Synthesis and Crystal Structure of4,5
- 格式:pdf
- 大小:98.31 KB
- 文档页数:3
Al-Cu合金水平单向凝固组织预测及实验观察仲红刚;曹欣;陈湘茹;张捷宇;翟启杰【摘要】使用有限元耦合元胞自动机模型预测水平单向凝固实验中 Al-4.5%Cu(质量分数)合金试样的温度场和微观凝固组织。
晶体形核和枝晶生长动力学模型分别采用Rappaz连续形核模型和Kurz-Giovanola-Trivedi(KGT)模型简化形式,基于纯扩散条件,采用 KGT 模型简化公式计算生长参数。
结果显示:数值模拟可以较准确地预测柱状晶向等轴晶转变(CET)位置和等轴晶晶粒尺寸,但因模拟未考虑晶核的运动,激冷等轴晶区的模拟有较大偏差。
模拟和实验结果都证明过热度显著影响Al-Cu合金的凝固组织,过热度低于20℃条件下可以获得全等轴晶组织,否则会出现柱状晶;过热度50℃以上的试样CET位置几乎不发生变化。
%The temperature field and the grain structure of Al-4.5%Cu (mass fraction) alloy in horizontal directional solidification process were predicted using a cellular automaton (CA) coupled with finite-element (FE) model. The Rappaz model was adopted to calculate the nucleation. And the Kurz-Giovanola-Trivedi (KGT) model was used to describe the growth kinetics of dendritic tips. The growth parameters of Al-4.5%Cu alloy were calculated using simplified KGT formula, which was derived based on the pure diffusion condition. The results show that the position of the columnar to equiaxed transition (CET) and the size of equiaxed grains can be simulated reasonably. However, large deviation of the simulated result exists in the chill zone as the movement of nucleus is not considered. The simulated and experimental results prove that the superheat greatly influences the solidification microstructures of Al-Cu alloy. Full equiaxed grains can beobtained if superheat is lower than 20 ℃, otherwise columnar grains will be observed. When the superheat is above 50 ℃, the positions of CET are no longer changed.【期刊名称】《中国有色金属学报》【年(卷),期】2013(000)010【总页数】8页(P2792-2799)【关键词】Al-Cu合金;元胞自动机;凝固过程;柱状晶向等轴晶转变;热模拟【作者】仲红刚;曹欣;陈湘茹;张捷宇;翟启杰【作者单位】上海大学材料科学与工程学院上海市现代冶金及材料制备重点实验室,上海 200072;上海大学材料科学与工程学院上海市现代冶金及材料制备重点实验室,上海 200072;上海大学材料科学与工程学院上海市现代冶金及材料制备重点实验室,上海 200072;上海大学材料科学与工程学院上海市现代冶金及材料制备重点实验室,上海 200072;上海大学材料科学与工程学院上海市现代冶金及材料制备重点实验室,上海 200072【正文语种】中文【中图分类】TG21连铸坯凝固传热主要在厚度及宽度方向(或径向)进行,拉坯方向的凝固传热可以忽略不计。
JOURNAL OF RARE EARTHS,Vol.27,No.6,Dec.2009,p.1092Fou ndation it em:Project supported by t he Science and Technology Program,Beijing Municipal Education Commission (09224010010)Cor respondin g aut hor:LI Xia (E-mail:xiali@;Tel.:+86-10-68903033)DOI 6S ()6356Synthesis,crystal structur e and fluorescence proper ty of 1-D eur opium complex with 2,3-difluorobenzoateSONG Jinhao (宋金浩),WU Xiaoshuo (吴小说),LI Xia (李夏)(Department of Chemistry,Capital N ormal Univers ity,B eijing 100048,China)Received 31March 2009;revised 29April 2009Abstract:A new chain europium complex [Eu(2,3-DFBA)3(H 2O)2]n (2,3-DFBA=2,3-difluorobenzoate)was synthesized by solvent method.X-ray single-crystal diffraction analysis revealed that Eu 3+ions were linked through 2,3-DFBA groups via alternate bidentate-bridging and tridentate chelating-bridging coordination modes to form a one-dimensional (1-D)polymeric chain.Each Eu 3+ion is eight-coordinated by six O atoms of five 2,3-DFBA ligands and two water molecules.The abundant hydrogen bonds between chains resulted in a two-dimensional (2-D)network structure.The titled complex crystallizes in monoclinic system,space group P21/c,with a=0.79977(2)nm,b=2.99156(7)nm,c=0.93260(2)nm,and β=100.691(1)°.The complex exhibited strong red fluorescence under ultraviolet light,and the 5D 0→7F j (j=0~4)transi-tions ofEu 3+ion were observed in its emission spectrum.Keywords:europium complex;2,3-difluorobenzoic acid;crystal structure;fluorescence;rare earthsIn recent years,luminescent lanthanide complexes have attracted much attention due to their excellent photophysical properties and potential applications in different interestingareas [1–4].The research has been focused on lanthanide com-plexes with carboxylic acid because they show various in-teresting molecular structures and luminescence for practicalapplications [5–16].Benzoic acid and its derivatives have been widely used in the coordination complexes of rare earth be-cause they are rigid ligands with various coordination modes and can form π-πstacking or hydrogen bonds to stabilize the complexes.By reducing the fluorescence quenching effect of the vibrational C –H bond [17,18],fluorinated organic ligands can significantly strengthen the luminescence inten-sity of complexes.We chose 2,3-difluorobenzoic acid to prepare a new chain europium complex,namely [Eu(2,3-DFBA )3(H 2O)2]n (2,3-DFBA=2,3-difluorobenzoate).The crystal structure,thermal stability and fluorescence emission spectrum were reported in this paper.1Experimental1.1Reagents and instruments All analytical grade re-agents and solvents were purchased commercially and used without further purification.EuCl 36H 2O was pre-pared by the reaction of Eu 2O 3(99.90%)and hydrochloric acid.Solid-state excitation and emission spectra were recorded on an F-4500fluorescence spectrophotometer at room tem-perature.The TG-DTA analysis experiment was carried out on a WCT-1A Thermal Analyzer.1.2Synthesis of the title complex A stoichiometric amount of 2,3-difluorobenzoic acid and EuCl 36H 2O were dissolved in 95%ethanol,respectively.The pH of the 2,3-difluorobenzoic acid was adjusted to the range of 5–6with 2mol/L NaOH solution.Then the ethanol solution of EuCl 36H 2O was added dropwise to the mixed solution.The mixture was heated under reflux with stirring for 2h.Single crystals suitable for X-ray investigation were obtained from the mother liquor after a week (Yield:42.25%).1.3Single-crystal structure determination A single crystal of the titled complex with dimensions of 0.15mm ×0.20mm ×0.20mm was carefully selected and mounted on a glass fi-ber.Data were collected at 296(2)K on a Bruker Smart 1000CCD diffractometer equipped with a graphite mono-chromatized Mo K αradiation (λ=0.071073nm).Semi-em-pirical absorption corrections were applied using the SADABS program.The structure was solved by direct method.The coordinates of all non-hydrogen atoms and the anisotropical parameters were refined by full-matrix least-squares method.The hydrogen atoms were placed in calculated positions.All calculations were carried out on a:10.101/1002-07210809-SONG Jinhao et al.,Synthesis,crystal structure and fluorescence property of1-D europium complex with2,3-difluorobenzoate1093computer by using SHELXS-97and SHELXL-97programs. The crystallographic data and structure refinement of the ti-tled complex are summarized in Table1.The selected bond lengths and bond angles of the titled complex are listed in Table2.2Results and discussion2.1Crystal structure The crystal structure and atomic numbering of the titled complex are shown in Fig.1.The complex is regarded as a polymeric chain composed of [Eu(2,3-DFBA)3(H2O)2]units.In the asymmetric unit,each Eu3+ion is coordinated to eight atoms,of which one oxygen atom is from the monodentate carboxylate group,two oxy-gen atoms from bidentatebridging carboxylate groups,three oxygen atoms from tridentate chelating-bridging carboxylate groups,and two oxygen atoms from two water molecules. The coordination geometry of Eu3+ion can be described as a distorted square-antiprism.The upper and lower planes of the square-antiprism are structured by O1,O2,O7,O8and O2A,O3,O5,O6,respectively,with a dihedral angle of4.6°between them.And the mean deviation from the upper and lower planes is0.02678and0.03874nm,respectively.The Table1Crystal data and structure refinement for the title complexEmpirical formula C21H13EuF6O8Formula weight659.27Crystal s ize/mm0.15×0.20×0.20Temperature/K296(2)Wavelengt h/nm0.071073Crystal s ystem MonoclinicSpace group P21/ca/nm0.79977(2)b/nm 2.99156(7)c/nm0.93260(2)α/(°)90.00β/(°)100.691(1)γ/(°)90.00V/nm3 2.19257(9)Z4Dc/(mg/m3) 1.997/mm–1 2.959F(000)1280θ/(o) 2.7~25.5Limiting indices-9≦h≦9,-36≦k≦29,-11≦l≦9 Reflections collected/unique11536/4036[R(int)=0.035]Data/restraints/parameters4036/4/341Goodness-of-fit on F2 1.564Final R indices[I>2sigma(I)]R1=0.659,wR2=0.1468R indices(all dat a)R1=0.0699,wR2=0.1481Eu–O(carboxylate)distances are in a range of0.2267(7)to 0.2583(6)nm with the average bond length of0.2402nm. The Eu1–O(water)distances are0.2460(8)and0.2430(8) nm,respectively,with the average bond distance of0.2445 nm.The O–Eu1–O bond angles range from51.8(2)to 156.3(3)°.In the titled complex,Eu3+ions are bridged by 2,3-DFBA groups in two modes:Eu1…Eu1A are bridged Table2Selected bond lengths(nm)and angles(°)for the titled complex*Eu1–O10.2440(7)Eu1–O20.2583(6)Eu1–O2A0.2430(7)Eu1–O30.2371(7)Eu1–O50.2319(7)Eu1–O60.2267(7)Eu1–O70.2460(8)Eu1–O80.2430(8)O1–Eu1–O776.9(3)O1–Eu1–O251.8(2)O2A–Eu1–O1118.2(2)O2A–Eu1–O7140.2(3)O2A–Eu1–O266.5(2)O3–Eu1–O8144.7(2)O3A–Eu1–O274.4(2)O3–Eu1–O196.8(3)O3–Eu1–O7143.7(3)O3–Eu1–O279.6(2)O5–Eu1–O371.9(2)O5–Eu1–O8141.8(3)O5A–Eu1–O2142.8(2)O5–Eu1–O181.3(3)O5–Eu1–O771.8(3)O5–Eu1–O2121.0(2)O6–Eu1–O591.1(3)O6–Eu1–O3101.9(3)O6–Eu1–O889.9(3)O6A–Eu1–O280.8(2)O6–Eu1–O1156.6(3)O6–Eu1–O779.6(3)O6–Eu1–O2145.8(2)O7–Eu1–O2119.3(2)O8A–Eu1–O274.8(2)O8–Eu1–O182.8(3)O8–Eu1–O770.8(3)O8–Eu1–O272.5(2)*Symmet ry transformat ions used to generate equivalent atoms:A:-1+x,y,z Fig.1Asymmetric unit of the titled complex1094J OURNAL OF RARE EARTHS,Vol.27,No.6,Dec.2009by two tridentate chelating-bridging2,3-DFBA groups, Eu1…Eu1B are bridged by two bidentate-bridging 2,3-DFBA groups.Eu3+ions are linked by alternate biden-tate-bridging and tridentate chelating-bridging2,3-DFBA groups to form a one-dimensional(1-D)polymeric chain. The titled complex is different from the lanthanide com-plexes with2-fluorobenzoate(2-FBA).The complexes [Tb(2-FBA)3(2-HFBA)H2O]2[5]and H o2(2-FC6H4COO)64H2O[6] are centrosymmetric dimers,in which two central Ln3+ (Ln3+=Tb3+,Ho3+)ions are linked together by four bridging carboxylate groups.Lanthanide complexes with mono-carboxylate show1-D polymeric chain structure through COO–groups via biden-tate-bridging or tridentate bridging-chelating coordination modes,such as1-D chain[{Tb(MeCH-CHCO2)3 (H2O)}MeCH-CHCO2H]n through only tridentate chelat-ing-bridging COO–groups[9],1-D[{Sm(OBz)3(MeO)2}2]n (Obz=benzoate)through two bidentate-bridging COO–groups[10],1-D[Eu(2,4-DMBA)3]n(2,4-DMBA=2,4-di-methylbenzoate)by alternate one bidentate-bridging and two tridentate-bridging and two bidentate-bridging and one triden-tate-bridging COO–groups[11],[Eu(p-MBA)3]n(p-MBA=4-methylbenzoate)through three bridging-chelating CO O–groups[12],[Gd(HF2CCOO)3(H2O)2.H2O]n through four biden-tate-bridging COO–groups[13],and[Eu(HCl2CCO O)3.2H2O]n through two bidentate-bridging and two bridging-chelating COO–groups[14].However,the titled complex is formed through alternate two bidentate-bridging and two tridentate chelating-bridging COO–groups,which isdifferent from many other1-D lanthanide complexes with mono-carboxylate. Fig.2shows two-dimensional(2-D)network structure of the titled complex along b axis,which is formed by abun-dant hydrogen bonds between chains.Three types of strong hydrogen bonds exist in the titled complex.One is the O-H…O hydrogen bonds between coordinated water mole-cules and uncoordinated carboxylate oxygen atoms, O8-H8A…O4A(A:–1+x,y,z),0.2803(11)nm,149(11)°;O7–H7B…O4C(C:1–x,-y,–z)0.2930(12)nm,154(14)°; and O7–H7A…O4A(A:–1+x,y,z),0.2789(11)nm,155(9)°; the second is the O–H…O hydrogen bonds between coordi-nated water molecules and coordinated carboxylate oxygen atoms,O8–H8B…O3B(B:1–x,–y,1–z),0.2745(10)nm, 167(16)°;the last one is between coordinated water mole-cules and uncoordinated fluorine atoms,O7–H7A…F4A(A:–1+x,y,z),0.3066(14)nm,132(8)°.2.2Fluorescence property Fluorinated organic ligands can remarkably improve the luminescence intensity of com-plexes by reducing the fluorescence quenching effect of the vibrational C–H bond[17,18].The titled complex emits a bright red fluorescence under ultraviolet light,and the solid-state excitation and emission spectra of the complex were investigated at room temperature.In the excitation spectrum,a large broad band in the range of200–300nm is observed,corresponding to the S0→S1transition of the ligands.A series of sharp lines in the excitation spectrum are attributed to the characteristic of the Eu3+energy levels,such as318,361,376-383,395,417and465nm,corresponding to7F0→5H4,7F0→5D4,7F0→5G0-4,7F0→5L6,7F0→5D3and 7F0→5D2transition emissions of Eu3+ion,respectively.The emission spectrum of the titled complex was recorded in the range from500–700nm under excitation wavelength of395nm.Fig.22-D network by hydrogen bonds along b-axisFig.3Fluorescence spectra of the title complex(a)Excitation spectrum(λ=613nm);(b)Emission spectrum(λx=395nm)em eSONG Jinhao et al.,Synthesis,crystal structure and fluorescence property of 1-D europium complex with 2,3-difluorobenzoate 1095There are five main peaks at 580,592,613,649,and 698nm,corresponding to 5D 0→7F 0,5D 0→7F 1,5D 0→7F 2,5D 0→7F 3,and 5D 0→7F 4transitions of Eu 3+ion.The splits observed in the emission bands at 589and 592nm are corresponding to 5D 0→7F 1transition.The strongest emission is centered at 613nm (5D 0→7F 2),which is responsible for the brilliant red emission.2.3Thermogravimetric analysis The DTA-TG analysis was studied in air atmosphere from 20to 1000°C with a heating rate of 10°C/min.The TG curve shows the titled complex decomposes by two steps.The TG curve is consistent with DTA curve.In the DTA curve,a small endothermic peak at 150.0°C with the first weight loss of 5.37%,which responds to the re-moval of two coordinated water molecules (calculated,5.46%).Then a large exothermic peak at 477.0°C is ob-served in the DTA curve.The second weight loss in the TG curve corresponds to the loss of the 2,3-DFBA ligands.The final residue is Eu 2O 3,and the total weight loss is 67.18%(calculated 73.31%).3ConclusionsReaction of EuCl 36H 2O with 2,3-difluorobenzoic acid produced the complex [Eu(2,3-DFBA)3(H 2O)2]n .The crys-tallographic feature of the complex was that 2,3-DFBA ligands adopted the alternate bidentate-bridging and triden-tate chelating-bridging coordination modes to link Eu 3+ions,forming 1D chain structure and a 2D supramolecular struc-ture via hydrogen bonds.The complex exhibited strong fluo-rescence due to the intra-4f n transitions of Eu 3+between the first excited state and the ground multiplet.References:[1]Faulkner S,Pope S J nthanide-sensitized lanthanide lu-minescence:terbium-sensitized ytterbium luminescence in a trinuclear complex.J.A m.Chem.Soc.,2003,125(35):10526.