADC=90°∵OA=OC∴OD=OA=OC=OE∴A E C D四点共圆∴∠AED=∠ACD=45°∴∠AEC=∠DEC=45°由(2)可知AE+EC=√2DE∵AE⊥AF∴∠EAF=90°∴∠AEF=∠AFE=45°∴AE=AF=√2∴EF=√2AE=2∵DF=3∴DE=5∴√2+EC=5√2∴EC=4√2.25.【答案】解:(1)∵抛物线y=12x2+bx+c过A(0,−2)B(4,0)两点∴{c=−28+4b+c=0解得{b=−32 c=−2∴y=12x2−32x−2.(2)∵B(4,0)A(0,−2)∴OB=4OA=2∵GF⊥x轴OA⊥x轴在Rt△BOA和Rt△BGF中tan∠ABO=OAOB =GFGB即24=12GB∴GB=1∴OG=OB−GB=4−1=3当x=3时y D=12×9−32×3−2=−2∴D(3,−2)即GD=2∴FD=GD−GF=2−12=32∴S△BDF=12⋅DF⋅BG=12×32×1=34.(3)①如图1中过点H作HM⊥EF于M ∵四边形BEHF是矩形∴EH//BF EH=BF∴∠HEF=∠BFE∵∠EMH=∠FGB=90°∴△EMH≌△FGB(AAS)∴MH=GB EM=FG∵HM=OGOB=2∴OG=GB=12∵A(0,−2)B(4,0)x−2∴直线AB的解析式为y=12a−2)设E(a,−2a+8)F(a,12由MH=BG得到a−0=4−a∴a=2∴E(2,4)F(2,−1)∴FG=1∵EM=FG∴4−y H=1∴y H=3∴H(0,3).②如图2中BH=√OH2+OB2=√32+42=5∵PH=PC+2∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7要使得△PHB的周长最小只要PC+PB的值最小∵PC+PB≥BC∴当点P在BC上时PC+PB=BC的值最小∵BC=√OC2+OB2=√82+42=4√5∴△PHB的周长的最小值为4√5+7.第21页共21页。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -172.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A 主视图不变B. 俯视图不变C 左视图不变D. 三种视图都不变3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B. 59C. 62D. 644.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 235.下列运算正确是() A. 428a a a ⋅= B. 221a a -= C. 2222a a a -+= D. ()325x x =6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 23C. 33D.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C. 60D. 709.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A. B. C. D. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11.5_.12.如图,在正六边形ABCDEF 中,CAD ∠的度数为____.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC 交于,E F 两点,且,A C 两点在轴上,点的坐标为()2,4,则点的坐标为_____.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()1082 3.146012cos π-⎛⎫+⎭- ⎪⎝︒. 16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.20.如图1所示的是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.2 1.414,31(.732≈≈,最后结果取整数)21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -17【答案】A【解析】【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】|﹣7|=7.故选A.【点睛】本题考查了绝对值的性质①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A. 主视图不变B. 俯视图不变C. 左视图不变D. 三种视图都不变【答案】C【解析】【分析】分别得到将正方体A移动前后的三视图,依次即可作出判断.【详解】将正方体放到正方体的上面后,主视图改变,左视图不变,俯视图改变.故选:C .【点睛】此题主要考查立体组合体的三视图,熟练画立体图形的三视图是解题关键.3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B 59C. 62D. 64【答案】B【解析】【分析】先根据平行线的性质求出62,BOE ∠=︒再根据邻补角求得118,COE ∠=︒然后根据角平分线即可求解.