[2]Xu G,Wang Z M,He Z,L üZ,Liao C S,Yan C H.Synthesis and structural characterization of nonanuclear lanthanide complexes.Inorg.Chem.,2002,41(25):6802.[3]Patroniak Violetta,Baxter Paul N W,Lehn Jean-Marie,Hnate-jko Zbigniew,Kubicki Maciej.Synthesis and luminescence properties of new dinuclear complexes of lanthanide(III)ions.Eur.J.Inorg.Chem.,2004,11:2379.[4]Quici S,Marzanni G,Forni A,Accorsi G,Barigelletti F.New lanthanide complexes for sensitized visible and near-IR light emission:synthesis,1H NMR,and X-ray structural investiga-tion and photophysical properties.Inorg.Chem.,2004,43(4):1294.[5]Li X,Zhang Z Y,Zou Y Q.Synthesis,structure and lumines-cence properties of four novel terbium 2-fluorobenzoate com-plexes.Eur.J.Inorg.Chem.,2005,14:2909.[6]Li X,Zhang,Z Y.Synthesis and crystal structure of binuclear molecule Ho 2(2-FC 6H 4COO)6.4H 2O.J.Chem.Crystallogr.,2005,35(11):871.[7]Li X,Ju Y L,Zou Y Q.Synthesis,crystal structure and lumi-nescence of three europium complexes with 2-iodobenzoic acid.J.Coord.Chem.,2007,60(14):1513.[8]Goher M A S,Mautner F A.Synthesis and structure of two lanthanide complexes with isonicotinic acid N-oxide (HL):[Ln(L)2(H 2O)4]n (NO 3)n n(H 2O)(Ln=Sm or Tb).J.Mol.Struct.,2007,846:153.[9]Barja B,Aramendia P,Baggio R,Garland M T,Pe a O,Perec M.Europium(III)and terbium(III)trans-2-butenoates:syn-theses,crystal structures,and properties.Inorg.Chim Acta,2003,355:183[10]Singh U P,Kumar R,Upreti S.Synthesis,structural,photo-physical and thermal studies of benzoate bridged Sm(III)com-plexes.J.Mol.Struct.,2007,831:97.[11]Li X,Zhang Z Y,Zhang T T,Ju Y L.Synthesis,structure andluminescence of three europium complexes with 2,4-di-methylbenzoic acid.J.Coord.Chem.,2007,60(3):301.[12]Jin Q H,Li X,Zou Y Q,Yu K B.Catena-poly[europium-tri-mu-4-methyl-benzoato].A cta Cryst.,2001,57:676.[13]Rohde A,Hatscher S T,Urland W.Crystal structure and mag-netic behaviour of a new lanthanide acetate Gd(HF 2CCOO)3(H 2O)2H 2O in comparison to Gd(H 3CCOO)3(H 2O)22H 2O.J.A lloys Compd.,2004,374:137.[14]Oczko G,Starynowicz parison of optical propertiesand crystal structures of the praseodymium and europium chloroderivatives of acetates.J.Mol.Struct.,2005,740:237.[15]Wang C Y,Ju,Y L,Li Y Q,Zhang Y B,Li X.Hydrothermalsynthesis,crystal structure and luminescence of a europium complex with phenylmalonic acid and 1,10-phenanthroline.J.Rare Earths,2008,26(1):22.[16]Wang R F,Li L S,Jin L P,Lu S Z.Crystal Structure and lu-minescence of 1,10-phenanthroline-tris(4-methoxybenzoato)europium.J.Rare Earths,1998,16(2):149.[17]Chen B L,Yang Y,Zapata F,Qian G D,Luo Y S,Zhang J,Emil B.Enhanced near-infrared-luminescence in an erbium tetrafluoroterephthalate framework.Inorg.Chem.,2006,45(22):8882.[18]Gaetano Mancino,Andrew J Ferguson,Andrew Beeby,Nicho-las J Long,Tim S Jones.Dramatic increases in the lifetime of the Er 3+ion in a molecular complex using a perfluorinated imidodiphosphinate sensitizing ligand.J.A m.Chem.Soc.,2005,127(2):524.。
一种新型Cd(Ⅱ)配合物的合成、表征及性质研究庞海霞;袁曦明;何雄;李明;张蔷;李桂娟【摘要】以吡啶-4甲醛缩4-氨基安替比林和Cd(NO3)2·4H2O为原料,溶剂热法成功合成出了一个新型Cd(Ⅱ)配合物[Cd2(k)4(NO3)4](k=吡啶-4-甲醛缩4-氨基安替比林),并通过红外光谱、拉曼光谱、元素分析、X-粉末衍射、单晶X射线衍射对配合物的单晶结构进行了表征.该配合物属于单斜晶系,空间群C2/c,晶胞参数a=22.585(9)A,b=9.636(4)A,c=18.827(8)A,α=90°,β=125.152(6)°,γ=90°,V=3350(2) A3,Z=2,Dc=1.628Mg/m3,F(000)=1672,μ=0.722mm-1,R1=0.0488,wR2=0.0967(I>2σ(I)).室温固态荧光测试显示,配合物在517 nm(λmax)具有强的荧光吸收.【期刊名称】《华中师范大学学报(自然科学版)》【年(卷),期】2014(048)004【总页数】6页(P538-543)【关键词】吡啶类希夫碱;溶剂热法;晶体结构;荧光性质【作者】庞海霞;袁曦明;何雄;李明;张蔷;李桂娟【作者单位】湖北工业大学轻工学部,武汉430068 ;中国地质大学材料与化学学院教育部纳米矿物材料及应用工程研究中心,武汉430074;中国地质大学材料与化学学院教育部纳米矿物材料及应用工程研究中心,武汉430074;湖北工业大学轻工学部,武汉430068;湖北工业大学轻工学部,武汉430068;湖北工业大学轻工学部,武汉430068;湖北工业大学轻工学部,武汉430068【正文语种】中文【中图分类】O614.24由于镉(Ⅱ)具有多变的配位数而使得Cd(Ⅱ)配合物表现出不同的结构类型[1-2],并且在催化[3]、发光[4]和吸附[5]等方面的研究引起人们广泛关注[6-8].水热合成法是配位聚合物合成方法[9-11]中的一种,遵循液体成核模式反应机理[12].希夫碱的化学配位性能良好,在分析化学[13]、有机催化[14]、配位生物化学[15-16]、功能材料[17-18]等学科领域均有重要的研究价值.同时,在分析、生物、临床、药理等方面具有广泛应用价值[19-23].尽管部分4-氨基安替比林金属配合物及其衍生配体的结构表征数据已经被报道[24-28],但该类化合物的配位化学研究仍有很大的空间.本文以吡啶类希夫碱衍生物吡啶-4-甲醛缩4-氨基安替比林为配体,合成出了一种新型Cd(Ⅱ)的配合物[Cd2(L4)4(NO3)4](L4=吡啶-4-甲醛缩4-氨基安替比林),用单晶X射线衍射、X-粉末衍射、红外光谱、拉曼光谱、元素分析和荧光分析等手段对该配合物进行表征及性质研究.晶体结构分析表明,该金属配合物属于单斜晶系,空间群为C2/c.1.1试剂与仪器吡啶-4-甲醛(购买于FLUKA公司)其余试剂均为分析纯.Bruker公司EQUINOX 55红外光谱仪(KBr压片),摄谱范围4 000~400 cm-1;Carlo ERBA1106型全自动量有机元素分析仪;日立公司F-4500分光光度计; Bruker公司CCD面探衍射仪;荷兰X Pert PRO粉晶衍射仪;SENTERRA激光拉曼光谱仪.1.2配合物的合成1.2.1希夫碱吡啶-4-甲醛缩4-氨基安替比林(L4)的合成 L4的合成如图1所示,称取4-氨基安替比林4.065 g(20 mmol),溶于160 mL无水乙醇中,磁力搅拌,80℃加热至回流;再缓慢滴加含1.90 mL (20 mmol)吡啶-4-甲醛的乙醇溶液20 mL;加完后回流5 h,冷却至室温,有黄色的针状晶体析出. 1.2.2配合物[Cd2(L4)4(NO3)4]的合成称取0.078 g (0.25mmol)Cd(NO3)2·4H2O、0.078 g(0.25 mmol) L4于25 mL高压釜中,加入无水乙醇4 mL,并滴加0.5 mL二氯甲烷;摇匀后,密封,置于90℃的烘箱中,7 d后黄色小块状晶体长出,产率80.2%.元素分析实验值(理论值)/%: C,49.17(49.20); H,5.06(5.10);Cd,13.49(13.50); N,16.87(16.80); O,15.42(15.40).2.1配合物的晶体结构取大小为0.23×0.10×0.10 mm3的配合物晶体置于Bruker CCD面探衍射仪上,用石墨单色化的Mo-Kα (λ=0.71073 Å)射线在2.21°≤θ≤26.00°范围内,以Ψ/θ扫描方式于298(2) K收集衍射数据,衍射数据用SAINT PUS程序进行数据简化和经验吸收校正.共收集到11 439个衍射点,独立衍射点3 287个(R(int)=0.049 2),其中3 287个可观测点[I > 2σ(I)]用于晶体结构解析,全部强度数据经Lp因子吸收校正.所有计算均用SHELXS-97[29] 和SHELXL-97[30]程序,理论加氢,全部非氢原子的坐标和各向异性热参数经全矩阵最小二乘法修正收敛.该配合物的简要晶体数据列于表1,部分键长和键角列于表2.配合物晶体结构数据已经保存至剑桥晶体数据库中心(CCDC 913871).配合物[Cd2(L4)4(NO3)4]的晶体结构和晶胞图分别如图2和图3所示,该配合物晶体属于单斜晶系,其空间群为C2/c,每个晶胞中含有4个配位单元.在该配合物的晶体结构中,每个镉(Ⅱ)金属中心采用畸变的八面体结构空间配位构型,6个配位原子分别为4个氧原子和2个氮原子,2个氮原子位于顶点处(N4A—Cd1—N4B夹角为159.11 (17))°.每个镉(Ⅱ)原子采用CdO4N2的六配位环境,每个镉(Ⅱ)分别与相邻配体分子吡啶-4-甲醛缩4-氨基安替比林(L4)中的羰基氧原子和另2个相邻配体吡啶-4-甲醛缩4-氨基安替比林(L4)上吡啶环的氮原子分别配位,同时还与两分子硝酸根离子分别发生单齿配位,其Cd1—N4A、Cd1—N4B以及N4—Cd1A键长均为2.264(3) Å,而Cd—O键长为2.290(3) Å和2.410(7) Å,这些键长与文献报道相似[31-32].另外配合物还通过C—H…O非典型氢键的键合作用连接成一维网状结构(表3).Symmetry transformations used to generate equivalent atoms: (A) 0.5-x,0.5-y, 1-z; (B)-0.5+x, 0.5-y,-0.5+z; (C)-x, y, 0.5-z.symmetry codes: i=-1/2+x,1/2-y,-1/2+z; ii=-x,1-y,1-z; iii=x,1+y,z.2.2配合物的粉末X射线衍射分析配合物粉末X射线衍射图XRD如图4所示.从图4可以看出本实验得到的晶态样品是纯度单一化合物,实验测试得到的X射线衍射图与通过单晶X射线衍射结构理论模拟所得数据的衍射图峰位完全一致,其衍射强度差异主要是粉末X射线衍射强度数据收集时的样品晶体取向不同造成.X-射线粉末衍射进一步说明该配合物的单晶结构测试与结构解析的正确性.2.3配合物的红外分析由图5可以看出,该配合物在1 610 cm-1和1 593 cm-1处有吸收峰,分别归属于配体吡啶-4-甲醛缩4-氨基安替比林中υC=O和υC=N键的伸缩振动.配合物在1 593 cm-1,1 568 cm-1,1 546 cm-1和1 443 cm-1出现的强吸收峰归属于苯环中υC=C骨架特征峰[33].3 059 cm-1附近处有较弱的吸收峰是配体吡啶-4-甲醛缩4-氨基安替比林中的希夫碱结构上υC—H的伸缩振动峰.红外分析结果与晶体结构分析结果一致.2.4配合物的拉曼分析图6为配合物在785 nm激光为光源的拉曼光谱仪中得到的拉曼信号.配合物在1 610 cm-1和1 593 cm-1处有较强的散射峰,属于υC=O键和υC=N键的伸缩振动.在1 593 cm-1,1 568 cm-1,1 546 cm-1和1 443 cm-1处有较强的吸收峰,属于配体吡啶-4-甲醛缩4-氨基安替比林的苯环骨架伸缩振动特征散射峰[33].1 385 cm-1处的强吸收为的特征散射峰,说明参与配位,这与单晶结构的测试是相符的;3 059 cm-1附近处有较弱的散射峰是配体吡啶-4-甲醛缩4-氨基安替比林中的希夫碱结构上υC-H的伸缩振动峰.拉曼光谱结果也与红外分析结果一致.2.5配合物的荧光分析该配合物的室温固态荧光光谱图如图7所示.该配合物用300 nm紫外光激发后,与配体相比,在517 nm处可激发出强的绿色荧光.荧光发生红移,这是由于配体与Cd(Ⅱ)配位后提高了π电子的共扼程度,使π→π*电子移动加强而发生红移.配合物中强的绿色荧光发射主要归属为配体吡啶-4-甲醛缩4-氨基安替比林(L4)到金属Cd(Ⅱ)的电荷转移(LMCT)[34-35].说明此配合物可作为潜在的绿色荧光材料.本文选用含功能官能团安替比林基的吡啶类中性希夫碱配体L4为配体与Cd(NO3)2·4H2O在水热(溶剂热)条件下合成新型Cd(Ⅱ)配合物[Cd2(L4)4(NO3)4].用300 nm紫外光照射配合物,发现该化合物与配体相比,发生红移,在517 nm处发出强的绿色荧光.说明此配合物可作为潜在的绿色荧光材料,并且对4-氨基安替比林衍生物的结构化学研究、性质研究提供有用信息.【相关文献】[1] Zhang L P,Ma J F,Yang J,et al. Series of 2D and 3D coordination polymers based on 1,2,3,4-benzenetetracarboxylate and N-donor ligands: Synthesis, topological structures, and photoluminescent properties [J].Inorg Chem, 2010, 49(4):1535-1550.[2] Liu D,Ren Z G,Li H X,et al.Single-crystal-to-single-crystal transformations of two three-dimensional coordination polymers through regioselective[2+2]photodimerization reactions [J].Angew Chem Int Ed, 2010, 49(28):4767-4770.[3] Avijit Kumar Paul,Udishnu Sanyal,Srinivasan Natarajan,et al. Use of polyazaheterocycles in the assembly of new cadmium sulfate frameworks: Synthesis, structure, and propertiescryst [J].Crystal Growth & Design, 2010, 10(9): 4161-4175.[4] Zhang D J,Guo Y,Shi J,et al. Hydrothermal in stiu synthesis,crystal structure and flurescence property of two cadmiun coordination polymers [J].Chem J Chinese Universities, 2007, 28(10):1817-1820.[5] Li Zuo-Xi, Hu Tong-Liang, Ma Hong,et al. Adjusting the porosity and interpenetration of cadmium(Ⅱ) coordination polymers by ligand modification: Syntheses, structures, and adsorption properties [J].Crystal Growth & Design, 2010, 10(3): 1138-1144.[6] Xiaofang Guo, Zifeng Li, Chun Yue,et al. T hree novel Cd(Ⅱ) coordination polymers: Synthesis, crystal structures,fluorescence and thermal properties [J].Polyhedron, 2010,29(1): 384-390.[7] Liu Guang-Fei, Ren Zhi-Gang, ChenYang,et al. Solvothermal synthesis, structure and luminescent properties of a new 3D coordination polymer [K2Cd(Htda)2]n(Htda=1,2,3-triazole-4,5-dicarboxylate) [J]. Inorg Chem Commun, 2008, 11(2):225-229 .[8] Jioa Chang-Mei, Zhang Wen-Hua, Tang Xiao-Yan,et al. Formation of a 1D water chain into the channel of a unique 3D hydrogen-bound coordination polymer {[Cd(μ-Cl)(4-pya)(H2O)]2·4H2O} ∞(4-pya=trans-4-pyridylacrylate) [J].Inorg Chem Commun, 2007,10(9):975-978.[9] 陶兆林, 石婷婷, 梁丽丽, 等. 四重穿插金刚石型三维锌(Ⅱ) 配位聚合物的水热合成晶体结构及荧光性质[J].人工晶体学报, 2013, 42(2):371-376.[10] 刘晓丽. 希夫碱及其衍生物的研究进展[J]. 甘肃科技, 2012, 24(28) :75-79.[11] 关磊, 王莹. 具有三维超分子结构的单核锌配合物[Zn(py)3 (H2O)3](1,5-nds) 的合成与表征[J].人工晶体学报, 2013, 42(2):377-381.[12] Barrer R M. Hydrothermal Chemistry of Zeolites [M]. London: Academic Press, 1982.[13] 杨志斌,范洪. 新希夫碱的分析应用研究: BP-DIB 荧光熄灭法测定水中微量铬(VI) [J]. 分析测试学报, 1995, 14(1) : 29-32.[14] 仇敏,刘国生,姚小泉,等. 手性铜(Ⅱ)-席夫碱配合物催化苯乙烯不对称环丙烷化反应[J]. 催化学报, 2001, 22(1) : 77-50.[15] Hodnett E M,Dunn W J. Structure-antitumor activity correlation of some Schiff bases [J].J Med Chem, 1970, 13: 768-70.[16] Chen H,Rhodes J. Schiff base forming drugs:mech-anisms of immune potentiation and therapeutic potential [J]. J Mol Med, 1996, 74: 497-504.[17] 吕绪良,许卫东,崔传安,等. 席夫碱的合成及其在热红外伪装涂料中的应用[J].解放军理工大学学报, 2000, 1(6) : 54-57.[18] Vaughn A E, Duval P B, Bassil D B, et al. Contrasting solvent and capping ligand effects directing the photocheminstry of uranyl( Ⅵ ) Schiff base complexs [J]. J Am Chem Soc, 2006, 128(33) : 10656-10657.[19] Raman N, Kulandaisamy A, Shunmugasundaram A, et al. Synthesis, spectral, redoxand antimicrobial activities of Schiff base complexes derived from 1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one and acetoacetanilide[J]. Transition Metal Chemistry, 2001, 26:131-135.[20] Sun G, Sun Y X, Yu C, et al. Synthesis,crystal structure,vibrational spectral and density functional studies of 4-(2,5-dioxo-2H-pyrrol-1(5H)-yl)antipyrine[J]. Journal of Molecular Structure, 2011, 10(6):383-394.[21] Rajendran G, Sreeletha G S. Synthesis,characterization ande antimicrobial studies of some mixed ligand complexes of la nthanide(Ш) ions[J]. Asian Journal of Chemistry, 2002, 14(3-4):1639-1645.[22] Zheng Y, Lin J, Liang Y, et al. Electric-field-induced fatigue crack growth in ferroelectric ceramics [J]. Mater Lett, 2002, 54: 424-429.[23] Ismail Z K, Eidissouky A, Shehada A Z. Spectroscopic and magnetic studies on some copper(Ⅱ) complexes of antipyrine Schiff base derivatives [J]. Polyhedron, 1997, 16(17): 2909-2916.[24] 张璞. 新型有机-无机杂化杂金属多核配合物[Cd2(CuL)4(V4O12)]·2CH3OH·2H2O的合成与晶体结构[J]. 东北师大学报:自然科学版, 2013, 1(45):77-100.[25] Wang X W, Zheng Y Q.A dinuclear copper(Ⅱ) complex and azigzag chain iron(Ⅱ) polymer based on the 4-antipyrine derived Schiff base ligands:The hydroxylation and redox occurred under the solvothermal conditions[J]. Inorganic Chemistry Communications, 2007, 10: 709-712.[26] Wang X W, Zheng Y Q. Synthesis, structure and magnetic properties ofNi2(NO3)4(APTY)4 (APTY=1,5-dimethyl-2-phenyl-4-{[(1 E)-pyridine-4-ylmethylene]amino}-1,2-dihydro-3 H-pyrazol-3-one) [J]. Journal of Coordination Chemistry, 2007, 60(7):763-769.[27] 何雄, 庞海霞. 一种新型四核铜(Ⅱ)簇配合物的合成及性质表征[J].华中师范大学学报:自然科学版, 2013, 47(5):653-657.[28] Zheng Y, Lin J, Liang Y, et al. A novel terbium (ⅡI) beta-diketonate complex as thin film for optical device application [J]. Mater Lett, 2002, 54: 424-429.[29] Sheldrick G M. SHELXS-97, Programm zur Losung von Kristallstrukturen[P]. Gottingen: Germany, 1997.[30] Sheldrick G M. SHELXL-97, Programm zur Verfeinerung von Kristallstrukturen[P]. Gottingen: Germany, 1997.[31] 江晶,王冬杰,刘志鹏,等. 1,3-二(4-吡啶基)丙烷Cd(Ⅱ)配合物的合成、晶体结构及发光性质研究[J]. 无机化学学报, 2013, 9(29):1952-1956.[32] 康新平, 安哲. 新型镉配合物{[Cd2(C20H17N3O3F2)2(C8H4O4)2]·H2O}的合成及其晶体结构[J]. 合成化学, 2013, 21(4):465-468.[33] Ismail Z K, Eidissouky A, Shehada A Z. Spectroscopic and magnetic studies on somecopper(Ⅱ) complexes of ant ipyrine Schiff base derivatives [J]. Polyhedron, 1997, 16(17): 2909-2916.[34] Dai J C,Wu X T,Fu Z Y,et al. A novel ribbon-candy-like supramolecular architecture of cadmium(Ⅱ)-terephthalate polymer with giant rhombic channels:twofold interpenetration of the 3D 8210-a net[J]. Chem Commun, 2002(1): 12-13.[35] Zhang L Y, Liu G F, Zheng S L, et al. Helical ribbons of cadmium(Ⅱ) and zinc(Ⅱ) dicarboxylates with bipyridyl-like chelates——Syntheses, crystal structures and photoluminescence [J]. Eur J Inorg Chem, 2003, 16: 2965-2971.。
J OURNAL OF RARE EARTHS,Vol.28,No.1,Feb.2010,p.7Z O G (y53@zj ;T +653633)DOI 6S ()63Synthesis and cr ystal structures of La(III),Y(III)complexes of homoveratric acid with 1,10-phenanthrolineLI Huaqiong (李花琼)1,2,XIAN Huiduo (咸会朵)1,2,ZHAO Guoliang (赵国良)1,2(1.Zhejiang Key Laboratory for R eact ive Chemistry on Solid S urfaces,Institute of Physical C hemistry,Zhejiang Normal University,Jinhua 321004,China;2.College of Chemis try and Life S cience,Zhejiang Normal Univers ity,Jinhua 321004,China)Received 23April 2009;revised 27September 2009Abstract:Two three-dimensional complexes [Ln(DMPA)3phen]2(HDMPA=3,4-dimet hoxyphenylacetic acid,homoveratric acid;Ln=La,Y;phen=1,10-phenanthroline)were synthesized under hydrothermal conditions and characterized with IR and emission spectra.The crystal structures were determined with single crystal X-ray diffraction method.The two compounds were isostructural,and 3D supramolecule ar-chitectures were formed by hydrogen bonds and π–πstacking interactions.They strongly emitted upon excitation due to π*→πtransition of the ligands.Keywords:lanthanide;homoveratric acid;supramolecule architectures;luminescence;rare earthsThere is great interest in the design and synthesis of coor-dination polymers in supramolecule and materials chemistry,dues to their intriguing network topologies and promising applications in fields such as catalysis,ion exchange,gas storage,molecular magnets,optoelectronic devices,sensors,and so on [1–8].By choosing appropriate metal ions and versa-tile bridging organic ligands,numerous 1D [9],2D [10]and 3D [11]coordination polymers have been synthesized so far.The supramolecule architectures can be formed by non-co-valent forces of their components,including coordination bonding,hydrogen bonding,aromatic π–πstacking interac-tions,electrostatic and charge-transfer attractions [12].From the point of view of coordination chemistry,the interactions of ligands in a mixed-ligand complex can lead to a su-pramolecule formation [13].In this regard,much attention has been focused on the selecting of ligands with different struc-ture.In general,the architectures of such supramolecule net-works are built-up using multidentate organic ligands con-taining O –and/or N –donors,such as polyacid with suitable spacers and 4,4’-bipyridine,to link metal centers to form polymeric structures [14].It is well known that the coordina-tion ability of aromatic carboxylic acids towards rare earth complexes has received considerable attention because of the strong coordination ability and varieties of the bridging modes of the carboxylate group with regard to the formation of extended frameworks [15,16].Considering the high coordi-nation number of lanthanide ions,ancillary ligands can be employed to occupy some coordination sites and prevent the interpenetration of frameworks.1,10-phenanthroline(phen),which has a rigid framework and two chelate positions,is anappropriate ligand for lanthanide ions and can construct sta-ble supramolecule structures via C –H O or C –H N hydro-gen bonds and π–πstacks [17–20].In addition,phen can en-hance the luminescent properties of lanthanide complexes due to the antenna effect.For this purpose,we have chosen 3,4-dimethoxy-phenylacetic acid (HDMPA,homoveratric acid)as the O-donor ligand,1,10-phenanthroline as the N-donor ligand while La(III)and Y(III)as metal centers.Herein,we presented the synthesis and structures of two new three-dimensional coordination polymers [La(DMPA)3phen]2(1)and [Y(DMPA)3phen]2(2).The spectroscopic and thermal properties of the two compounds were discussed and com-pared.1Experimental1.1Materials and physical measur ementsAll chemicals were used as received without further puri-fication.3,4-dimethoxyphenylacetic acid was purchased from Alfa Aesar,while 1,10-phenanthroline and Ln 2O 3(Ln=La,Y)from Sinopharm Chemical Reagent Co.,Ltd.Elemental analysis was performed on an Elemental Vario EL III CHN analyzer.The IR spectra were obtained withKBr pellets in the range of 4000–400cm –1on a Nicolet NEXUS 670FT-IR spectrometer.UV-Visible spectra were recorded in solid state on a Thermoelectron Nicolet Evolu-tion 500spectrometer.Luminescence spectra in solid state were recorded on an Edinburgh Instruments FS920Steady State Fluorimeter.Corre sponding a uthor :HA uoliang E-m ail :sk el.:8-79-8747:10.101/1002-072109009-98JOURNAL OF RARE EARTHS,Vol.28,No.1,Feb.20101.2Synt hesisA mixture of3,4-dimethoxyphenylacetic acid(0.5886g, 3mmol),Ln2O3(0.5mmol),1,10-phenanthroline(0.1982g, 1mmol)and water(16ml)was sealed in a25ml stainless steel reactor with a Telflon liner and heated at433K for3d. The reactor was cooled slowly to room temperature over3d. Then the mixture was filtered,giving rise to colorless single crystals suitable for X-ray analysis.Anal.Calcd.for [La(DMPA)3phen]2(1):C,55.71%;H,4.53%;N,3.09%. Found:C,55.46%;H,4.24%;N,3.22%.IR data(KBr pellet,ν/cm–1):710(w),849(w),1022(m),1230(m),1400(s),1517 (s),1595(s),2834(w),2996(m),3130(s).Anal.Calcd.for [Y(DMPA)3phen]2(2):C,58.97%;H, 4.80%;N, 3.28%. Found:C,58.56%;H,4.35%;N,3.43%.IR data(KBr pellet,ν/cm-1):727(w),847(w),1028(m),1140(m),1237(m),1400 (s),1515(s),1610(s),2830(w),3000(m),3130(s),3432(m).1.3X-ray crystallographyIntensity data of the complexes were measured at293K on a Bruker APEXII CCD diffractometer using graphite-monochromated Mo Kαradiation(λ=0.071073nm).Struc-tures were solved by direct methods using SHELXS-97[21] and refined on the F2by full-matrix least-square method with SHELXL-97[22].All non-hydrogen atoms were refined anisotropically.Hydrogen atoms were placed in geometri-cally calculated positions and fined as riding atoms with a common fixed isotropic thermal parameter.Experimental details for X-ray data collection of1and2are presented in Table1,and the selected bond lengths and angles are listed Table1Crystal data and details of the structure determination for1and2C omple xes12Emipi ri cal formula C84H82La2N4O24C84H82N4O24Y2 Formulawei ght1809.361709.36Temperature/K296(2)296(2)C ryst al s ys tem Tricli nic Tri clinicSpace group P-1P-1a/nm 1.24743(5) 1.2345(2)b/nm 1.25219(5) 1.2366(2)c/nm 1.48010(5) 1.4627(3)α/(°)90.582(2)103.350(12)β/(°)103.252(2)91.255(14)γ/(°)117.443(2)115.271(12)Volume/nm3 1.97912(14) 1.9462(7)Z11C alcul ated densi ty/(mg/m3) 1.518 1.459Absorpti on coefficient/mm–1 1.146 1.566C ryst al s ize/mm0.212×0.142×0.0620.282×0.186×0.090F(000)920884θrangefor datacoll ection/(°) 1.85to27.47 1.84to27.64R efl ections collected/uni que33916/906733043/8906Goodne ss-of-fit on F20.8380.834F R[I>σ(I)]R=6R=R=5R=6R()R=6R=6R=R=36Δρ[3],–6333,–in DC No.675297and675298contain the sup-plementary crystallographic data for this paper.These data can be obtained free of charge from the Cambridge Crystal-lographic Data Centre.Table2Selected bond distances(10–1nm)and angles(°)for1and2 12Bond dis tances Bond distancesLa1–O12# 2.460(3)Y1–O4# 2.319(2)La1–O3# 2.485(3)Y1–O7# 2.333(2)La1–O4 2.494(3)Y1–O8 2.338(2)La1–O7 2.522(4)Y1–O11 2.360(3)La1–O8 2.577(3)Y1–O12 2.451(2)La1–O11 2.620(3)Y1–O3 2.461(2)La1–O12 2.652(3)Y1–O4 2.507(2)La1–N2 2.687(4)Y1–N4 2.538(3)La1–N1 2.745(4)Y1–N3 2.610(3)Bond angles B ond anglesO12#–La1–O3#76.25(11)O4#–Y1–O7#75.56(8)O12#–La1–O473.96(11)O4#–Y1–O875.78(8)O3#–La1–O4136.07(11)O7#–Y1–O8138.18(8)O12#–La1–O787.71(13)O4#–Y1–O1189.29(9)O3#–La1–O781.01(13)O7#–Y1–O1179.39(9)O4–La1–O7128.57(11)O8–Y1–O11129.79(8)O12#–La1–O876.53(11)O4#–Y1–O1275.42(8)O3#–La1–O8125.17(12)O7#–Y1–O12124.22(8)O4–La1–O877.58(11)O8–Y1–O1276.01(8)O7–La1–O851.28(11)O11–Y1–O1253.79(8)O12#–La1–O11122.78(11)O4#–Y1–O3124.31(8)O3#–La1–O1192.23(12)O7#–Y1–O393.31(8)O4–La1–O1177.93(11)O8–Y1–O378.59(8)O7–La1–O11146.41(12)O11–Y1–O3142.94(8)O8–La1–O11142.25(11)O12–Y1–O3142.13(7)O12#–La1–O1274.80(11)O4#–Y1–O472.93(8)O3#–La1–O1270.61(11)O7#–Y1–O471.30(8)O4–La1–O1270.9(1)O8–Y1–O471.56(8)O7–La1–O12149.36(12)O11–Y1–O4148.59(8)O8–La1–O12141.98(11)O12–Y1–O4139.05(7)O11–La1–O1249.00(9)O3–Y1–O452.18(7)O12#–La1–N2143.75(12)O4#–Y1–N4142.03(9)O3#–La1–N2137.56(13)O7#–Y1–N4139.45(9)O4–La1–N282.10(12)O8–Y1–N478.97(9)O7–La1–N286.37(14)O11–Y1–N485.49(9)O8–La1–N271.95(13)O12–Y1–N471.23(8)O11–La1–N276.59(12)O3–Y1–N476.72(8)O12–La1–N2122.44(11)O4–Y1–N4124.39(8)O12#–La1–N1152.67(12)O4#–Y1–N3150.35(8)O3#–La1–N177.57(12)O7#–Y1–N376.20(8)O4–La1–N1132.10(11)O8–Y1–N3132.96(8)O7–La1–N180.57(13)O11–Y1–N376.78(9)O8–La1–N1113.26(12)O12–Y1–N3114.26(8)O11–La1–N165.86(11)O3–Y1–N366.22(8)O12–La1–N1103.62(11)O4–Y1–N3106.09(8)N–L–N63(3)N–Y–N3633()L#–O–L5()Y#–O–Y()Sy(#)–x,–y,–z Sy(#)–x,–y,zi nal indices210.048w20.122810.044w20.110 i ndices al l data10.079w20.14410.0899w20.14 /e/nm1091192882a110.9141.79 a112a110.2011141107.078 mm.C ode11mm.Code11-LI Huaqiong et al.,Synthesis and crystal structures of La(III),Y (III)complexes of homoveratric acid with 1,10-phenanthroline 92Results and discussion2.1Str uct ural descript ionThe two complexes are isostructural,thus only the struc-ture of complex 1(Fig.1)is described in detail.Scheme 1shows the coordination modes of the anion of HDMPA ligand in complexes 1and 2.Scheme 1Coordination modes of DMPA –ligand in the two com-poundsAs shown in Fig.1,[La(DMPA)3phen]2is a binuclear lan-thanum complex with a center of symmetry,with La1La1A separation of 0.40631(5)nm.Its molecular struc-ture consists of two La(III)ions,six DMPA –anions and two phen (III)is nine-coordinated and surrounded by two nitrogen atoms from a phen molecule,seven carboxylate oxygen atoms from four homoveratric ligands.The La –O bond distances range from 0.2460(3)to 0.2652(3)nm,all of which are within the range of those observed for other nine-coordinated La(III)complexes with oxygen donor ligands [23,24].The La –N bond distances are 0.2687(4)and 0.2745(4)nm,which are similar to those in nine-coordinate complex [15,19,20].F ORT (3%y )f y f The coordination geometry of La(III)atom can be de-scribed as a distorted monocapped square antiprism with atom O12forming the cap (Fig.2).The average deviation of all atoms from their least-square plane of N1,N2,O6and O7is 0.00002nm and the deviation is 0.00078nm for the other square plane of other four oxygen atoms.To complete the coordination environment of the La center,atom O12is lo-cated as the cap.It is noteworthy that there exists three types of coordina-tion modes of homoveratric ligand in the complex:(1)che-lating bidentate [Scheme 1(a)]with distances of 0.2522(4)nm and 0.2577(3)nm for O7–La1and O8–La1,respectively;(2)bridging bidentate [Scheme 1(b)]through O3and O4with the O-La distances of 0.2485(3)nm and 0.2494(3)nm;(3)bridging tridentate [Scheme 1(c)]with distances of 0.2620(3)nm,0.2652(3)nm and 0.2460(3)nm for O11–La1,O12–La1and O12–La1A (1–x,–y,1–z),respectively,which are apparently important for a rational design and constitu-tion of new framework structures.In addition,there are no classical hydrogen bonds in the crystal structure,presumably because good hydrogen bond donors are absent.In complex 1,the most significant inter-molecular interactions are C –H O hydrogen bonds.The hydrogen bond geometry for 1is shown in Table 3.Simul-taneously,all the phen molecules are parallel,and the dis-tance between two adjacent phen molecules is 0.3441nm,the centroid-centroid separation is 0.38079(2)nm,and thus weak π–πaromatic interactions along the a-axis exist be-tween the phen molecules of neighboring sheets (Fig.3).All of the above hydrogen bonds and π–πstacking interactions contribute to the 3D supramolecular structure and stabilize it.2.2Optical spectroscopyThe emission spectra of the free HDMPA,phen and two complexes were investigated in the solid state at room tem-Fig.2Two sorts of environment of La atoms in complex 1Table 3Hydrogen bond geometry (10–1nm,°)for 1D –H A H A D –H D A ∠DHA Symmetrycode –O 53633()36x,–+y,z –B O 33636()6x,–+y,z 3–3O 533(6)5x,+y,–+zig.1EP repr esentation 0therm al probabilit ellipsoids o the c r stal str ucture o 1C11H11A 10 2.0.9.02817.1C21H217 2.0.9.20714.21C2H2A 72.20.9.40418.11110JOURNAL OF RARE EARTHS,Vol.28,No.1,Feb.2010Fig.33D frame of complex1Fig.4Plots of emission spectra of complex 1,2,phen and HDMPA(λex =256nm)perature upon excitation at 256nm,as shown in Fig.4.The free HDMPA exhibits a broad photoluminescence emissionat 386nm which may be due to π*→n and π*→πtransitions.The emission picks of phen at 362,280and 401nm are as-signed to π*→π(III)and Y(III)have no 4f electron and no excited states below the triplet state of the ligands.The energy absorbed by the ligands can not transfer to La(III)or Y(III),but relax through their own lower energy levels,which results in the fluorescence of the pared with the free ligands,each compound exhibits one red-shift emission peak (452nm for 1,434nm for 2),which may be attributed to the π*→πtransition.In the com-plexes,the perturbations of metal ions to the ligands strengthen the molecular rigidity,which,combined with theaccretion of π-electron conjugation,makes π*→πtransitionmuch easier [25].Compared with the fluorescence of the ligands,the fluorescence of 1and 2are greatly enhanced,as shown in Fig.4.3ConclusionsThe synthesis and structures of two new complexes [La(DMPA)3phen]2(1)and [Y(DMPA)3phen]2(2)were re-T DM T fπ–πHydrogen bonds and π–πstacking interactions contributed to the formation of lanthanide supramolecular compounds.References:[1]Leadbeater N E,Marco M.Preparation of polymer-supported ligands and metal complexes for use in catalysis.Chem.Rev .,2002,102(10):3217.[2]Berlinguette C P,Dragulescu-Andrasi A,Sieber A,Gal án-Mascar ós J R,G üdel H-U,Achim C,Dunbar K R.A charge-transfer-induced spin transition in the discrete cya-nide-bridged complex {[Co(tmphen)2]3[Fe(CN)6]2}.J.A m.Chem.Soc.,2004,126(20):6222.[3]Eddaoudi M,Moler D B,Li H,Chen B L,Reineke T M,O'Keeffe M,Yaghi O M.Modular chemistry:secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks.A cc.Chem.Res.,2001,34(4):319.[4]Ferlay S,Mallah T,Ouahes R,Veillet P,Verdaguer M.A room-temperature organometallic magnet based on Prussian blue.Nature,1995,378:701.[5]Coronado E,Gal án-Mascar ós J R,G ómez-Garc ía C J,G ómez-Garc ía C J,Laukhin V.Coexistence of ferromagnetism and me-tallic conductivity in a molecule-based layered compound.Na-ture,2000,408:447.[6]Kishida H,Matsuzaki H,Okamoto H,Manabe T,Yamashita M,Taguchi Y,Tokura Y.Gigantic optical nonlinearity in one-dimensional Mott-Hubbard insulators.Nature,2000,405:929.[7]Yagi O M,O ’Keeffe M,Ockwig N W,Chae H K,Eddaoudi M,Kim J.Reticular synthesis and the design of new materials.Nature,2003,423:705.[8]Kitagawa S,Kitaura R,Noro S.Functional porous coordina-tion polymers.A ngew .Chem.Int.Ed.,2004,43:2334.[9]Yi L,Yang X,Lu T B,Cheng P.Self-assembly of right-handed helical infinite Chain,one-and two-dimensional coordination polymers tuned via anions.Cryst.Growth Des.,2005,5(3):1215.[10]Mitsurs K,Shimamura M,Noro S L,Minakoshi S,Asami A,Seki J,Kitagawa S.Microporous materials constructed from the interpenetrated coordination networks.Structures and methane adsorption properties.Chem.Mater.,2000,12(5):1288.