【详解】解:∵DE AB∴62,BOE B ∠=∠=︒∴118,COE ∠=︒∵OF 是COE ∠的角平分线∴1∠=59︒故选:B【点睛】此题主要考查平行线的性质、邻补角的性质和角平分线的定义,熟练掌握性质定理是解题关键. 4.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 23【答案】C直接把()2,3-代入(0)y kx k =≠即可求解.【详解】解:把()2,3-代入(0)y kx k =≠ 解得:3k 2=-故选:C【点睛】此题主要考查待定系数法求正比例函数解析式中的参数k ,正确理解函数的图象和性质是解题关键. 5.下列运算正确的是()A. 428a a a ⋅=B. 221a a -=C. 2222a a a -+=D. ()325x x =【答案】C【解析】【分析】直接根据同底数幂的乘法法则、合并同类项法则和幂的乘方法则即可求解.【详解】解:A. 426a a a ⋅=,此选项错误B. 22a a -=-,此选项错误C. 2222a a a -+=,此选项正确D. ()326x x =,此选项错误 故选:C【点睛】此题主要考查同底数幂的乘法法则、合并同类项法则和幂的乘方法则,熟练掌握法则是解题关键. 6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 3C. 33D.【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键. 8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C 60D. 70【答案】C【解析】【分析】根据同弧所对的圆心角等于圆周角的2倍,可得出∠B=25︒,然后根据三角形的内角和为180︒即可求解.【详解】解:∵50AOC ∠=︒,∴∠B=25︒,∵35C ∠=︒,∠ADB=∠CDO ,∴A ∠+∠B=∠C+∠AOC ,即∠A=355025︒+︒-︒=60︒,故选:C .【点睛】此题主要考查同弧所对的圆心角与圆周角之间的关系及三角形的内角和,熟练掌握性质是解题关键.9.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.【答案】B【解析】【分析】设AEF S x =△,根据相似三角形的面积比等于相似比的平方,得出4BCF Sx =,求出x 即可解答. 【详解】解:∵AD ∥BC ,是矩形ABCD 中AD 边的中点,∴AEF ~CBF ,设AEF S x =△,那么4BCF Sx =, ∵2ABF S =, ∴()1x 2422x +=+, 解得:x 1=,∴325CDEF S x =+=四边形,故选:B.【点睛】此题主要考查相似三角形的相似比与面积比之间的关系,灵活运用关系是解题关键. 10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A.B. C. D. 【答案】B【解析】【分析】由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =,根据当3x ≥时,随的增大而增大,得到0,a >且1x ≤时,随的增大而减小,再根据当20x -≤≤时,的最大值为,得到当2x =-时,28110a a ++=,求出1a =,那么2(1)1y x =-+关于轴对称的抛物线为()211y x =++,即可求解. 【详解】解:由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =.当3x ≥时,随的增大而增大,0,a ∴>且1x ≤时,随的增大而减小.当20x -≤≤时,的最大值为10,当2x =-时,28110,a a ++= 1a 或9a =-(舍去),2222()11y x x x ∴=-+=-+关于轴对称的抛物线为()211,y x =++函数()211y x =++在23x -≤≤内的最大值在3x =处取得,最大值为17,y =故选.【点睛】此题主要考查二次函数的性质,熟练掌握二次函数的图象和性质是解题关键. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11._.【答案】2【解析】【分析】估算得出所求即可.【详解】解:∵459,∴23<<,2,故答案为:2.【点睛】此题主要考查无理数的估算,熟练掌握估算方法是解题关键.12.如图,在正六边形ABCDEF中,CAD∠的度数为____.【答案】30【解析】【分析】根据正六边形得到∠ABC=∠BCD=∠CDE=120︒,AB=BC=CD,进而得到∠ACB=30,∠ACD=90︒,∠ADC=60︒,即可求解.【详解】解:在正六边形ABCDEF中,∠ABC=∠BCD=∠CDE=120︒,AB=BC,∴∠ACB=30,∠ACD=90︒,∠ADC=60︒,∴∠CAD=30,故答案为:30.【点睛】此题主要考查正六边形的性质,灵活运用性质是解题关键.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC交于,E F两点,且,A C两点在轴上,点的坐标为()2,4,则点的坐标为_____.