[11]Gao H L,Yi L,Ding B,Wang H S,Cheng P,Liao D,Yan S P.First 3D Pr(III)-Ni(II)-Na(I)polymer and A 3D Pr(III)open network based on pyridine-2,4,6-tricarboxylic acid.Inorg.Chem.,2006,45(2):481.[12]Moulton B,Zaworotko M J.From molecules to crystal engi-neering:Supramolecular isomerism and polymorphism in net-work solids.Chem.Rev.,2001,101(6):1629.[13]Lehn J M.Supramolecular chemistry-scope and perspectivesmolecules,supermolecules,and molecular devices (Nobel Lecture).A ngew.Chem.Int.Ed.,1988,27(1):89.[14]Liu C B,Sun C Y,Jin L P,Lu S Z.Supramolecular architec-ture of new lanthanide coordination polymers of 2-ami-noterephthalic acid and 1,10-phenanthroline.New J.Chem.,2004,28:1019.[5]L Y,Z F K,L X,Z W Q,G G ,L Z,S y f f x ported.he H PA ligands were coordinated to the metal ions with variable coordination modes.he introduction o 1i heng iu ou uo C u C Huang J.Cr stal structures and magnetic and luminescent properties o a series o homodinuclear lanthanide comple es withLI Huaqiong et al.,Synthesis and crystal structures of La(III),Y(III)complexes of homoveratric acid with1,10-phenanthroline114-cyanobenzoic ligand.Inorg.Chem.,2006,45(16):6308. [16]Fiedler T,Hilder M,Junk P C,Kynast U H,Lezhnina M M,Warzala M.Synthesis,structural and spectroscopic studies on the lanthanoid p-aminobenzoates and derived optically func-tional polyurethane composites.Eur.J.Inorg.Chem.,2007, 291.[17]González-BaróA C,Pis-Diez R,Piro O E,Parajón-Costa B S.Crystal structures,theoretical calculations,spectroscopic and electrochemical properties of Cr(III)complexes with dipi-colinic acid and1,10-phenantroline.Polyhedron,2008,27(2): 502.[18]He X,Bi M H,Ye K Q,Fang Q R,Zhang P,Xu J N,Wang Y.Self-assembly of a1D helical manganese coordination poly-mer and a tetranuclear lanthanum complex with1,10-phenan-throline and3,5-dinitrosalicylato -mun.,2006,9(12):1165.[19]Liu C B,Yu M X,Zheng X J,Jin L P,Gao S,Lu S Z.Structuralchange of supramolecular coordination polymers ofitaconic acid and1,10-phenanthroline along lanthanide series.Inorg.Chim.Acta,2005,358(9):2687.[20]Hu M L,Yuan J X,Morsali III complexes of uracil-1-acetic acid,[La(phen)X3]n,X=Uracil-1-Acetate(UA)and 5-Fluorouracil-1-Acetate(5-FUA),two2D coordination polymer,structural and thermal studies.Solid State Sci.,2006, 8(8):981.[21]Sheldrick G M.SHELXS-97.Program for the Solution ofCrystal Structures.University of G ttingen,Germany,1997. [22]Sheldrick G M.SHELXL-97.Program for the Refinement ofCrystal Structures.University of G ttingen,Germany,1997. [23]Pan L,Huang X Y,Li J,Wu Y G,Zheng N W.Novel single-and double-layer and three-dimensional structures of rare-earth metal coordination polymers:the effect of lanthanide contrac-tion and acidity control in crystal structure formation.A ngew.Chem.Int.Ed.,2000,39(3):527.[24]Qin C,Wang X L,Wang E B,Xu L.Synthesis,structures andthermal properties of three new two-dimensional coordination networks assembled by lanthanide salts and carboxylate ligand.Inorg.Chim.A cta,2006,359(2):417.[25]Yang Y S,An B L,Gong M L,Shi H H,Lei H Y,Meng J X.Progress on study of luminescence of rare earth organic Che-lates.Journal of the Chinese Rare Earth Society(in Chin.), 2001,19:298.。
Na2TiO3晶型及其相变的高温原位拉曼光谱与X射线衍射联合研究徐磊;尤静林;王建;王敏;周灿栋【摘要】本文设计了α、β和γ三种晶型的Na2 TiO3晶体的制备方法,采用固相烧结技术成功制备了该晶体的上述三种晶型,并对其常温拉曼光谱进行了比较研究.对其中已知晶型结构的γ-Na2 TiO3的拉曼光谱进行密度泛函理论的模拟计算,基于计算对其拉曼光谱高频区主要振动模式进行归属.运用高温原位拉曼光谱技术和X射线衍射技术对无序型亚稳态α-Na2 TiO3晶体升温过程的相变及其结构变化进行了原位追踪与研究,为不同晶型的Na2 TiO3晶体的温致结构演变及晶型的鉴定提供重要的实验依据.【期刊名称】《光散射学报》【年(卷),期】2018(030)002【总页数】7页(P126-132)【关键词】Na2TiO3晶体;晶型转变;高温原位拉曼光谱;高温原位X射线衍射【作者】徐磊;尤静林;王建;王敏;周灿栋【作者单位】省部共建高品质特殊钢冶金与制备国家重点实验室、上海市钢铁冶金新技术开发应用重点实验室和上海大学材料科学与工程学院,上海200072;省部共建高品质特殊钢冶金与制备国家重点实验室、上海市钢铁冶金新技术开发应用重点实验室和上海大学材料科学与工程学院,上海200072;省部共建高品质特殊钢冶金与制备国家重点实验室、上海市钢铁冶金新技术开发应用重点实验室和上海大学材料科学与工程学院,上海200072;省部共建高品质特殊钢冶金与制备国家重点实验室、上海市钢铁冶金新技术开发应用重点实验室和上海大学材料科学与工程学院,上海200072;宝山钢铁股份有限公司,上海201900【正文语种】中文【中图分类】O7921 引言碱金属钛酸盐作为一种基础的离子交换材料,被广泛应用于热稳定陶瓷电容器;此外,在微波介质谐振器、增强型塑料、绝热材料以及电位传感器等领域也有重要应用[1-2];碱金属钛酸盐也是n型半导体材料,具有良好的光催化活性[3-4]。
对苯⼆甲酸锌Hydrothermal Synthesis and Crystal Structure of a Novel 2-Fold Interpenetrated Framework Based on Tetranuclear Homometallic ClusterRong-Yi Huang ?Xue-Jun Kong ?Guang-Xiang LiuReceived:15December 2007/Accepted:11January 2008/Published online:5March 2008óSpringer Science+Business Media,LLC 2008Abstract A novel 2-fold parallel interpenetrated polymer,Zn 2(OH)(pheno)(p -BDC)1.5áH 2O (1)(pheno =phenan-threne-9,10-dione;p -BDC =1,4-benzenedicarboxylate)was prepared by hydrothermal synthesis and characterized by IRspectra,elemental analysis and single crystal X-ray /doc/c97a12ccf61fb7360b4c65f3.html plex1crystallizes in the orthorhombic space group Pbca and affords a three-dimensional (3D)six-connected a -Ponetwork.Keywords Carboxylate ligand áHomometallic complex áa -Po1IntroductionIn the last decade,the construction by design of metal-organic frameworks (MOFs)using various secondary building units (SBUs)connected through coordination bonds,supramolecular contacts (e.g.,hydrogen bonding,p áááp stacking,etc.),or their combination has been an increasingly active research area [1].The design and controlled assembly of coordination polymers based on nano-sized MO(OH)clusters and multi-functional car-boxylates have been extensively developed for their crystallographic and potential applications in catalysis,nonlinear optics,ion exchange,gas storage,magnetism and molecular recognition [2].In most cases,multinu-clear metal cluster SBUs can direct the formation of novel geometry and topology of molecular architectureand help to retain the rigidity of the networks [3].A number of carboxylate-bridged metal clusters have been utilized to build extended coordination frameworks.Among these compounds,frameworks from multinuclear zinc cluster SBUs,including dinuclear (Zn 2)[4],trinu-clear (Zn 3)[5],tetranuclear (Zn 4)[6],pentanuclear (Zn 5)[7],hexanuclear (Zn 6)[8],heptanuclear (Zn 7) [9],and octanuclear (Zn 8)[10]clusters have attracted great interest and have been investigated extensively.Addi-tionally,a series of systematic studies on this subject has demonstrated that an interpenetrated array cannot prevent porosity,but enhances the porous functionalities of the supramolecular frameworks [11].More importantly,the research upsurge in interpenetration structures was pro-moted by the fact that interpenetrated nets have been considered as potential super-hard materials [12]and possess peculiar optical and electrical properties [13].Herein we present the synthesis,structure,and spectral properties of a new coordination polymer based on tetranuclear homometallic cluster,Zn 2(OH)(pheno)(p -BDC)1.5áH 2O (1).2Experimental2.1Materials and MeasurementsAll commercially available chemicals are reagent grade and used as received without further puri?cation.Sol-vents were puri?ed by standard methods prior to use.Elemental analysis for C,H and N were carried with a Perkin-Elmer 240C Elemental Analyzer at the Analysis Center of Nanjing University.Infrared spectra were obtained with a Bruker FS66V FT IR Spectrophotometer as a KBr pellet.R.-Y.Huang áX.-J.Kong áG.-X.Liu (&)Anhui Key Laboratory of Functional Coordination Compounds,College of Chemistry and Chemical Engineering,Anqing Normal University,Anqing 246003,P.R.China e-mail:liugx@/doc/c97a12ccf61fb7360b4c65f3.htmlJ Inorg Organomet Polym (2008)18:304–308DOI 10.1007/s10904-008-9199-72.2Preparation of Zn2(OH)(pheno)(p-BDC)1.5áH2O(1)A mixture containing Zn(NO3)2á6H2O(0.20mmol), p-1,4-benzenedicarboxylic acid(H2BDC)(0.20mmol), phenanthrene-9,10-dione(pheno)(0.10mmol)and NaOH (0.20mmol)in water(10mL)was sealed in a18mL Te?on lined stainless steel container and heated at150°C for72h.The reaction product was dark yellow block crystals of1,which were washed by deionized water sev-eral times and collected by?ltration;Yield,78%. Elemental Analysis:Calcd.for C24H15N2O10Zn2:C,46.33;H,2.43;N,4.50%.Found:C,46.38;H,2.47;N,4.48%.IR (KBr pellet),cm-1(intensity):3437(br),3062(m),1587(s),1523(m),1491(w),1424(m),1391(s),1226(w),1147 (w),1103(w),1051(w),875(w),843(m),740(w),728 (m),657(w).2.3X-ray Structure DeterminationThe crystallographic data collections for complex1were carried out on a Bruker Smart Apex II CCD with graphite-monochromated Mo-K a radiation(k=0.71073A?)at 293(2)K using the x-scan technique.The data were inte-grated by using the SAINT program[14],which also did the intensities corrected for Lorentz and polarization effects.An empirical absorption correction was applied using the SADABS program[15].The structures were solved by direct methods using the SHELXS-97program; and,all non-hydrogen atoms were re?ned anisotropically on F2by the full-matrix least-squares technique using the SHELXL-97crystallographic software package[16,17]. The hydrogen atoms were generated geometrically.All calculations were performed on a personal computer with the SHELXL-97crystallographic software package[17].The details of the crystal parameters,data collection and re?nement for four compounds are summarized in Table1. Selected bond lengths and bong angles for complex1are listed in Table2.3Results and DiscussionThe X-ray diffraction study for1reveals that the material crystallizes in the orthorhombic space group Pbca and features a2-fold parallel interpenetrated3D?3D net-work motif.The asymmetric unit contains two Zn(II) atoms,one hydroxyl,one pheno ligand,one and half of p-BDC molecules and one solvent water molecule.Selected bond lengths for1are listed in Table2.As shown in Fig.1, the Zn1ion,which is in the center of a tetrahedral geom-etry,is surrounded by three carboxylic oxygen atoms (Zn–O=1.918(5)–1.964(5)A?)from three p-BDC ligands and one l3-OH oxygen atom(O9).The Zn–O distance is1.965(5)A?.Two nitrogen atoms(N1and N2)that belong to pheno,one p-BDC oxygen atom(O3A)and one hydroxyl oxygen atom(O9A)are ligated to the Zn2center in the equatorial plane with another oxygen atom(O9)that arises from the second hydroxyl group and one oxygen atom(O5)that arises from the second p-BDC molecule situated in the axial position.EachZn2lies approximately in the equatorial position with a maximum deviation (0.048A?)from the basal plane.In the structure,Zn–O and Zn–N bond distances are in the range of 2.0530(5)–2.112(5)and2.157(5)–2.184(2)A?,respectively. There exist two types of p-BDC found in1(Scheme1); namely,monobidentate bridging(l3)and bi-bidentatebridging(l4)coordination modes.The bidentate bridging p-BDC connects mixed metals,where the smallest ZnáááZn distance is3.163A?,to complete a homodinuclear cluster, which is further linked by l3-OH into a six-connected Table1Crystal data and summary of X-ray data collection for1Zn2(pheno)(OH)(BDC)1.5áH2O Empirical formula C24H15N2O10Zn2Molecular mass/g mol-1622.12Color of crystal Dark yellowCrystal fdimensions/mm0.1890.1690.12 Temperature/K293Lattice dimensionsa/A?18.777(9)b/A?13.657(6)c/A?19.983(9)a/°90b/°90c/°90Unit cell volume(A?3)5125(4)Crystal system OrthorhombicSpace group PbcaZ8l(Mo-K a)/mm-1 1.931D(cacl.)/g cm-3 1.613Radiation type Mo-K aF(000)2504Limits of data collection/° 2.04B h B25.05Total re?ections24155Unique re?ections,parameters4545,347No.with I[2r(I)2821R1indices[I[2r(I)]0.0657w R2indices0.1858Goodness of?t 1.060Min/max peak(Final diff.map)/e A?-3-0.658/2.322tetranuclear cluster that is jointly coordinated by six p-BDC molecules(Fig.2).The clusters are further extended by p-BDC into a single3D framework(Fig.3).For clarity, we used the topological method to analyze this3D framework.Thus,the six-connected SBU is viewed to be a six-connected node.Furthermore,based on consideration of the geometry of thisnode,the3D frame is classi?ed as an a-Po net with41263topology(Fig.4).Of particular interest,the most intriguing feature of complex1is that a pair of identical3D single nets is interlocked with each other,thus directly leading to the formation of a2-fold interpenetrated3D?3D architecture(Fig.4)and the two pcu(a-Po)frameworks are related by a screw axis21[18]. Recently,a complete analysis of3D coordination networks shows that more than50interpenetrated pcu(a-Po)frames have been documented in the CSD database[18],including 2-fold,3-fold[19],and4-fold[20]interpenetration.In addition,several non-interpenetration motifs with a-Po topology have been reported to date[21].ZnZnO ZnZnZnZnO Znbidentate bidentate bidentate monodentateI IIScheme1Coordination modesof the bdc ligands in the structure of1;I is bis(bidentate),II is bi/monodentateFig.1ORTEP representation of complex1(the H atoms have been omitted for the sake of clarity).The thermal ellipsoids are drawn at 30%probabilityTable2Selected bond lengths(A?)and angles(°)for1Symmetry transformations usedto generate equivalent atoms:#1x-1/2,y,-z+1/2;#2-x,-y+1,-z;#3-x+1/2,-y+1,z-1/2Zn(1)–O(1) 1.918(5)Zn(2)–O(9)#2 2.091(4)Zn(1)–O(4)#1 1.953(5)Zn(2)–O(9) 2.103(5)Zn(1)–O(6) 1.964(5)Zn(2)–O(3)#3 2.112(5)Zn(1)–O(9) 1.965(5)Zn(2)–N(1) 2.157(6)Zn(2)–O(5)#2 2.053(5)Zn(2)–N(2) 2.184(6)O(1)–Zn(1)–O(4)#197.9(2)O(9)–Zn(2)–O(3)#388.81(18)O(1)–Zn(1)–O(6)112.9(2)O(5)#2–Zn(2)–N(1)94.7(2)O(4)#1–Zn(1)–O(6)104.7(2)O(9)#2–Zn(2)–N(1)170.7(2)O(1)–Zn(1)–O(9)122.9(2)O(9)–Zn(2)–N(1)91.6(2)O(4)#1–Zn(1)–O(9)109.7(2)O(3)#3–Zn(2)–N(1)88.9(2)O(6)–Zn(1)–O(9)107.0(2)O(5)#2–Zn(2)–N(2)87.1(2)O(5)#2–Zn(2)–O(9)#291.9(2)O(9)#2–Zn(2)–N(2)98.3(2)O(5)#2–Zn(2)–O(9)173.72(19)O(9)–Zn(2)–N(2)94.5(2)O(9)#2–Zn(2)–O(9)81.82(19)O(3)#3–Zn(2)–N(2)164.3(2)O(5)#2–Zn(2)–O(3)#391.3(2)N(1)–Zn(2)–N(2)75.7(2)O(9)#2–Zn(2)–O(3)#397.42(19)Fig.2Polyhedral representation of the homotetranuclear unit as asix-connected node linked by p-BDC ligandsMoreover,rich inter and intra hydrogen-bonds between the water molecules and the carboxylate groups (Table 3)further strengthen the stacking of the supra-architecture (Fig.5).4Supplementary MaterialsCrystallographic data (excluding structure factors)for thestructures reported in this paper have been deposited with the Cambridge Crystallographic Data Center as supple-mentary publication /doc/c97a12ccf61fb7360b4c65f3.html DC-666555.Copies of the data can be obtained free of charge on application to CCDC,12Union Road,Cambridge CB21EZ,UK (Fax:+44-1223-336033;e-mail:deposit@/doc/c97a12ccf61fb7360b4c65f3.html ).Acknowledgments This work was supported by the National Nat-ural Science Foundation of China (20731004)and the Natural Science Foundation of the Education Committee of Anhui Province,China(KJ2008B004).Fig.3Polyhedral presentation of one set of the 3D network along a -axis (a )and b -axis (b )Table 3Distance (A ?)and angles (°)of hydrogen bonding for com-plex 1D–H áááADistance of D áááA (A ?)Angle of D–H–A (°)O1W–H1WB áááO2#1 2.677(9)164O9–H19áááO1W#2 2.841(9)151C13–H13áááO3#3 3.045(10)121C22–H22áááO1W#43.353(10)167Symmetry transformations used to generate equivalent atoms:#1x,y,1+z;#2-x,1-y,-1+z;#3-x+1/2,-y+1,z -1/2;#4-x,1-y,1-zFig.4Simpli?ed schematic representation of the 3D ?3D two-fold interpenetrated a -Po network in1Fig.5Projection of the structure of 1along b -axis (dotted lines represent hydrogen-bonding)References1.(a)P.J.Hagrman,D.Hagrman,J.Zubieta,Angew.Chem.Int.Ed.38,2638(1998);(b)S.Leininger,B.Olenyuk,P.J.Stang,Chem.Rev.100,853(2000);(c)A.Erxleben,Coord.Chem.Rev.246, 203(2003);(d)K.Biradha,Y.Hongo,M.Fujita,Angew.Chem. Int.Ed.39,3843(2000);(e)P.D.Harey,H.B.Gray,J.Am.Chem.Soc.110,2145(1988);(f)D.Cave,J.M.Gascon,A.D.Bond,S.J.Teat,P.T.Wood,/doc/c97a12ccf61fb7360b4c65f3.html mun.1050(2002);(g)F.A.AlmeidaPaz,J.Klinowski,Inorg.Chem.43,3882(2004);(h)K.Biradha, Y.Hongo,M.Fujita,Angew.Chem.Int.Ed.39,3843(2000);(i) M.Eddaoudi,J.Kim,N.Rosi,D.Vodak,J.Wachter,M.O’Ke-egge,O.M.Yaghi,Science295,469(2002);(j)S.Q.Zhang,R.J. Tao,Q.L.Wang,N.H.Hu,Y.X.Cheng,H.L.Niu,W.Lin,J.Am.Chem.Soc.123,10395(2001);(k)L.Carlucci,G.Ciani,D.M.Proserpio,Cryst.Growth Design5,37(2005)2.(a)M.Eddaoudi,D.B.Moler,H.Li,B.Chen,T.M.Reineke,M.O’Keeffe,O.M.Yaghi,Acc.Chem.Res.34,319(2001);(b)P.J.Hagrman,D.Hagrman,J.Zubieta,Angew.Chem.Int.Ed.38, 2638(1999);(c)O.R.Evans,W.Lin,Acc.Chem.Res.35,511 (2002);(d)S.Kitagawa,R.Kitaura,S.Noro,Angew.Chem.Int.Ed.43,2334(2004);(e)S.L.James,Chem.Soc.Rev.32,276 (2003);(f)L.Pan,H.Liu,X.Lei,X.Huang,D.H.Olson,N.J.Turro,J.Li,Angew.Chem.Int.Ed.42,542(2003)3.(a)G.Ferey,C.Mellot-Draznieks,C.Serre,/doc/c97a12ccf61fb7360b4c65f3.html lange,Acc. Chem.Res.38,217(2005);(b)M.Eddaoudi,J.Kim,J.B.Wachter,H.K.Chae,M.O’Keeffe,O.M.Yaghi,J.Am.Chem.Soc.123,4368(2001);(c)M.Eddaoudi,J.Kim,M.O’Keeffe, O.M.Yaghi,J.Am.Chem.Soc.124,376(2002);(d)A.Thiru-murugan,S.Natarajan,Cryst.Growth Design6,983(2006);(e) R.Murugavel,M.G.Walawalkar,M.Dan,H.W.Roesky,C.N.R. Rao,Acc.Chem.Res.37,763(2004)4.(a)J.Kim,B.Chen,T.M.Reineke,H.Li,M.Eddaoudi,D.B.Moler,M.O’Keeffe,O.M.Yaghi,J.Am.Chem.Soc.123,8239 (2001);(b)J.J.Lu,A.Mondal,B.Moulton,M.Zaworotko,An-gew.Chem.Int.Ed.40,2113(2001)5.(a)Q.R.Fang,X.Shi,G.Wu,G.Tain,G.S.Zhu,R.W.Wang,S.L.Qiu,J.Solid State Chem.176,1(2003);(b)H.Li,C.E.Davis,T.L.Groy,D.G.Kelley,O.M.Yaghi,J.Am.Chem.Soc.120,2186(1998)6.(a)M.Eddaoudi,J.Kim,N.Rosi,D.Vodak,J.Wachter,M.O’Keeffe,O.M.Yaghi,Science295,469(2002);(b)B.Kesanli,Y.Cui,M.R.Smith,E.W.Bittner,B.C.Bockrath,W.B.Lin, Angew.Chem.Int.Ed.44,72(2005)7.Q.R.Fang,G.S.Zhu,Z.Jin,M.Xue,X.Wei,D.J.Wang,S.L.Qiu,Cryst.Growth Design7,1035(2007)8.C.Lei,J.G.Mao,Y.Q.Sun,H.Y.Zeng,A.Clear?eld,Inorg.Chem.42,6157(2003)9.J.R.Li,Y.Tao,Q.Yu,X.H.Bu,/doc/c97a12ccf61fb7360b4c65f3.html mun.1527(2007)10.S.Y.Yang,L.S.Long,R.B.Huang,L.S.Zheng,/doc/c97a12ccf61fb7360b4c65f3.html mun.472(2002)11.T.M.Reineke,M.Eddaoudi,D.M.Moler,M.O’Keeffe O.M.Yaghi,J.Am.Chem.Soc.122,4843(2002)12.D.M.Proserpio,R.Hoffman,P.Preuss,J.Am.Chem.Soc.116,9634(1994)13.(a)O.Ermer,Adv.Mater.3,608(1991);(b)/doc/c97a12ccf61fb7360b4c65f3.html ler,Adv.Mater.13,525(2001)14.SAINT version6.02a,Software Reference Manual(Bruker AXSInc.,Madison,W1,2002)15.G.M.Sheldrick,SADABS:Program for Empirical AbsorptionCorrection of Area Detector Data(University of Go¨ttingen, 1996)16.G.M.Sheldrick,SHELXS-97:Program for Crystal StructureSolution(University of Go¨ttingen,1997)17.G.M.Sheldrick,SHELXL-97:Program for Crystal StructureRe?nement(University of Go¨ttingen,1997)18.V.A.Blatov,L.Carlucci,G.Ciani,D.M.Proserpio,Cryst.Eng.Comm.6,377(2004)19.(a)B.F.Hoskins,R.Robson,N.V.Y.Scarlett,J.Chem.Soc./doc/c97a12ccf61fb7360b4c65f3.html mun.2025(1994);(b)E.Siebel,R.D.Fischer,Chem. Eur.J.3,1987(1997);(c)B.F.Abrahams,B.F.Hoskins,R.Robson,D.A.Slizys,/doc/c97a12ccf61fb7360b4c65f3.html m.4,478(1997);(d)M.J. Plater,M.R.S.J.Foreman,J.M.S.Skakle,Cryst.Eng.4,293 (2001);(e)X.L.Wang,C.Qin,E.B.Wang,Z.M.Su,Chem.Eur. J.12,2680(2006)20.B.Kesanli,Y.Cui,R.Smith,E.Bittner,B.C.Bockrath,W.Lin,Angew.Chem.Int.Ed.117,74(2005)21.(a)H.L.Gao,L.Yi,B.Ding,H.S.Wang,P.Cheng,D.Z.Liao,S.P.Yan,Inorg.Chem.45,481(2006);(b)Y.H.Wen,J.Zhang, X.Q.Wang,Y.L.Feng,J.K.Cheng,Z.J.Li,Y.G.Yao,New J. Chem.29,995(2005);(c)H.L.Sun,B.Q.Ma,S.Gao,S.R.Batten,Cryst.Growth Design5,1331(2005);(d)J.Yang,J.F.Ma,Y.Y.Liu,S.L.Li,G.L.Zheng,Eur.J.Inorg.Chem.2174 (2005)。
Syntheses,crystal structures,energy bands,and optical characterizations of Na 5Ln(MoO 4)4(Ln =Gd,Er)D.Zhao,W.-D.Cheng *,H.Zhang,S.-P.Huang,M.Fang,W.-L.Zhang,S.-L.YangState Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,The Graduate School of the Chinese Academy of Sciences,Yang Qiao Xi Road No.155,Fuzhou,Fujian 350002,People’s Republic of Chinaa r t i c l e i n f o Article history:Received 15July 2008Received in revised form 27August 2008Accepted 8September 2008Available online 18September 2008Keywords:High temperature solid-state reaction Crystal structure Band structure X-ray diffraction Optical propertya b s t r a c tTwo complex molybdenum oxides,Na 5Ln(MoO 4)4(Ln =Gd,Er),have been prepared under high temper-ature solid-state reactions.The synthesized compounds have been investigated by means of the single-crystal X-ray diffraction and spectral measurements.All of the investigated structures crystallize in space group I 41/a with Z =4;a =11.4720(3)Å,R 1(residual factor for all date)=0.0548for Na 5Gd(MoO 4)4;a =11.3745(3)Å,R 1(residual factor for all date)=0.0514for Na 5Er(MoO 4)4.Additionally,the calculations of band structure,density of states,dielectric constants,and refractive indices were performed with the density functional theory method for Na 5Gd(MoO 4)4.The results show that the solid-state compound of Na 5Gd(MoO 4)4is an insulator with direct band-gap of 3.695eV,and the calculated refractive indices is 2.063at the static case.Ó2008Elsevier B.V.All rights reserved.1.IntroductionSince the last 20years,rare-earth(and bismuth)tungstates and molybdates have been extensively investigated,mainly due to its applications as good host materials for fluorescence [1–7].In partic-ular,for double tungstates and double molybdates [8],these studies include aspects related to the synthesis and crystal growth proce-dures [9–12];the structural characterization [13–15];anisotropic linear optical properties such as refractive indices [10,16],infrared absorption and Raman spectra [17,18]and scintillating capability [19–21];nonlinear optical properties,such as Raman shifting [22]and up-conversion [23].Most of these crystals have a tetragonal symmetry with the scheelite (CaWO 4,space group I 41/a )[24]struc-ture or scheelite-like structure at room temperature.In alkali metal rare-earth molybdate and tungstates com-pounds,a large number of the complex molybdenum oxides for-mulated as A 5Re(BO 4)4(A =alkali metals;Re =rare earth (RE);B =Mo,W)with scheelite-like structure have been reported for their potential physical properties [25–32].Russian crystallogra-phers have reported the crystal structure for many different com-pounds through powder diffraction pattern [33–40].However,detailed crystal structure of Na 5Ln(MoO 4)4(Ln =Gd,Er)deter-mined by single-crystal X-ray diffraction has not been reported up to now,as well as the band structures and density of states of them.In this work,we will present synthesis,crystal structure determinations,and spectral measurements for Na 5Ln(MoO 4)4(Ln =Gd,Er).At the same time,we will take Na 5Gd(MoO 4)4as an example to make the calculations of crystal energy band structures and optical response functions to understand the chemical bonding properties and electronic origin of optical transition for the solid compounds.2.Experimental section2.1.Materials and instrumentationAll of the chemicals were analytically pure from commercial sources and used without further purification.Gadolinium (III)oxide,erbium(III)oxide,molybdenum(VI)oxide,and Na 2CO 3were purchased from the Shanghai Reagent Factory.XRD patterns were collected on a XPERT-MPD h –2h diffractometer.The absorption spectra were recorded on a PE Lambda900UV–vis spectrophotom-eter in the wavelength range of 320–900nm.The absorption spec-tra were determined by the diffuse-reflectance technique.F (R )and R are linked by F (R )=(1ÀR )2/2R ,where R is the reflectance and F (R )is the Kubelka–Munk remission function.The minima in the second-derivative curves of the Kubelka–Munk function are taken as the position of the absorption bands.The emission spectrums were measured on a Cray Eclipse fluorescence spectrometer using Xe lamp at room temperature.2.1.1.SynthesisSingle crystal of Na 5Gd(MoO 4)4was initially obtained by the high temperature solid-state reaction of Na 2CO 3(0.6903g,6.513mmol),Gd 2O 3(0.1574g,0.4342mmol),and MoO 3(1.000mg,0022-2860/$-see front matter Ó2008Elsevier B.V.All rights reserved.doi:10.1016/j.molstruc.2008.09.004*Corresponding atuhor.Fax:+865913714946.E-mail address:cwd@ (W.-D.Cheng).Journal of Molecular Structure 919(2009)178–184Contents lists available at ScienceDirectJournal of Molecular Structurej o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /m o l s t r uc6.947mmol),with the molar ratio of15:1:8(Na:Gd:Mo).The reac-tion mixture was thoroughly ground in an agate mortar and pressed into a pellet to ensure the best homogeneity and reactivity, which was put into a platinum crucible.The crucible was put into an oven and heated at800°C in the air for2days.In this stage,the mixture of Na2CO3,Gd2O3,and MoO3were completely melt.After-wards,it was allowed to cool at a rate of0.1°C/min to350°C be-fore switching off the furnace.Prism-shaped colorless crystals were obtained in very low yield(<5%).Attempts to produce erbium analogy of Na5Gd(MoO4)4led to the isolation a few prism-shaped red crystals of Na5Er(MoO4)4.The analytical reagent starting mate-rials Na2CO3,Er2O3,and MoO3were also weighed in the molar ratio Na/Gd/Mo=15/1/8,and the subsequent procedure was the same.After crystal structure determination,polycrystalline samples of Na5Ln(MoO4)4(Ln=Gd,Er)were synthesized by solid-state reac-tions of stoichiometric amounts(Na/Ln/Mo=5:1:4)of analytical reagents.The powdered mixtures were ground in an agate motar, and then calcined at800°C for5days with several intermediate grindings to eusure solid-state reactions completely.On the basis of powder XRD diffraction studies,they have been successfully ob-tained as single phases(Supporting Information).2.2.Crystal structure determinationSingle crystals of Na5Ln(MoO4)4(Ln=Gd,Er)with dimensions of0.15Â0.10Â0.05mm(Gd)and0.20Â0.10Â0.10mm(Er)were selected for single-crystal X-ray diffraction determination.Data collections for them were performed on a Siemens Smart1K CCD diffractometer with graphite-monochromated Mo-K a (k=0.71073Å)radiation using the x/2h scan mode at the temper-ature of293K.These data sets were corrected for Lorentz and polarization factors as well as for absorption by the u-scan tech-nique.All of the structures were solved by direct methods and re-fined by full-matrix least-squaresfitting on F2by SHELX-97[41]. The observed intensities(h+k+l=2n)are consistent with a tetragonal I-centered space group I41/a.The positions of the Gd, Er,and Mo atoms were refined by the application of the direct method,and the remaining atoms were located in succeeding dif-ference Fourier synthesis.All of the atoms were refined with aniso-tropic thermal parameters.Thefinal refined solutions obtained were checked with the ADDSYM algorithm in the program PLATON [42];no higher symmetry was found.Crystallographic data and structural refinements for all of the compounds are summarized in Table1.The atomic coordinates and thermal parameters are listed in Table2.Important bond distances are listed in Table3.putational descriptions for Na5Gd(MoO4)4The crystallographic data of the solid-state compound Na5Gd(-MoO4)4determined by single-crystal X-ray diffraction were used to calculate its energy band structure;no further geometry optimiza-tion was performed in theoretical studies.The calculations use the total-energy code CASTEP[43–47],which employs pseudopoten-tials to describe electron–ion interactions and represents elec-tronic wave functions using a plane-wave basis set.The totalenergy and properties were calculated within the framework of the Perdew–Burke–Ernzerhof generalized gradient approximation (GGA-PBE)[48].In addition,the ultrasoft pseudopotential was em-ployed for O,whereas norm-conserving pseudopotentials[49] were employed for Na,Gd,and Mo,respectively.The total energy and the force convergence thresholds were2Â10À6eV/atom and 0.05eV/Å,respectively.The k-point set mesh to define the number of integration points that will be used to integrate the wavefunc-tion in reciprocal space was2Â2Â2for calculating band struc-ture,density of state and optical properties.The rest parameters used in the calculations were set by the default values of the CA-STEP code.Additionally,in CASTEP code,relativistic effect was just included in the pseudopotentials packages of the elements after Hf(atomic number=72),hence we here made non-relativistic cal-culations due to only considering systematic comparisons of calcu-lated results for Na5Gd(MoO4)4.Pseudoatomic calculations were performed for Na-2s22p63s1,Gd-4f75s25p65d16s2,Mo-4d55s1, and O-2s22p4.The calculations