【答案】4 6,3⎛⎫ ⎪⎝⎭【解析】【分析】先根据待定系数法求得8y x =,再根据OA=6即可求解. 【详解】解:令y k x =,E (2,4), ∴k=8,即8y x=, ∵OA =OC+AC =2+4=6,∴F(6,43), 故答案为:46,3⎛⎫ ⎪⎝⎭.【点睛】此题主要考查待定系数法求反比例函数解析式,然后根据函数解析式确定点的坐标,熟练掌握待定系数法是解题关键.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.【答案】2212+【解析】【分析】BFA'的周长=FA'+BF+BA'=AF+BF+BA'=AB+BA'=10+BA',推出当BA'最小时,BFA'的周长最小,由此即可求解.【详解】解:如图,作BH AD ⊥于点,连接BP ,∵10,16,60AB AD A ==∠=︒,8,5PA AH ==,853PH ∴=-=, 5BH =PB ∴===由翻折可知'8,'PA PA FA FA ===,'BFA ∴的周长''''10'FA BF BA AF BF BA AB BA BA =++=++=+=+, 当'BA 的长度最小时,'BFA 的周长最小,''BA PB PA ∴≥-,'8BA ∴≥,'BA ∴的最小值为8,'BFA ∴的周长的最小值为1082+=.故答案为:2.【点睛】此题主要考查平行四边形的性质,翻折不变性,勾股定理,含30度直角三角形的性质等,灵活运用性质是解题关键.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()103.146012cos π-⎛⎫+⎭- ⎪⎝︒. 【答案】12-【解析】【分析】 根据负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值即可求解.【详解】解:原式12412=-++ 12=- 【点睛】此题主要考查负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值,熟练掌握法则是解题关键.16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 【答案】a【解析】【分析】 根据分式的加减乘除混合运算法则即可求解.【详解】解:原式()()()()()22211122111111a a a a a a a a a a a a a -+--+-÷=⋅=-++--. 【点睛】此题主要考查分式的加减乘除运算,熟练掌握运算法则是解题关键.17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)【答案】见解析【解析】【分析】作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【详解】解:如图,作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【点睛】此题主要考查旋转的性质,尺规作图,正确理解作图依据是解题关键.18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .【答案】见解析【解析】【分析】根据//FD AC ,得到ACB DFE ∠=∠,再根据BF CE =,得到BC EF =,加上AC FD =,得到ACB DFE △≌△,进而得到B E ∠=∠,即可证明.【详解】证明://FD AC ,ACB DFE ∴∠=∠,BF CE =,BF FC CE FC ∴+=+BC EF ∴=.,AC FD =,ACB DFE ∴≌,B E ∴∠=∠//∴.AB DE【点睛】此题主要考查全等三角形的判定和性质、平行线的性质和判定,灵活运用判定定理和性质定理是解题关键.19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.【答案】(1)见解析;(2)5天,6天;(3)600人【解析】【分析】(1)根据9天和9天以上的3人,占5,可求得总人数为60人,求出8天的人数即可补全条形统计图;(2)根据众数和中位数的概念即可求解.(3)先求出7天、8天、9天和9天以上的人数的比例,再用样本估计总体即可求解.÷=(人),【详解】解:()135%60----=(人),6024121536补全统计图如图所示:()2参加”网络自习室”自主学习天的人数最多,所以众数是天;60人中,按照参加”网络自习室”自主学习的天数从少到多排列,第人和人都是天,所以中位数是天; ()15633150060060++⨯=(人) 答:估计全校初三可能有600名学生参加”网络的自习室”自主学习的天数不少于天.【点睛】此题主要考查条形统计图与扇形统计图的综合应用,众数、中位数和用样本估计总体,正确理解概念是解题关键.20.