of linear optical properties described in terms of the complex dielectric function e=e1+i e2were also made in this work.The imaginary part of the dielectric function e2(x)was given in the following equationTable1Crystal data and structure refinements for Na5Ln(MoO4)4(Ln=Gd,Er)Formula Na5Gd(MoO4)4Na5Er(MoO4)4 Formula weigh911.96921.97Wavelength(Å)0.710730.71073Crystal system Tetragonal TetragonalSpace group I41/a I41/aUnit cell dimensions a=11.4720(3)a=11.3745(3)c=11.5363(4)c=11.4371(4) Volume,Z44D cal(g cmÀ3) 3.990 4.139Absorption corretion Empirical EmpiricalAbsorption coeffient(mmÀ1)7.7469.137F(000)16601676Crystal size(mm)0.150Â0.100Â0.0500.200Â0.100Â0.100 h range(deg)0.400–0.6000.400–0.700Limiting indices(À13,À13,À8)to(13,12,14)(À13,À13,À13)to(13,10,13)R int0.07610.0567Reflections collected40063954Independent reflections718685Parameter/restraints/date(obs)60/0/71460/0/694GOF on F2 1.009 1.031Final R indices[I>2r(I)]R1=0.0546R1=0.0514R2=0.1366R2=0.1331R indices(all date)R1=0.0548R1=0.0514R2=0.1370R2=0.1331Largest difference peak andhole(e AÀ3)2.198andÀ6.2403.278andÀ4.0271R1¼XF obsk jÀj F calc k.Xj F obs j;wR2¼Xw F2obsÀF2calc2 Xw F2o1=2Table2Atomic coordinates and equivalent isotropic displacement parameters for compounds Na5Ln(MoO4)4(Ln=Gd,Er)Atom Site x y z U eq aNa5Gd(MoO4)Na116f0.3791(4)À0.0454(4)0.3433(5)0.0180(11) Na24a0.50000.25000.37500.029(3) Gd14b0.00000.25000.62500.0096(5) Mo116f0.31947(9)0.15560(7)0.61150(9)0.0106(5) O116f0.1821(6)0.1649(6)0.6864(6)0.0134(15) O216f0.3238(7)0.0352(6)0.5195(6)0.0188(16) O316f0.1130(6)0.1882(6)0.4594(7)0.0156(16) O416f0.3501(6)0.2802(6)0.5263(7)0.0182(16) Na5Er(MoO4)4Na116f0.7049(4)0.8692(4)0.4058(5)0.0155(9) Na24b0.50000.75000.12500.032(3) Er14a0.50000.75000.62500.0106(4) Mo116f0.40664(7)0.93134(9)0.36344(8)0.0113(4) O116f0.4159(6) 1.0702(6)0.4368(7)0.0139(14) O216f0.2851(6)0.9273(7)0.2719(7)0.0191(16) O316f0.3886(6)0.8126(6)0.4628(7)0.0157(15) O416f0.5311(6)0.8992(6)0.2776(7)0.0170(16)a Ueqis defined as one third of the trace of the orthogonalized U ij tensor.D.Zhao et al./Journal of Molecular Structure919(2009)178–184179e 2ðx Þ¼4ðp e =m x Þ2X vcZBZ2d k =ð2p Þ3j e ÁM cv ðk Þj 2d ðE c ðK ÞÀE v ðK ÞÀh x Þ:ð1ÞThe symbol of R is summation over the valence bands (v)and con-duction bands (c),and the symbol of Ris integration over k vectors in Brillouin zone (BZ).The e ÁM cv (k )is an electron transition moment between the conduction and valence bands at the k-point,and the argument of the d function is the energy difference between the conduction and valence bands at k-point with absorption of a quan-tum ⁄x ,(E c (K )ÀE v (K )À⁄x ).CASTEP calculated the real e 1(x )and imaginary e 2(x )parts of the dielectric function.The e 2(x )can be thought of as detailing the real transitions between occupied and unoccupied electronic states.The real and imaginary parts were linked by a Kramers–Kronig transform [50,51].This transform was used to obtain the real part e 1(x )of the dielectric function.e 1ðx ÞÀ1¼2p PZ1x 0e 2ðx 0Þd x 0x x ande 2ðx Þ¼À2xp PZ 1e 1ðx 0Þd x 0x 02Àx 2ð2ÞWhere the P means the principal value of the integral.This trans-form is used to obtain the real part of the dielectric function,e 1(x ).3.Results and discussion 3.1.Crystal structureSingle-crystal structure determinations show that compounds Na 5Ln(MoO 4)4(Ln =Gd,Er)are isostructural and crystallize in the scheelite-like structure type(space group I 41/a );hence only the structure of Na 5Gd(MoO 4)4will be discussed in detail as a representative.The 3D structure of Na 5Gd(MoO 4)4might be considered as being built up of the packing of [MoO 4]2Àanions with their holesoccupied by the Na +and the Gd 3+cations,as shown in Fig.1.It is interesting to note that atoms Mo(1),Gd(1),Na(1),and Na(2)adopt a linear array,forming one-dimensional(1D)infinite Mo(1)...Na(1)and Gd(1)...Na(2)chains along the c -aixs (Fig.2).These two types of chains are further interconnected by O atoms into a 3D open-framework of Na 5Gd(MoO 4)4.There are two sites of sodium(I)cations,one unique gadolin-ium(III)cation and one molybdenum(VI)cations in the asymmetric unit of Na 5Gd(MoO 4)4.The Mo1(VI)atom is surrounded by four oxygen atoms,forming isolated [MoO 4]2Àanions.The [MoO 4]2Àhas a tetrahedral structure,in which the Mo 6+is located at the cen-ter of the tetrahedral structure with four O 2Àlocated at the four apex angles.The Mo–O distances fall in the range of 1.743(7)–1.800(7)Å,and O–Mo(1)–O bond angles range from 105.6(3)to113.3(1)°.The Gd atoms lie on axis 4too (the special position Table 3Selected bond distances (Å)and angles (°)for Na 5Ln(MoO 4)4(Ln =Gd,Er)Na 5Gd(MoO 4)4Na1–O2 2.321(9)Na2–O4 2.475(8)Gd1–O3 2.415(7)Na1–O1i 2.377(9)Na2–O4vii 2.475(8)Gd1–O3viii 2.415(7)Na1–O4ii 2.403(9)Gd1–O1viii 2.412(7)Mo1–O2 1.743(7)Na1–O3ii 2.422(9)Gd1–O1 2.412(7)Mo1–O4 1.770(8)Na1–O2iii 2.48(1)Gd1–O1ix 2.412(7)Mo1–O3v 1.782(8)Na1–O4iv 2.525(9)Gd1–O1x 2.412(7)Mo1–O11.800(7)Na2–O4ii 2.475(8)Gd1–O3ix 2.415(7)Na2–O4vi2.475(8)Gd1–O3x2.415(7)O2–Mo1–O4107.2(4)O4–Mo1–O3v 107.2(3)O4–Mo1–O1113.1(3)O2–Mo1–O3v 105.6(3)O2–Mo1–O1111.4(4)O3v –Mo1–O1111.9(3)Na 5Er(MoO 4)4Na1–O 2i 2.323(9)Na2–O4ix 2.460(8)Er1–O1ii 2.366(7)Na1–O1ii 2.367(9)Na2–O4iv 2.460(8)Er1–O1xv 2.366(7)Na1–O4iii 2.388(8)Er1–O3xii 2.357(7)Mo1–O2 1.735(7)Na1–O3iv 2.415(8)Er1–O3iv 2.357(7)Mo1–O4 1.761(7)Na1–O2v 2.458(9)Er1–O3 2.357(7)Mo1–O3 1.777(7)Na1–O4 2.484(8)Er1–O3xiii 2.357(7)Mo1–O1 1.791(7)Na2–O4 2.460(8)Er1–O1xiv 2.366(7)Na2–O4viii 2.460(8)Er1–O1iii2.366(7)O2–Mo1–O4107.4(4)O4–Mo1–O3106.9(3)O4–Mo1–O1113.4(3)O2–Mo1–O3105.9(3)O2–Mo1–O1110.6(3)O3–Mo1–O1112.2(3)Na 5Gd(MoO 4)4:(i)Ày,x ,À1Àz;(ii)0,0,0;(iii)y ,À1Àx ,À1Àz;(iv)0,0,0;(v)Àx ,Ày ,z ;(vi)1Ày ,0.5+x ,0.25+z ;(vii)0,0,0;(viii)0,0,0;(ix)0,0,0;(x)Ày ,0.5+x ,0.25+z ;(xi)0,0,0;(xii)Ày ,x ,Àz ;(xiii)À0.5+x ,0.5+y ,0.5+z ;(xiv)0,0,0;(xv)0,0,0.Na 5Er(MoO 4)4:(i)0,0,0;(ii)0,0,0;(iii)1Àx ,0.5Ày ,0.25Àz ;(iv)1Ày ,1.5+x ,0.25+z ;(v)0,0,0;(vi)À1+x ,1.5+y ,À0.75Àz ;(vii)0,0,0;(viii)0,0,0;(ix)0,0,0;(x)1+y ,À1Àx ,À1Àz ;(xi)0,0,0;(xii)0,0,0;(xiii)0,0,0;(xiv)0,0,0;(xv)À1Àx ,1Ày ,z ;(xvi)0,0,0.Fig.1.Packing of cations (Na +and Gd 3+)and anions ([MoO 4]2Àtetrahedra)in Na 5Gd(MoO 4)4.(2Â2Â2unitcell).Fig.2.Projection of the structure of Na 5Gd(MoO 4)4.180 D.Zhao et al./Journal of Molecular Structure 919(2009)178–1844b).As shown in Fig.4d,Gd(1)is coordinated by eight oxygen atoms with two pairs of identical Gd(1)–O distances (2.412(7)and 2.415(7)Å)to form a dodecahedron.The Na(1)atom is coordi-nated by six oxygen atoms which are from six [MoO 4]2Àanions,forming a distorted Na(1)O 6polyhedral.The Na(1)–O distances range from 2.321(9)to 2.525(9)Å.The Na(2)atom lie on the four-fold inversion axis 4(the special position 4a)and is coordinated by four oxygen atoms in a slightly distorted tetrahedral geometry with equal Na(2)–O distances of 2.475(8)Å.It is interesting to note that there are four weak Na(2)–O(2)contacts of 3.60Åwhich can be considered as secondary coordination bonds to complete the ex-tended coordination spheres of the large cations (coordination number up to 8).Bond valence calculations indicate that the Mo atom is in an oxidation state of +6and the Gd atom is +3;the cal-culated total bond valences for Mo(1)and Gd(1)are 5.743and 3.119,respectively.A perspective view of the Na 5Gd(MoO 4)4structure showing the coordination of interconnected Na(1)O 6,Na(2)O 4,Gd(1)O 8,and Mo(1)O 4groups is illustrated in Fig.3.It should be noted that four corner O atoms in Mo(1)O 4polyhedron occupy four crystallograph-ically distinct sites,namely O(1),O(2),O(3),and O(4).They are coordinated by Na(1),Na(2),and Gd(1)atoms as shown in Fig.4a;hence,MoO 4groups are isolated.In addition,Na(1)O 6octa-hedron is surrounded by six Mo(1)O 4groups via corner-sharing O(4)atoms(Fig.4b),while Na(2)O 4tetrahedron is surrounded by eight Na(1)O 6and four Mo(1)O 4groups(Fig.4c).For Gd(1)O 8poly-hedron,it shares edges with four Na(1)O 4groups and shares cor-ners with eight Mo(1)O 4groups (Fig.4d).As for compound of Na 5Er(MoO 4)4,it is isostructural to Na 5Gd(-MoO 4)4with some differences in detail for decreasing in the ionic radius of Ln(III)(Gd >Er).Further details on crystallographic stud-ies are given in Tables 1–3.3.2.Optical propertiesThe Optical diffuse-reflectance absorption spectrum of Na 5Ln (MoO 4)4(Ln =Gd,Er)were measured (Fig.5)ranging from 320to 900nm.For Na 5Gd(MoO 4)4,the absorption edge is around 368nm(3.376eV)for Na 5Gd(MoO 4)4,which is comparable to thecalculated value (3.695eV).The absorption spectra of Na 5Er (MoO 4)4displays the characteristic transition of the Er 3+ion at room temperature.As shown in Fig.5,four strong absorption peaks located at about 381,491,524and 656nm can be assigned to the 4I 15/2?4G 11/2,4I 15/2?4F 7/2,4I 15/2?2H 11/2,and 4I 15/2?4F 9/2electronic transitions of Er 3+cations excition,respectively.In addition,we examined the solid-state luminescent properties of Na 5Ln(MoO 4)4(Ln =Gd,Er)at room temperature (Fig.6).For Na 5Gd(MoO 4)4,it exhibits a sharp emission band at around 421nm (2.95eV)under the excitation of the wavelength at 307nm(4.05eV)(Fig.6),which maybe originates from defects.For Na 5Er(MoO 4)4,the emission spectrum displays the characteris-tic emissions which result from the intraconfigurational electronic transitions of Er 3+ion in the range from 500to 800nm under exci-tation at 380nm (Fig.6).Three emission regions correspond to 530nm (2H 11/2?4I 15/2),552nm (4S 3/2?4I 15/2),and 696nm (4F 9/2?4I 15/2),respectively.The 4S 3/2?4I 15/2green (552nm)emission gives by far the most intense band.3.3.Theoretical studies of Na 5Gd(MoO 4)4Here,we take Na 5Gd(MoO 4)4as an example to calculate the en-ergy band structures,density of states (DOS),and the linear optical response properties by the DFT method to understand the chemical bonding properties and electronic origin of optical transition.The spin polarization is properly taken into account because of the un-paired f -electron effect of the Gd 3+ion.The calculated band struc-ture of it along high symmetry points of the first Brillouin zone is plotted in Fig.7,where the labeled k -points are present as Z (0.5,0.5,À0.5),G (0.0,0.0,0.0),X (0.0,0.0,0.5),P (0.25,0.25,0.25)and N (0.0,0.5,0.0).It is found that the top of valence bands (VBs)is flat and the bottom of conduction bands (CBs)display a dispersion.The state energies (eV)of the lowest conduction band (L–CB)and the highest valence band (H–VB)at some k -points of the crystal Na 5Gd(MoO 4)4are listed in Table 4.The lowest energy (3.695eV)of conduction bands (CBs)is localized at the G point,while the highest energy (0.00eV)of valence bands (VBs)is also localized at the G point.Hence,Na 5Gd(MoO 4)4is an direct band-gap insulator.The calculated direct band gap of 3.695eV is compa-rable to the experimental value of 3.376eV.The total and partial densities of states (DOS)are plotted in Fig.8.The regions below the Fermi level (the Fermi level is set at the top of the valence band)contain 190bands (two formula units/primitive cell)and can be divided into five regions.The states of Na-2s form the VBs lying near À48.0eV,and the states of Gd-5s lying from À43.5to À38.0eV.The VBs ranging from À22.8to À17.3eV are mainly composed of the states of Na-2p and Gd-5p states.The VBs near À15.5eV are dominated by O-2s and Mo-4d and states.The VBs ranging from À5.8to À2.5eV are formed by Gd-4f ,Mo-4d and O-2p states.The fifth region of the VBs between À2.5eV and the Fermi level (0.0eV)is dominated by the O-2p ,mixing with very small amount of Na-2s 2p ,Gd-5s 5p 5d and Mo-4d 5s states.The CB just above the Fermi level is dominated by empty O-2p ,Mo-4d states mixing with a small amount of the Gd-4f .Therefore,their optical absorptions at low energy region can be mainly ascribed to the charge transitions from O-2p to Mo-4d states.In addition,we used the population analyses to elucidate the nature of the electronic band structure and chemical bonds.The Mulliken bond orders of the Mo–O,Gd–O,and Na–O bonds are from 0.89to 1.04e,0.23to 0.27e,and 0.01to 0.16e in a unit cell of Na 5Gd(MoO 4)4(covalent single bond order is generally 1.0e),respectively.Accordingly,we can say that the covalent character of the Mo–O bond is larger than that of the Gd–O bond,and the io-nic character of the Na–O bond is larger than that of the Gd–O bond in Na 5Gd(MoO 4)4.Fig.3.A perspective view of the Na 5Gd(MoO 4)4structure showing the coordination of NaO6,NaO4,GdO8,and MoO4groups.D.Zhao et al./Journal of Molecular Structure 919(2009)178–184181Experimental study shows that the absorption edge of Na 5Gd (MoO 4)4is at about 368nm(3.376eV),and there is no absorption above 400nm.To evaluate and assign the observed absorption spectra,we examined the linear optical response properties of it.The imaginary part e 2(x )and the real part e 1(x )of the fre-quency-dependent dielectric function were calculated without the DFT scissor operator approximation.It is found from the dis-persion of the calculated e 2(x )spectra from 0to 30eV (Fig.9)that the absorption edge is located at about 3.70eV,which is compara-ble to the calculated direct band gap as above-mentioned.In addi-tion,we also elucidate the calculated dielectric constants of the static case,e (0),and the refractive indices,which are linked to the dielectric constant by the relation n 2(x )=e (x ).The calculated dielectric constants of the static case of Na 5Gd(MoO 4)4is 4.258,and the corresponding refractive indices is 2.063.Since the refrac-tive indices of crystal Na 5Gd(MoO 4)4have not been measured and reported,our calculated results only compare with the observedFig.4.Coordination geometries around the Mo(1)(a),Na(1)(b),Na(2)(c),and Gd(1)(d)atoms.182 D.Zhao et al./Journal of Molecular Structure 919(2009)178–184results of the other borate and molybdate crystals.It is reported that the observed refractive indices are generally 2.0for molybdate [52].Hence,our calculated refractive indices of the Na 5Gd(MoO 4)4crystals are reasonable and it may be overestimate about 3–5%at static case.4.ConclusionIn this work,two sodium lanthanide(III)molybdate(VI)Na 5Ln (MoO 4)(Ln =Gd,Er)are synthesized and characterized by means of the single-crystal X-ray diffraction,and spectral measurements.They crystallized in the tetragonal crystal system with space group I 41/a (scheelite-like structure).The calculated band structure shows that Na 5Gd(MoO 4)4is a direct band-gap insulator.The linearoptical response properties can be comparable to the experimental value.The absorption and emission peaks of Na 5Er(MoO 4)4corre-spond to characteristic transition of the Er 3+ion.AcknowledgmentsThis investigation was based on work supported by the National Natural Science Foundation of China under project 20373073,the National Basic Research Program of China (No.2007CB815307)and the Funds of Chinese Academy of Sciences (KJCX2-YW-H01),and Fujian Key Laboratory of Nanomaterials (No.2006L2005).Appendix A.Supplementary dataThe contents of Supporting Information include the following:experimental and simulated powder XRD patterns of Na 5Ln(-MoO 4)4(Ln =Gd,Er)(1),crystallographic information files (CIF)and checkCIF results of Na 5Ln(MoO 4)4(Ln =Gd,Er)(2).Supple-mentary data associated with this article can be found,in the on-line version,at doi:10.1016/j.molstruc.2008.09.004.References[1]M.Galceran,M.C.Pujol,M.Aguilo,F.Diaz,J.Sol-Gel.Sci.Technol.42(2007)79.