如图1所示是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.231.732≈≈,最后结果取整数)【答案】37米【解析】【分析】根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米,在'Rt PO B 中,'90,'60PO B PBO ∠=︒∠=︒,得到3''3O B P =,在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,得到''O D O P =,进而得到3''1'15BD O D O B O P ⎛=-== ⎝⎭米,'35.4931O P =≈-米,最后根据''OP OO O P =+即可求解.【详解】解:根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米.在'Rt PO B 中,'90,'60,PO B PBO ∠=︒∠=︒3''3O B P ∴= 在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,''O D O P ∴=, 3''1'153BD O D O B O P ⎛∴=-=-= ⎝⎭米,'35.49O P ∴=≈米,''37.09OP OO O P ∴=+=米37≈米,答:”天下第一灯”的高度约为37米.【点睛】此题主要考查解直角三角形的应用,正确地构造直角三角形和解直角三角形是解题关键. 21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.【答案】(1) 4.65137.7y x =-;(2)3300m【解析】【分析】(1)根据实际问题列出函数表达式即可.(2)先判断用水量在哪一阶梯,再计算.详解】解:()()1 3.80162 4.65162y x =⨯+-,即 4.65137.7y x =-.()2由()1知,当162275x <≤时, 4.65137.7,y x =-当275x =时,1141.05y =.1141.051320.55y =<,该户居民2019年的年用水量在3275m 以上,终端水价为7.18元/3m .当275x >时,()1141.057.18275,y x =+-即7.18 833.45,y x =-7.18 833.451320.55,x∴-=解得300x=.答:该户居民2019年的年用水量为3300m.【点睛】此题主要考查根据实际问题列函数解析式,找出实际问题中的等量关系是解题关键.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.【答案】(1)图表见解析,14;(2)不公平,理由见解析【解析】【分析】(1)先用列表法列出所有可能的结果,再求概率.(2)比较两种结果的概率即可求解.【详解】解:()1列表如下从表格可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有种,所以两人抽取相同数字的概率为1 4()2不公平.从()1中表格可以看出,两人抽取数字和为的倍数的结果有种,两人抽取数字和为的倍数的结果有种, 所以甲获胜的概率为38,乙获胜的概率为31633816> 甲获胜的概率大,游戏不公平.【点睛】此题主要考查列表法或画树状图法求概率,正确理解概率的概念是解题关键.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 【答案】(1)相切,理由见解析;(2)35【解析】【分析】(1)连接BD ,根据90BAD ∠=︒,得出点在BD 上,即BD 是直径,进而得到90BCD ∠=︒,90DEC CDE ∠+∠=︒,再根据DEC BAC ∠=∠,得出90BAC CDE ∠+∠=︒,由同弧所对的圆周角相等,得到90BDC CDE ∠+∠=︒,即可求证.(2)根据90BAF BDE ∠=∠=︒,得到90F ABC FDE ADB ∠+∠=∠+∠=,由AB AC =,得到A ABC CB =∠∠,再根据ADB ACB ∠=∠,得到,ABC ADB F EDF ∠=∠∠=∠,进而得到6DE EF ==,再根据4,90CE BCD =∠=︒,得到2290,25DCE CD DE CE ∠=︒=-=90,BDE CD BE ∠=︒⊥,得到CDECBD ,最后根据对应边成比例即可求解. 【详解】解:()1DE 与O 相切.理由:如图,连接BD .90,BAD ∠=︒点在BD 上,即BD 是直径,90BCD ∴∠=︒,90DEC CDE ∴∠+∠=︒.,DEC BAC ∠=∠90BAC CDE ∴∠+∠=︒.,BAC BDC ∠=∠90,BDC CDE ∴∠+∠=︒90,BDE ∴∠=︒即BD DE ⊥.点在O 上,DE ∴是O 的切线.()290BAF BDE ∠=∠=︒.90F ABC FDE ADB ∴∠+∠=∠+∠=.,AB AC =ABC ACB ∴∠=∠.,ADB ACB ∠=∠,,ABC ADB F EDF ∴∠=∠∠=∠6.DE EF ∴==4,90CE BCD =∠=︒,2290,2 5.DCE CD DE CE ∴∠=︒=-=90,BDE CD BE ∠=︒⊥,,CDE CBD ∴ CD BD CE DE ∴= O ∴的直径256354BD ⨯== 【点睛】此题主要考查圆周角定理,勾股定理,切线的判定和相似三角形的判定及性质,熟练掌握判定定理和性质定理是解题关键.24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.【答案】(1)2y x 2x 3=-++;(2)点M 的坐标为17,24⎛⎫-⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭【解析】【分析】(1)利用待定系数法即可解决问题; (2)根据223tan 3m m MG MBA BG m-++∠==-,1tan 2BE BDE DE ∠==,由∠MBA=∠BDE ,构建方程即可解决问题.【详解】解:()1把点()()3,0,0,3B C 代入2,y x bx c =-++ 得到930,3,b c c -++=⎧⎨=⎩解得2,3,b c =⎧⎨=⎩抛物线的解析式为2y x 2x 3=-++.()2如图,作MG x ⊥轴于点,G 连接,BM 则90MGB ∠=︒.()2,23,M m m m -++223,3,MG m m BG m ∴=-++=-2233m m MG tan MBA BG m-++∴∠==- ()222314y x x x =-++=--+,顶点的坐标为()1,4 DE x ⊥∵轴,90,4,1DEB DE OE ∴∠=︒==()3,0B ,2BE ∴=12BE tan BDE DE ∴∠== ,MBA BDE ∠=∠223132m m m -++∴=-当点M 在轴上方时223132m m m -++=- 解得112m =-,23m =(舍弃), 17,24M ⎛⎫∴- ⎪⎝⎭当点M 在轴下方时,223132m m m -++=-- 解得123,32m m ==-(舍弃),点39,24M ⎛⎫-- ⎪⎝⎭综上所述,满足条件的点M 的坐标为17,24⎛⎫- ⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭ 【点睛】此题主要考查待定系数法求二次函数解析式和利用三角函数解直角三角形,熟练掌握二次函数的性质是解题关键.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.【答案】[问题发现]25;[问题解决]①出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②总造价的最小值为160010元,出口距直线OB 的距离为36665-米 【解析】【分析】 [问题发现]PAB 的底边一定,面积最大也就是P 点到AB 的距离最大,故当OP AB ⊥时底边AB 上的高最大,再计算此时PAB 面积即可.[问题解决]①根据四边形CODE 面积=CDO CDE S S +,求出CDE S △最大时即可,然后作'E H OB ⊥,证明COD OHE ',利用相似三角形的性质求出E H '即可;②先利用相似三角形将费用问题转化为CE+2DE=CE+QE ,求CE+QE 的最小值问题,然后利用相似三角形性质和勾股定理求解即可.【详解】解:[问题发现]:如图1,点运动至半圆中点时,底边AB 上的高最大,即' 5.P O r ==此时PAB △的面积最大,最大值为1105252⨯⨯=; [问题解决]①如图2,连接,CD 作OG CD ⊥,垂足为,G 延长OG 交AB 于点,则此时CDE △的面积最大.12,4,OA OB AC D ===为OB 的中点,8,6OC OD ∴==,在Rt COD 中,10, 4.8CD OG ==,'12 4.87.2GE ∴=-=,四边形CODE 面积的最大值为1168107.26022CDO CDE SS '+=⨯⨯+⨯⨯=, 作',E H OB ⊥垂足为, ''90,'90,E OH OE H E OH ODC ∠+∠=︒∠+∠='OE H ODC ∴∠=∠.又'90COD E HO ∠=∠=︒,CODOHE '∴, ''OD E H CD OE ∴= 6'1012E H ∴= '7.2E H ∴=,出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②铺设小路CE 和DE 的总造价为()2004002002.CE DE CE DE +=+如图3,连接,OE 延长OB 到点,Q 使12BQ OB ==,连接EQ在EOD △与QOE 中,EOD QOE =∠,且12OD OE OE OQ ==, ,EOD QOE ∴故2,QE DE =2CE DE CE QE ∴+=+,问题转化为求CE QE +的最小值,连接,CQ 交AB 于点,此时CE QE +取得最小值为CQ .在Rt COQ 中,8,24CO OQ ==,810CQ ∴= 故总造价的最小值为10作',E H OB ⊥垂足为,连接'OE .设',E H x =则3QH x =.在'Rt E OH 中,222'OH HE OE '+=,()22224312,x x ∴-+= 解得13666x -=,23666x +=舍去), 总造价的最小值为10OB 的距离为36665-米. 【点睛】此题考查圆的综合问题,涉及圆的基本性质,相似三角形的判定和性质,勾股定理等知识,综合程度较高,需要灵活运用知识,解题关键是:利用对称或相似灵活地将折线和转化为线段长,从而求折线段的最值.。