[2]O.Silvestre,M.C.Pujol,F.Guell,M.Aguilo,F.Diaz,A.Brenier,G.Boulon,Appl.Phys.B 87(2007)111.[3]V.Volkov,C.Cascales,A.Kling,C.Zaldo,Chem.Mater.17(2005)291.[4]A.V.Morozov,A.V.Arakcheeva,G.Chapuis,N.Guiblin,M.D.Rossell,G.VanTendeloo,Chem.Mater.18(2006)4075.[5]L.Macalik,J.Alloys Compd.341(2002)226.[6]A.Arakcheeva,Philip Pattison,G.Chapuis,M.Rossell,A.Filaretov,V.Morozov,G.Van Tendeloo,Acta Cryst.B 64(2008)160.[7]J.A.Collado,M.A.G.Aranda,A.Cabeza,P.Olivera-Pastor,S.Bruque,J.Solid StateChem.167(2002)80.[8]C.Cascales,A.MéndezBlas,M.Rico,V.Volkov,C.Zaldo,Opt.Mater.27(2005)1672.[9]V.Volkov,C.Zaldo,J.Cryst.Growth 206(1999)60.[10]V.Volkov,M.Rico,A.MéndezBlas,C.Zaldo,J.Phys.Chem.Solids 63(2002)95.[11]H.S.Shi,D.Z.Shen,G.H.Ren,H.B.Zhang,B.Gong,Q.Deng,J.Cryst.Growth 240(2002)459.[12]H.S.Shi,D.Z.Shen,H.B.Zhang,J.M.Chen,G.H.Ren,J.Cryst.Growth 245(2002)73.[13]A.A.Kaminskii,A.Kholov,P.V.Klevtsov,S.K.Khafizov,Phys.Status Solidi.A 114(1989)713.[14]J.Hanuza,A.Benzar,A.Haznar,M.Maczka,A.Pietraszko,J.H.van der Mass,Vib.Spectrosc.12(1996)25.[15]J.Hanuza,M.Maczka,J.H.van der Mass,J.Solid State Chem.117(1995)177.[16]S.Haussuhl,J.Liebertz,H.Schmidt,Cryst.Res.Technol.26(1991)K136.[17]J.Hanuza,M.Maczka,J.H.van der Maas,J.Mol.Struct.348(1995)349.Table 4The state energies (eV)of the lowest conduction band (L–CB)and the highest valence band (H–VB)at some k -points of the crystal Na 5Gd(MoO 4)4k -pointZ(0.5,0.5,À0.5)G(0.0,0.0,0.0)X(0.0,0.0,0.5)P(0.25,0.25,0.25)N(0.0,0.5,0.0)L–CB 3.869 3.695 3.860 3.855 3.819H–VB À0.0110.000À0.043À0.050À0.035D.Zhao et al./Journal of Molecular Structure 919(2009)178–184183[18]V.N.Moiseenko,Yu.I.Bogatirjov, A.M.Jeryemenko,S.V.Akimov,J.RamanSpectrosc.31(2000)539.[19]K.Nitsch,M.Nikl,C.Barta,D.Schultze,A.Triska,R.Uecker,Phys.Status Solidi.A118(1990)K133.[20]V.G.Baryshevsky,M.V.Korzhik,V.I.Moroz,V.B.Pavlenko,A.S.Lobko,A.A.Fyodorov,V.A.Kachanov,V.L.Solovjanov,B.I.Zadneprovsky,V.A.Nefyodov, P.V.Nefyodov,B.A.Dorogovin,L.L.Nagornaja,Nucl.Instrum.Methods Phys.Res.Sect.A322(1992)231.[21]B.I.Zadneprovski,V.A.Nefedov,E.V.Polyansky,E.G.Devitsin,V.A.Kozlov,S.Y.Potashov,A.V.Terkulov,Nucl.Instrum.Methods Phys.Res.Sect.A486(2002) 355.[22]A.A.Kaminskii,S.N.Bagayev,K.Ueda,H.Nishioka,Y.Kubota,X.Chen,A.Kholov,Jpn.J.Appl.Phys.34(1995)L1461.[23]M.Rico,V.Volkov,C.Zaldo,J.Alloys Compd.323–324(2001)806.[24]R.G.Dickinson,J.Am.Chem.Soc.42(1920)85.[25]C.de Mello Donega,S.Schenker,H.F.Folkerts,A.Meijerink,G.Blasse,J.Phys.:Condens.Matter.6(1994)6043.[26]N.E.Ter-Gabrielian,V.M.Markushev,V.R.Belan,Ch.M.Briskina,V.F.Zolin,Russ.J.Quantum Electron18(1991)38.[27]N.J.Stedman,K.Cheethama,P.D.Battle,J.Mater.Chem.4(1994)707.[28]J.G.Huang,J.Loriers,P.Porcher,G.Teste de Sagey,P.Caro,C.Levy-Clement,J.Chem.Phys.80(1984)6204.[29]H.Y-P.Hong,K.Dwight,Mater.Res.Bull.9(1974)775.[30]L.G.Sillén,H.Sundvall,Ark.Kemi Mineral Geol.17A(1943)10.[31]E.Antic-Fidancev,C.Cascales,M.Lemaître-Blaise,P.Porcher,J.Alloys Comp.207/208(1994)178.[32]E.J.Baran,M.B.Vassallo,C.Cascales,P.Porcher,J.Phys.Chem.Solid54(1993)1005.[33]V.A.Efremov,T.A.Berezina,I.M.Averina,V.K.Trunov,Kristallografiya25(1980)254.[34]V.A.Efremov,V.K.Trunov,T.A.Berezina,Kristallografiya27(1982)134.[35]V.K.Trunov,T.A.Berezina,A.A.Evdokimov,V.K.Ishunin,V.G.Krongauz,Russ.J.Inorg.Chem.23(1978)1465.[36]R.F.Klevtsova,L.A.Glinskaya,L.P.Kozeeva,P.V.Klevtsov,Kristallografiya17(1972)768.[37]V.K.Tzunov,V.A.Efremov,Y.A.Velinkodnyi,Crystallochemistry and Propertiesof Double Molybdates and Tungstates,Nauka,Leningrad,1986(in Russian).[38]M.V.Mokhosoev,F.P.Alekseev,E.I.Get’man,Russ.J.Inorg.Chem.14(1960)596.[39]M.V.Mokhosoev,F.P.Alekseev,E.I.Get’man,Russ.J.Inorg.Chem.14(1969)310.[40]R.F.Klevtsova,L.A.Glinskaya,L.P.Kozeeva,P.V.Klevtsov,Sov.Phys.Crystallogr.17(1973)672.[41]G.M.Sheldrick,SHELXTL-97Program for Refining Crystal Structure,Universityof Göttingen,Göttingen,Germany,1997.[42]A.L.Spek,J.Appl.Cryst.36(2003)7.[43]M.Segall,P.Linda,M.Probert, C.Pickard,P.Hasnip,S.Clark,M.Payne,Materials Studio CASTEP version2(2002).[44]M.Segall,P.Linda,M.Probert,C.Pickard,P.Hasnip,S.Clark,M.Payne,J.Phys.Condens.Mater.14(2002)2717.[45]Materials Studio CASTEP version2.2Program,developed by Accelrys Inc.[46]man,B.Winkler,J.A.White,C.J.Pickard,M.C.Payne,E.V.Akhmatskaya,R.H.Nobes,Int.J.Quantum Chem.77(2000)895.[47]J.S.Lin,A.Qteish,M.C.Payne,V.Heine,Phys.Rev.B.47(1993)4174.[48]J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.77(1996)3865.[49]M.C.Payne,M.P.Teter,D.C.Allan,J.D.Joannopoulos,Rev.Mod.Phys.64(1992)1045.[50]F.Bassani,G.P.Parravicini,Electronic States and Optical Transitions in Solids,Pergamon,New York,1975.pp.149–154.[51]J.R.Macdonald,M.K.Brachman,Rev.Mod.Phys.28(1956)383.[52]A.V.Mandrik, A.E.Troshin,V.E.Kisel, A.S.Yasukevich,G.N.Klavsut,N.V.Kuleshov,A.A.Pavlyuk,Appl.Phys.B81(2005)1119.184 D.Zhao et al./Journal of Molecular Structure919(2009)178–184。
第39卷 第1期 2024年3月 西 南 科 技 大 学 学 报 JournalofSouthwestUniversityofScienceandTechnology Vol.39No.1 Mar.2024DOI:10.20036/j.cnki.1671 8755.2024.01.002收稿日期:2023-03-31;修回日期:2023-05-08基金项目:国家自然科学基金项目(22075260);四川省自然科学基金面上项目(2022NSFSC0288)作者简介:第一作者,董秦(1998—),女,硕士研究生;通信作者,杨海君(1976—),男,教授,研究方向为新型有机功能材料、新型含能材料合成及性能研究,E mail:yanghaijun@swust.edu.cn1,3,5-三(甲硝胺基)-2,4,6-三硝基苯的合成、单晶结构与性能董 秦 唐思宇 罗郑航 杨海君(西南科技大学材料与化学学院 四川绵阳 621010)摘要:以1,3,5-三氯-2,4,6-三硝基苯(化合物1,TCTNB)为原料,经甲胺化、硝化反应得到1,3,5-三(甲硝胺基)-2,4,6-三硝基苯(化合物3)。
优化合成工艺获得了制备的最佳工艺条件,总产率达74.7%。
采用傅里叶红外光谱仪、核磁共振仪、差示扫描量热仪、热重分析仪和X射线单晶衍射仪等对化合物3及其中间产物进行了表征。
单晶数据显示,化合物3晶体属于三斜晶系,P1空间群。
采用Kissinger法、Rogers法和Arrhenius法计算化合物3的表观活化能Ea为157.81kJ·mol-1,指前因子A为12.79×1016min-1,分解速率常数k为2.91×10-11,热爆炸临界温度Tb为206.52℃。
采用Kamlet-Jacobs半经验方程预测化合物3的爆速为7990m·s-1,爆压为26.6GPa。
关键词:含能材料 多硝基芳烃 合成 热分解动力学 爆轰性能中图分类号:TJ55;O64 文献标志码:A 文章编号:1671-8755(2024)01-0009-09Synthesis,CrystalStructureandPropertiesof1,3,5 Tris(methylnitroamino)-2,4,6 trinitrobenzeneDONGQin,TANGSiyu,LUOZhenghang,YANGHaijun(SchoolofMaterialsandChemistry,SouthwestUniversityofScienceandTechnology,Mianyang621010,Sichuan,China)Abstract:1,3,5 Tris(methylnitroamino)-2,4,6 trinitrobenzene(3)wassynthesizedthroughmethylaminationandnitrationstartingfrom1,3,5 trichloro-2,4,6 trinitrobenzene(1,TCTNB),ofwhichtheoptimalprocesswasobtainedwithatotalyieldupto74.7%.Compound3anditsintermediatewerecharacterizedbyFT-IR,NMR,DSC-TG,X raysingle crystaldiffraction,etc.Crystaldatashowcompound3crystalbelongstoatriclinicsystemwithspacegroupP1.Thethermaldecompositionkineticparametersofcompound3werecalculatedbyKissinger,RogersandArrheniusmethods,showingthattheapparentactivationenergy,Ea,is157.81kJ·mol-1,thepre exponentialfactor,A,is12.79×1016min-1,thedecompositionrateconstant,k,is2.91×1011,andthethermalexplosioncriticalpoint,Tb,is206.52℃.Thedetonationvelocityanddetonationpressureofcompound3were7990m·s-1and26.6GPathroughKamlet-Jacobsequationcalculation.Keywords:Energeticmaterial;Polynitroarene;Synthesis;Thermaldecompositionkinetics;Detonationperformance 多硝基苯类单质炸药是重要的含能材料[1]。
Hydrothermal synthesis and characterization of azinc-substituted gallium phosphite,[H 3N(CH 2)2NH 3]1/2Æ[GaZn(HPO 3)3(H 2O)2]Lei Yang,Minghui Bi,Yong Fan,Dong Zhang,Youqing Dong,Shouhua Feng*State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,Department of Chemistry,College of Chemistry,Jilin University,Changchun 130023,PR ChinaReceived 22April 2005;received in revised form 31August 2005;accepted 31August 2005Available online 13October 2005AbstractAn organically templated zinc-substituted gallium phosphite,[H 3N(CH 2)2NH 3]1/2Æ[GaZn(HPO 3)3(H 2O)2]was synthesized under mild hydrothermal conditions in the presence of ethylenediamine (en)as structure-directing agent and characterized by single-crystalX-ray diffraction analysis.It crystallizes in the orthorhombic space group Pbcn with unit cell parameters:a =18.6146(10)A˚,b =11.0454(6)A˚,c =10.9074(4)A ˚,V =2242.62(19)A ˚3and Z =8.This compound has a three-dimensional framework built up from secondary building units (SBU)of Ga(III)(or Zn(II))and HPO 3pseudopyramid by sharing vertices.The structure displays a two-dimen-sional channel system running along the [001]and [010]direction with 5-,8-and 10-membered rings.The diprotonated ethylenediamine template molecules are located in the channels.In this structure,some of the Ga(III)sites are occupied by Zn(II)atoms.The compound was also characterized by IR spectroscopy,inductively coupled plasma (ICP),X-ray photoelectron spectra (XPS),differential thermal and thermogravimetric analyses.Ó2005Elsevier B.V.All rights reserved.Keywords:Hydrothermal synthesis;Zinc-substituted gallophosphite;Organic template;Crystal structure1.IntroductionSince the discovery of crystalline aluminophosphate molecular sieves in 1982,many researchers have focused synthesis of microporous materials because of their impor-tant potential applications in the fields of ion-exchange,absorption,catalysis,and chemical sensor [1,2].These materials are generally prepared by hydrothermal or solvo-thermal methods using organic amines as structure-direct-ing agent.A large number of metal phosphates with interesting open-framework structures were obtained [3–5].The replacement of phosphate by phosphite in these sys-tems was carried out [6,7],for the incorporation of thepseudopyramidal hydrogen phosphite group HPO 3created novel structures.It is well known that the pyramidal hydro-gen phosphite HPO 3can link three adjacent cations via P–O–M (M metal)bonds and provides a variety of the structures.A great interest in the synthesis of new transi-tion metal phosphites has been thus aroused,for instance,many templated phosphites containing V(III)[8],Fe(III)[9],Co(II)[10],Mn(II)[11,12],Zn(II)[13–19],and Cr(III)[20]have been extensively studied.However,the search for main group metal phosphites has not been fully con-ducted.So far,a few examples such as [NH 2(CH 2)6NH 2]-[Al(OH)(H(HPO 3))2][21],[NH 3(CH 2)3NH 3]Be 3(HPO 3)4[22],[C 2H 10N 2][Ga 0.98Cr 0.02(HPO 3)F 3][23]were reported.Incorporation of transition-metal ions into microporous solids,such as silicates,aluminosilicates,alumino-and gal-lophosphates,has been proven to be a favorable approach for preparing catalytically enhanced molecular sieves or for creating new microporous solids.In our work,we try0020-1693/$-see front matter Ó2005Elsevier B.V.All rights reserved.doi:10.1016/j.ica.2005.08.031*Corresponding author.Tel.:+864315670650;fax:+864315671974.E-mail addresses:shfeng@ ,xcy78413@ (S.Feng)./locate/icaInorganica Chimica Acta 358(2005)4505–4510to make mixed main group and transition metals in the microporous phosphites.The substitution of catalytically active transition metal ions,such as Ni(II),Pd(II),Mn(II), Fe(III),V(II),or Co(II),into framework sites of alumino-phosphate zeotypes has been successfully applied in catalysis[24].CoGaPO-laumontite[25]and CoGaPO-gis-mondine[26],and others containing Zn,Co and Mn atoms [27]gallophosphates were prepared.Heteroatom incorpo-rated gallophosphites are very scarce compared to hetero-atom incorporated phosphates.As far as known,only a Cr-incorporated gallophosphites,[C2H10N2][Ga0.98Cr0.02-(HPO3)F3][23]was reported very recently.In this paper,we describe the synthesis and crystal structure of a novel zinc(II)-substituted gallium(III)phos-phite,[H3N(CH2)2NH3]1/2Æ[GaZn(HPO3)3(H2O)2],which displays a two-dimensional interconnected channels with 4-,5-,8-,10-membered rings.The existence of Zn(II)in the structure is investigated by XPS and ICP.However, the Zn sites cannot be unambiguously determined by sin-gle-crystal X-ray diffraction analysis.2.Experimental2.1.Synthesis and characterizationThe title compound was synthesized under hydrother-mal conditions.All reagents were of analytical grade.The gallium source was Ga(NO3)3solution(1mol/l,prepared from the reaction of metallic gallium dissolved in nitric acid).The starting mixture,with a molar ratio1Ga(NO3)3:1 Zn(Ac)2Æ2H2O:5H3PO3:0.45tetraethoxysilane(Si(OEt)4): 110H2O:2.98ethylenediamine(en).Si(OEt)4was used as a mineraliser.In a typical synthetic procedure,the gel was prepared by mixing1ml Ga(NO3)3and0.219g Zn(Ac)2Æ2H2O with2ml of H2O,0.1ml of Si(OEt)4.After homog-enization,0.41g of H3PO3was added.The mixture was stirred for5min before the addition of0.2ml en.The gel was stirred at room temperature for1h crystallized in a Teflon-lined stainless-steel autoclave at160°C for5days. The colorless single crystals werefiltered,washed by dis-tilled water and dried in air.The elemental analyses were performed on a Perkin–Elmer2400element analyzer.The inductively coupled plasma(ICP)analysis was carried out on a Perkin–Elmer Optima3300DV ICP instrument.X-ray powder diffraction (XRD)data were collected on a Siemens D5005diffractom-eter with Cu K a radiation(k=1.5418A˚).The step size was 0.02°.A Perkin–Elmer DTA1700differential thermal ana-lyzer was used to obtain the differential thermal analysis (DTA)and a Perkin–Elmer TGA7thermogravimetric ana-lyzer to obtain thermogravimetric analysis(TGA)curves in an atmospheric environment with a heating rate of 10°C minÀ1.The infrared(IR)spectrum was recorded within the400–4000cmÀ1region on a Nicolet Impact 410FTIR spectrometer using KBr pellets.XPS were ac-quired on a VG ESCA LAB MKII spectrometer with excit-ing source of Al.2.2.Determination of crystal structureA suitable single crystal with dimensions0.26·0.23·0.19mm3was selected for single-crystal X-ray diffraction analysis on a Siemens SMART CCD diffractometer using graphite monochromated Mo K a radiation(k=0.71073 A˚).The data were collected at20±2°C.The total number of measured reflections and unique reflections were15214 and2800,respectively.