初三年级数学中考模拟试题题次 一 二 三 总分1—10 11-15 16 17 18 19 20 21 22 得分一、选择题:(本大题共10题,每小题3分,共30分;每小题只有一个正确答案,请 把正确答案的字母代号填在下面的表内,否则不给分) 题号 1 2 3 4 5 6 7 8 9 10 答案1. 下列各数(-2)0 , - (-2), (-2)2, (-2)3中, 负数的个数为 ( ) A.1 B. 2 C. 3 D. 42.下列图形既是轴对称图形, 又是中心对称图形的是:( )3. 资料显示, 2005年“十 一”黄金周全国实现旅游收入 约463亿元,用科学记数法表示463亿这个数是:( )A. 463×108B. 4.63×108C. 4.63×1010D. 0.463×10114.“圆柱与球的组合体”如左图所示,则它的三视图是( )A .B .C . D5. 10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是()A .284+x B .542010+x C .158410+x D .1542010+x 6. 二次函数y = ax 2+ bx +c 的图象如图所示, 则下列结论正确的是: ( )A. a >0,b <0,c >0B. a <0,b <0,c >0C. a <0,b >0,c <0D. a <0,b >0,c >07.一个均匀的立方体六个面上分别标有数字1,2,3,4,5,6,如图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面数字的21的概率是( ) A .61 B .31 C .21 D .32y主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图13题图O B A C y xOC B A6题图 7题图 8题图 9题图8.如图所示, ABCD 中∠C=108°BE 平分∠ABC ,则∠AEB 等于 ( ) A . 180° B .36° C . 72° D . 108°9.如图,在△ABC 中,∠C =90°,AC >BC ,若以AC 为底面圆的半径,BC 为高的圆锥的侧面积为S 1,若以BC 为底面圆的半径,AC 为高的圆锥的侧面积为S 2 , 则( )A .S 1 =S 2B .S 1 >S 2C .S 1 <S 2D .S 1 ,S 2的大小大小不能确定10.在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A 的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为( )A 、外离B 、外切C 、内切D 、相交二、填空题:(本大题共5题,每小题3分,共15分;请把答案填在下表内相应的题号下,否则不给分)题号 11 12 13 14 15 答案11.为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计湖里有鱼 ________条.12. 如图,D 在AB 上,E 在AC 上,且∠B =∠C ,那么补充下列一个条件 , 使△ABE ≌△ACD12题图 15题图13.如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则圆环的面积为 。
14.今年我省荔枝又喜获丰收. 目前市场价格稳定,荔枝种植户普遍获利. 据估计,今年全省荔枝总产量为50 000吨,销售收入为61 000万元. 已知“妃子笑”品种售价为1.5万元/吨,其它品种平均售价为0.8万元/吨,求“妃子笑”和其它品种的荔枝产量各多少吨. 如果设“妃子笑”荔枝产量为x 吨,其它品种荔枝产量为y 吨,那么可列出方程组为 .15.如图,正比例函数y=kx 与反比例函数y =x1的图象相交于A ,B 两点,过B 作X 轴的垂线交X 轴于点C ,连接AC ,则△ABC 的面积是E DC B A三、计算题:(本大题共7小题,其中第16,17题各6分,第18,19题各8分,第20,21,22题各9分,共55分)16.计算: 131-⎪⎭⎫ ⎝⎛0232006⎪⎪⎭⎫ ⎝⎛--3-sin60°.17.化简求值:12,122422-=++÷⎪⎪⎭⎫ ⎝⎛-+-x x x x x x 其中18.西部建设中,某工程队承包了一段72千米的铁轨的铺设任务,计划若干天完成,在铺设完一半后,增添工作设备,改进了工作方法,这样每天比原计划可多铺3千米,结果提前了2天完成任务。
问原计划每天铺多少千米,计划多少天完成?19.某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上 1号 2号 3号 4号 5号 总分 甲班 100 98 110 89 103 500 乙班891009511997500(1)计算两班的优秀率.(2)求两班比赛数据的中位数.(3)计算两班比赛数据的方差并比较.(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述理由.20.如图:已知AB 是⊙O 的直径,BC 是⊙O 的切线,OC 与⊙O 相交于点D ,连结AD 并延长,与BC 相交于点E 。
(1)若BC =3,CD =1,求⊙O 的半径;(2)取BE 的中点F ,连结DF ,求证:DF 是⊙O 的切线F OE DC BA21.如图12,一次函数133+-=x y 的图象与x 轴、y 轴分别交于点A 、B ,以线段AB 为边在第一象限内作等边△ABC , (1) 求△ABC 的面积;(2) 如果在第二象限内有一点P (21,a ),试用含a 的式子表示四边形ABPO 的面积,并求出当△ABP 的面积与△ABC 的面积相等时a 的值;Px 图12AO Cy B(3) 在x 轴上,存在这样的点M ,使△MAB 为等腰三角形.请直接写出所有符合要求的点M 的坐标.22. 如图,抛物线2y ax bx c =++经过点O(0,0),A(4,0),B(5,5),点C 是y 轴负半轴上一点,直线l 经过B,C 两点,且5tan 9OCB ∠=(1)求抛物线的解析式;(2)求直线l 的解析式;(3) 过O,B 两点作直线,如果P 是直线OB 上的一个动点,过点P 作直线PQ 平行于y 轴,交抛物线于点Q 。
问:是否存在点P ,使得以P,Q,B 为顶点的三角形与△OBC 相似?如果存在,请求出点P 的坐标;如果不存在,请说明理由。
参考答案题号 1 2 3 4 5 6 7 8 9 10 答案ADCCDDABBC二.填空题:题号 1112 131415答案800 AB=AC 或AD=AE 或BE=DC9π X + y =5000 1.5X +0.8y =610001三.计算题:16.解:原式=2123313=⨯-- 6分 17.解: 2112,121212)2)(2(21242=+-=-=+=++⨯--+=++⨯--=原式时当原式x x x x x x x x x x x 6分 18.解:设原计划每天铺x 米,则可列方程: 1分7272272223x x x ÷÷⎛⎫-+= ⎪+⎝⎭4分整理得:23540x x +-=, 解之,9,621-==x x 6分经检验,,9,621-==x x 都是所列方程的解,由于负数不合题意,所以取6=x 7分 原计划天数为7212x= 答:原计划每天铺6米,12天完成任务。
8分19.解:(1)甲班的优秀率是60%,乙班的优秀率是40%; 2分(2)甲班的中位数是100,乙班的中位数是97; 4分(3)甲班的方差是()()[]8.463111025122222=+-++-=S , 乙班的方差是()()()[]2.1033195115122222=-++-+-=S , 乙班的方差较大,说明乙班的波动比较大. 6分(4)冠军应该是甲班,首先是优秀率高于乙班,其次中位数较大,而且甲班的方差较小,说明它们的成绩波动较小. 8分20.(1)解:∵AB 是⊙O 的直径,BC 是⊙O 的切线F OE DCBA∴AB ⊥BC , 1分设⊙O 的半径为r在Rt △OBC 中,∵222CB OB OC +=∴222)3()1(+=+r r , 3分解得r =1∴⊙O 的半径为1 4分(2)连结OF ,∵OA =OB ,BF =EF ,∴OF ∥AE ,∠A =∠2又∵∠BOD =2∠A ,∴∠1=∠2,又∵OB =OD 、OF =OF ∴△OBF ≌△ODF ,∴∠ODF =∠OBF =900,即OD ⊥DF ,∴FD 是⊙O 的切线。
5分21.解:根据条件,A 、B 两点的坐标分别是(0,3)、(1,0).(1) 在△ABO 中,由勾股定理,得2=AB .所以正△ABC 的高是3,从而△ABC 的面积是33221=⨯⨯. 3分 (2) 过P 作PD 垂直OB 于D ,则四边形ABPO 的面积)3(21|)|3(21||||21||||21a a PD OB AO OB S -=+=⋅+⋅=. 当△ABP 的面积与△ABC 的面积相等时,四边形ABPO 的面积-△AOP 的面积=△ABC 的面积,DPxAOCy B即321321)3(21=⋅⨯--a . 解得233-=a . 7分 (3) 符合要求的点M 的坐标分别是(0,3-)、(0,23-)、(0,33)、(0,23+) 9分 分点的坐标为所以分舍去解得即当分舍去解得即当分相似与都有时或当轴平行于分设得为设直线分得为设直线即于作分代入得把设抛物线为解9)25,25(),54,54(8)(52525452257)(55442552255)4(,225,2,25556,5),(,1,55,:)3(445959455,:)4,0(,459,9,955,95tan ,)2(244552510416)5,5(),0,4(,)1(:.2221432212222222211122P P P m m m m m OBOCPQ BP m m m m m OC OB PQ BP m m m m m PQ m PB m OP OB BOC PQB OBOCPQ BP OCOBPQ BP BOC BPQ Y PQ m m P xy k k x k y OB x y k b b k b x k y l C OE CE OC CE CE CE BE OCB E OC BE xx y b b a a b a B A bx ax y ===--====--=-=--=-=∴==+=∆∆==∠=∠∴==∴==-=∴=-==++=-∴=-=-==∴===∠⊥-=∴-==+==++=EE。