(À226h624,À136k614,À146l614).The agreement factor between equivalent reflections(R int)was0.1079.Data processing was accom-plished with the SAINT processing program[28].The struc-ture was solved in the space group Pbcn by the direct methods and refined on F2by full-matrix least-squares using SHELXTL97[29].The heaviest atoms M(Ga,Zn)and P could be unambiguously located.The atomic coordinates and the temperature factors of the gallium and zinc cations were refined together,named as M.In the structure,the sites of P2split into P2,P20.The occupancies of the two P arefixed to50/50,according to temperature factor.O, C and N atoms were subsequently located in the difference Fourier maps.The hydrogen atoms residing on the amine molecules and phosphorus were placed geometrically.All non-hydrogen atoms were refined with anisotropic thermal parameters.Experimental details for the structured deter-mination are presented in Table1.Thefinal atomic coordi-nates,the selected bond distances,bond angles are presented in Tables2and3,respectively.3.Results and discussion3.1.CharacterizationThe powder X-ray diffraction pattern of the sample is entirely consistent with the simulated one on the basis of the single-crystal structure,as shown in Fig.1.The diffrac-tion peaks on both patterns corresponded well in position, indicating the phase purity of the as-synthesized sample. Table1Crystal data and structure refinement parameters for[H3N(CH2)2NH3]1/2Æ[GaZn(HPO3)3(H2O)2]Empirical formula CH12NO11GaZnP3 Formula weight442.12Crystal system orthorhombic Space group PbcnT(K)293(2)k(A˚)0.71073a(A˚)18.6146(10)b(A˚)11.0454(6)c(A˚)10.9074(4)V(A˚3)2242.62(19)Z8q calc(Mg mÀ3) 2.619l(mmÀ1) 5.025R1[I P2r(I)]0.0605wR2[I P2r(I)]0.1439R1=Pi F o|À|F c i/P|F o|;wR2¼fP½wðF2oÀF2cÞ2 =P½wðF2oÞ2 g1=2.4506L.Yang et al./Inorganica Chimica Acta358(2005)4505–4510The difference in reflection intensities between the simu-lated and experimental patterns was due to the variation in crystal orientation for the powder sample.The XPS were made at room temperature using Al K a radiation source on samples,as shown in Fig.2.It displays Ga 3d peak at 20.8eV,and Zn 2p peak at 1021.75eV,indi-cating the existence of Ga 3+and Zn 2+,respectively.Fig. 2.(a)Ga XPS of [H 3N(CH 2)2NH 3]1/2Æ[GaZn(HPO 3)3(H 2O)2];(b)Zn XPS of [H 3N(CH 2)2NH 3]1/2Æ[GaZn(HPO 3)3(H 2O)2].Table 3Selected interatomic distances (A ˚)and angles (°)M(1)–O(2)#11.882(6)M(2)–O(6)#3 1.924(5)M(1)–O(3) 1.901(5)M(2)–O(1)#4 1.934(5)M(1)–O(5) 1.935(6)M(2)–O(8) 1.956(5)M(1)–O(8) 1.939(5)M(2)–O(10)#2 1.966(6)M(1)–O(11)#2 1.940(6)M(2)–O(7) 1.969(6)M(1)–O(4)2.090(7)M(2)–O(9) 1.979(6)P(1)–O(1) 1.509(4)P(2)–O(6) 1.491(4)P(1)–O(2) 1.474(4)P(2)–O(5) 1.515(8)P(1)–O(3) 1.496(4)P(2)–O(7) 1.521(8)P(20)–O(7) 1.475(7)P(3)–O(9) 1.527(6)P(20)–O(6) 1.511(4)P(3)–O(10) 1.508(6)P(20)–O(5) 1.562(7)P(3)–O(11) 1.507(7)N(1)–C(1) 1.53(3)N(2)–C(2)1.49(3)C(2)–C(1)1.21(3)O(2)#1–Ga(1)–O(3)92.2(3)O(6)#3–Ga(2)–O(1)#489.5(2)O(2)#1–Ga(1)–O(5)88.4(4)O(6)#3–Ga(2)–O(8)92.1(2)O(3)–Ga(1)–O(5)91.6(3)O(1)#4–Ga(2)–O(8)176.0(2)O(2)#1–Ga(1)–O(8)90.0(3)O(6)#3–Ga(2)–O(10)#291.4(3)O(3)–Ga(1)–O(8)174.8(3)O(1)#4–Ga(2)–O(10)#290.2(2)O(5)–Ga(1)–O(8)93.2(3)O(8)–Ga(2)–O(10)#293.4(2)O(2)#1–Ga(1)–O(11)#2176.7(3)O(6)#3–Ga(2)–O(7)175.8(3)O(3)–Ga(1)–O(11)#284.9(2)O(1)#4–Ga(2)–O(7)87.4(2)O(5)–Ga(1)–O(11)#293.1(3)O(8)–Ga(2)–O(7)90.8(2)O(8)–Ga(1)–O(11)#292.9(3)O(10)#2–Ga(2)–O(7)91.4(3)O(2)#1–Ga(1)–O(4)91.4(3)O(6)#3–Ga(2)–O(9)86.5(3)O(3)–Ga(1)–O(4)91.4(3)O(1)#4–Ga(2)–O(9)86.8(2)O(5)–Ga(1)–O(4)177.0(3)O(8)–Ga(2)–O(9)89.7(2)O(8)–Ga(1)–O(4)83.8(3)O(10)#2–Ga(2)–O(9)176.4(3)O(11)#2–Ga(1)–O(4)87.2(3)O(7)–Ga(2)–O(9)90.5(3)O(2)–P(1)–O(3)121.9(4)O(6)–P(2)–O(5)110.2(5)O(2)–P(1)–O(1)118.8(4)O(6)–P(2)–O(7)116.6(5)O(3)–P(1)–O(1)113.2(3)O(5)–P(2)–O(7)113.3(4)O(11)–P(3)–O(10)113.6(4)O(10)–P(3)–O(9)112.1(4)O(11)–P(3)–O(9)107.4(4)Ga(1)–O(8)–Ga(2)129.4(3)Symmetry transformations used to generate equivalent atoms:#1Àx +3/2,y À1/2,z ;#2Àx +3/2,Ày +1/2,z À1/2;#3x +1/2,Ày +1/2,Àz ;#4Àx +3/2,Ày +1/2,z +1/2.ÔM Õdenotes metal site occupied by Zn and Ga atoms.Table 2Atomic coordinates (·104)and equivalent isotropic displacement param-eters (A˚2·103)xy Z U (eq)M(1)6049(1)2193(1)975(1)19(1)M(2)7910(1)2563(1)526(1)19(1)P(1)4351(1)1988(4)1124(2)67(1)P(2)6761(3)4697(4)272(5)25(1)P(20)6838(2)4754(3)1001(5)20(1)P(3)8168(1)3304(2)3414(2)22(1)O(1)3768(3)1751(5)193(5)26(1)O(2)4146(4)2432(9)2350(5)70(3)O(3)5060(2)2295(6)556(5)33(2)O(4)5980(4)315(6)1176(7)46(2)O(5)6167(3)3926(6)811(7)45(2)O(6)6632(3)6000(4)550(8)54(2)O(7)7510(3)4212(5)543(6)36(2)O(8)7055(3)1936(5)1354(5)21(1)O(9)8367(3)2843(6)2139(5)36(2)O(10)7483(3)2739(7)3881(5)38(2)O(11)8805(3)3092(7)4238(5)43(2)N(1)50002558(19)À2500133(11)N(2)6007(10)4861(15)À1844(15)42(4)C(2)5229(13)4590(20)À1700(20)56(7)C(1)50003940(30)À2500125(12)U (eq)is defined as one-third of the trace of the orthogonalized U ij tensor.Note:ÔM Õdenotes metal site occupied by Zn and Gaatoms.Fig.1.Experimental and simulated power X-ray diffraction patterns for [H 3N(CH 2)2NH 3]1/2Æ[GaZn(HPO 3)3(H 2O)2].L.Yang et al./Inorganica Chimica Acta 358(2005)4505–45104507The ICP analysis shows that the product contains 21.4wt%P,15.89wt%Ga and 14.93wt%Zn suggesting that the molar ratio of Ga:Zn =1:1.The elemental analysis indicates the contents of C,2.65;H,2.68;N,3.20wt%.The values are in good agreement with the values (Ga,15.78;Zn,14.79;P,21.03;C,2.71;H,2.71;N,3.17wt%)based on the single-crystal structure formula [H 3N(CH 2)2NH 3]1/2Æ[GaZn(HPO 3)3(H 2O)2].The IR spectrum,as shown in Fig.3,exhibits the bands at 3434,2900,and 1618cm À1of the terminal ÀNH 3þstretching,and the stretching vibration at 2964cm À1of –CH 2–groups.The band at 2399cm À1is attributed to the terminal P–H stretching and deformation.The peaks at 1101,609,and 526cm À1can be attributed to O–P–O and P–O vibrations.The band at 3084cm À1is attributed to the water.The IR results showed clearly the vibrations from HPO 3phosphite group and template molecule.The TGA study indicates that the weight loss occurred in one step for compound.The release of the template amine from the structure was observed to be exothermic.In the compound,a mass loss of 3.3%in the range 300–320°C corresponds to the loss of the amine (Calc.3.75%).The DTA curve exhibits the exothermic peaks for the decompo-sition of the organic template in air.The structure collapsed and converted to an amorphous phase after the calcination at 550°C for 2h.3.2.Description of the structureThe title compound consists of a three-dimensional net-work of vertex-linked MO6octahedra and HPO 3tetrahe-dra incorporating ethylenediammonium cations into its pores.The asymmetric unit,as shown in Fig.4,contains 18non-hydrogen atoms,16of which belong to the Ôframe-work Õ(two M,three P,and eleven O atoms)and two to theguest (one C and one N).Both M(Ga,Zn)atoms are octa-hedrally coordinated,while coordination surroundings are different.M(1)links four P atoms via Os (O(2),O(3),O(5),O(11),M(1)–O av =1.947A˚),one M(2)via O(8)(M(1)–O(8)=1.939(5)A˚)and a terminal water molecule (M(1)–O(4)=2.090(7)A˚).M(2)atom links five P atoms via the bonds M(2)–Os–P (O(1),O(6),O(7),O(9),O(10),M(2)–O av =1.955A˚)and one M(1)via O(8)atom (M(2)–O(8)=1.956(4)A˚).Usually,the oxygen atom that is connected to two Ga atoms corresponds to the hydroxyl group.In this structure,the bridge O(8)is from the water molecule.Such a situation,in which a water molecule bridges two metal atoms,has already been observed in iron phosphates,[DABCO]Fe 4(PO 4)4F 2(H 2O)3[30],[NH 3(CH 2)3-NH 3]Fe 4(PO 4)(HPO 4)4F 3(H 2O)4[31]and gallophosphate [NH 2(CH 2)3NH 2]Ga 3(PO 4)3(H 2O)[32].Moreover,a water molecule can bridge three Ga,such as GaPO 4Æ2H 2O [33].Three distinct P atoms form the centers of pseudo pyramid with hydrogen phosphite groups and each P links three Mvia P–O–M linking (P–O av =1.505A˚).The C–N and C–C geometrical parameters are in good agreement with those seen elsewhere.The three-dimensional structure is built up from SBU (the secondary building unit),the corner sharing of tetra-metrics units (Fig.5(a)).The SBU contains one octahedron M(1)O 4(H 2O)2,one M(2)O 5(H 2O)octahedron,two pseu-dopyramid HP(2)O 3and HP(3)O 3.M(1)links M(2)via O(8)which forms a dinuclear unit.P(2)is linked into the dinucleus unit by bond P(2)–O(5)–M(1)and P(2)–O(7)–M(2)and P(3)is linked into the unit by bond P(3)–O(11)–M(1)and P(3)–O(10)–M(2).The SBU with different orientation are connected into a 1-D chain (Fig.5(b))by pseudopyramid HP(1)O 3sharing corner O(3)with M(1)and O(1)with M(2)alternatively.Along b -axis,each 1-D chain links two other chains via the bond M(2)–O(6)–P(2)which forms a sheet along ab -plane,containing 4-,8-,10-membered rings (Fig.5(c)).At the same time,along c -axis each 1-D chain links two other chains via the bond P(3)–O(9)–M(2)and the bond P(1)–O(2)–M(1)which forms a sheet along ac -plane containing 4-,5-,8-Fig.3.IR spectra of [H 3N(CH 2)2NH 3]1/2Æ[GaZn(HPO 3)3(H 2O)2].Fig.4.An ORTEP plot of the asymmetric unit of the [H 3N(CH 2)2NH 3]1/2Æ[GaZn(HPO 3)3(H 2O)2]showing 50%probability thermal ellipsoids and the atom labeling scheme.4508L.Yang et al./Inorganica Chimica Acta 358(2005)4505–4510membered rings (Fig.5(d)).The interconnected two-dimen-sional sheets generate a 3-D framework.Viewed from [001](Fig.6),we can find diprotonated ethylenediamine filled in the 8-membered windows.The diprotonated organic amines act as charge-balancing cations.4.ConclusionsIn contrast to the extensively studied of transition metal phosphites,much less work has been carried out on the open framework main group metal phosphite.In our work,we try to develop the gallophosphite family.The hydro-thermal synthesis of a novel zinc-substituted gallium(III)phosphite [H 3N(CH 2)2NH 3]1/2Æ[GaZn(HPO 3)3(H 2O)2]and its crystal structure have been described here.We make mixed main group Ga and transition metal Zn in the microporousphosphites.Fig.5.(a)A SBU vertex-linked by M(1),M(2),P(2),P(3)centered polyhedra;(b)a 1-D chain;(c)view of the layer in the ac -plane;(d)view of layer in the ab-plane.Fig.6.View of the structure of title compound along [001]direction.L.Yang et al./Inorganica Chimica Acta 358(2005)4505–45104509AcknowledgmentsWe thank the National Science Foundation of China (Nos.20071013and20301007)and the State Basic Re-search Project of China(G2000077507)for support. Appendix A.Supplementary dataSupplementary data associated with this article can be found,in the online version,at doi:10.1016/j.ica.2005.08.031.References[1]G.Cao,H.Hong,T.E.Mallouk,Acc.Chem.Res.25(1992)420.[2]S.Feng,R.Xu,Acc.Chem.Res.34(2001)239.[3]A.K.Cheetham,G.Fe´rey,T.Loiseau,Angew.Chem.,Int.Ed.38(1999)3269.[4]D.M.Poojary,A.I.Bortun,L.N.Bortun,A.Clearfield,J.Solid StateChem.132(1997)213.[5]C.Serre,N.Guillou,G.Fe´rey,J.Mater.Chem.9(1999)1185.[6]R.E.Morris,W.T.A.Harrison,J.M.Nicol,A.P.Willdnson,A.K.Cheetham,Nature359(1992)519.[7]M.Sgyar,J.Durand,L.Cot,M.Rafiq,Acta Crystallogr.C47(1991)2515.[8]G.Bonavia,J.Debord,R.C.Haushalter, D.Rose,Zubieta,J.Chem.Mater.7(1995)1995.[9]S.Fernandez,J.L.Pizarro,J.L.Mesa,L.Lezama,M.I.Arriortua,R.Olazcuaga,T.Rojo,Chem.Mater.14(2002)2300.[10]S.Fernandez,J.L.Pizarro,J.L.Mesa,L.Lezama,M.I.Arriortua,T.Rojo,Int.J.Inorg.Mater.3(2001)331.[11]S.Fernandez,J.L.Pizarro,J.L.Mesa,L.Lezama,M.I.Arriortua,R.Olazcuaga,T.Rojo,Inorg.Chem.40(2001)3476.[12]S.Fernandez,J.L.Mesa,J.L.Pizarro,L.Lezama,M.I.Arriortua,R.Olazcuaga,T.Rojo,Chem.Mater.12(2000)2092.[13]J.A.Rodgers,W.T.A.Harrison,mun.(2000)2385.[14]W.T.A.Harrison,M.L.F.Phillips,T.M.Nenoff,Int.J.Inorg.Mater.3(2001)1033.[15]W.T.A.Harrison,M.L.F.Phillips,T.M.Nenoff,J.Chem.Soc.,Dalton Trans.(2001)2459.[16]D.Zhang,Z.Shi,H.J.Yue,G.H.Li,S.H.Feng,Inorg.Chim.Acta358(2005)265.[17]L.Wang,Z.Shi,W.S.Fu,G.H.Li, D.Zhang,W.J.Dong,Z.M.Dai,X.B.Chen,S.H.Feng,J.Solid State Chem.177(2004)80.[18]D.Zhang,Z.Shi,W.J.Dong,W.S.Fu,L.Wang,G.H.Li,S.H.Feng,J.Solid State Chem.177(2004)343.[19]W.B.Chen,N.Li,S.H.Xiang,J.Solid State Chem.177(2004)3229.[20]S.Fernandez,J.L.Mesa,J.L.Pizarro,L.Lezama,M.I.Arriortua,T.Rojo,Angew.Chem.,Int.Ed.41(2002)3683.[21]N.Li,S.Xiang,J.Mater.Chem.12(2002)1397.[22]W.S.Fu,L.Wang,Z.Shi,G.H.Li,X.B.Chen,Z.M.Dai,L.Yang,S.H.Feng,Cryst.Growth Des.4(2004)297.[23]Sergio FernaÕndez-Armas,L.JoseÕMesa,L.JoseÕPizarro,L.Luis,I.Mar,Arriortua,TeoÕ.lo Rojo,J.Solid State Chem.177(2004)765.[24]M.Hartmann,L.Kevan,Chem.Rev.99(1999)635.[25]A.M.Chippindale,R.I.Walton,mun.(1994)2453.[26]A.R.Cowley,A.M.Chippindale,mun.(1996)673.[27]M.Mrak,N.Tusar,A.Ristic,I.Arcon,F.Thibault-Starzyk,V.Kaucic,Micropor.Mesopor.Mater.56(2002)257.[28]SMART and SAINT,Siemens Analytical X-ray Instruments,Inc.,Madison,WI,1996.[29]SHELXTL,Version5.1,Siemens Industrial Automation,Inc.,1997.[30]M.Cavellec,J.M.Grene¡che,G.Ferey,Micropor.Mesopor.Mater.20(1998)45.[31]M.Cavellec,D.Riou,J.M.Grene¡che,G.Ferey,Micropor.Mesopor.Mater.8(1997)103.[32]C.B.Cabarrecq,A.Mosset,J.Mater.Chem.10(2000)445.[33]R.C.L.Mooney-Slater,Acta Crystallogr.20(1966)526.4510L.Yang et al./Inorganica Chimica Acta358(2005)4505–4510。