【医疗药品管理】第十五、十六章 生物药剂学和药物动力学
- 格式:doc
- 大小:42.82 KB
- 文档页数:6
生物药剂学与药物动力学1. 引言生物药剂学与药物动力学是药学领域中的两个重要分支。
生物药剂学研究的是生物药物的制备、质量控制、稳定性和分散度等方面的知识,而药物动力学则研究的是药物在体内的吸收、分布、代谢和排泄等过程。
本文将重点介绍生物药剂学与药物动力学的定义、研究内容以及在药物研发和临床应用中的重要性。
2. 生物药剂学2.1 定义生物药剂学是研究生物药物在制剂中的制备、物理化学特性、质量控制和稳定性等方面的学科。
生物药物是利用生物技术制备的药物,包括蛋白质药物、基因治疗药物、细胞治疗药物等。
2.2 研究内容生物药剂学的研究内容主要包括:•制剂方案:研发适合生物药物的制剂方案,确保药物的稳定性和有效性。
•质量控制:建立合适的质量控制方法,确保制剂的质量符合规定标准。
•稳定性研究:评估药物制剂的物理化学稳定性,寻找最佳的保存条件。
•分散度研究:研究药物在制剂中的分散度,以及分散度对药物吸收和药效的影响。
2.3 在药物研发中的重要性生物药剂学在药物研发中起着重要的作用。
正确的制剂方案可以提高药物的稳定性和储存性,延长药物的有效期。
合适的质量控制方法可以保证制剂的质量符合标准,提高药物的安全性和有效性。
稳定性研究可以评估药物的物理化学性质,为药物制剂的改进提供依据。
分散度研究可以优化药物的溶解度和吸收性,提高药物的生物利用度。
3. 药物动力学3.1 定义药物动力学是研究药物在体内的吸收、分布、代谢和排泄等过程的学科。
药物动力学可以帮助我们了解药物在人体内的作用机制和药效学特性。
3.2 研究内容药物动力学的研究内容主要包括:•药物吸收:药物通过不同的给药途径进入体内的过程,包括口服、注射、吸入等。
•药物分布:药物在体内的分布情况,受到药物的蛋白结合率、血流动力学等因素的影响。
•药物代谢:药物在体内发生的代谢反应,包括酶促反应和非酶促反应。
•药物排泄:药物从体内排除的过程,包括肾脏排泄、肝排泄、肠道排泄等。
生物药剂学与药物动力学第一章绪论1.名词解释生物药剂学:是研究药物及其制剂在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素、用药对象的生物因素与药物效应间相互关系的一门学科。
吸收:是指药物从用药部位进入体循环的过程。
分布:药物被吸收进入体循环后透过细胞膜向机体组织、器官或体液转运的过程。
代谢:是指药物在吸收过程中或进入体循环后,受体液环境、肠道菌丛体内酶系统等的作用导致结构发生转变的过程,也称为生物转化。
排泄:是指药物或其代谢产物排出体外的过程。
转运:药物的吸收、分布和排泄过程统称为转运。
处置:分布、代谢和排泄过程称为处置。
消除:药物的代谢与排泄过程合称为消除。
2.剂型因素与生物因素各包括哪些方面?剂型因素:剂型种类、药物的某些化学性质、药物的某些物理性质、制剂处方、配伍药物在处方及体内的相互作用,以及制备工艺、贮存条件和给药方法等。
生物因素:种属差异、种族差异、性别差异、年龄差异、生理和病理条件的差异及遗传因素等。
3.简述生物药剂学的研究目的,请举例说明。
生物药剂学的目的:是为了正确评价药物制剂质量、设计合理的剂型及制剂工艺、指导合理临床用药提供科学依据,以确保用药的安全与有效。
4."药物化学结构唯一决定药物疗效"的观点正确吗?请分析原因。
不正确。
因为随着生物药剂学的产生和发展,人们越来越清醒地认识到,药物在一定中所产生的效应除了与药物本身的化学结构有关外,还受到剂型因素与生物因素的影响,甚至在某种情况下,这种影响对药物疗效的发挥起着至关重要的作用。
所以"药物化学结构唯一决定药物疗效"的观点不正确。
第二章药物的吸收1.名词解释胃空速率:单位时间内胃内容物的排出量。
多晶型:同一化学结构的药物,由于结晶条件不同,可得到数种晶格排列不同的晶型,这种现象称为同质多晶。
溶出速度:是指固体药物制剂中有效成分在特定的溶解介质中的溶解速度和程度。
pH-分配学说:药物的吸收取决于药物在胃肠道中的解离状态和油/水分配系数。
生物药剂学和药物动力学生物药剂学和药物动力学是药物科学中重要的两个分支,它们分别涉及生物制剂的研发与应用、药物在体内的吸收、分布、代谢和排泄等过程。
本文将从生物药剂学和药物动力学的基本概念入手,深入探讨它们的研究内容、重要性以及未来发展趋势。
生物药剂学介绍什么是生物药剂学?生物药剂学是研究生物制剂的制备、储存、输送和应用的科学,生物制剂是指由生物大分子(如蛋白质、核酸、多肽等)或其修饰物组成的药物。
相较于化学制剂,生物制剂具有较高的复杂性和特异性,因此在其生产、贮存和使用过程中有着独特的问题和挑战。
生物药剂学的研究内容1.生物制剂的制备:包括重组蛋白的表达、纯化和修饰、核酸的合成与修饰等技术。
2.生物制剂的质量控制:包括活性、纯度、稳定性等方面的检测与评价。
3.生物制剂的储存与输送:包括制剂的稳定性、保存条件、运输方式等方面的探讨。
4.生物制剂的应用:包括药物治疗、疫苗接种等方面的应用研究。
生物药剂学的重要性1.生物制剂是当今医药领域的热点之一,其应用范围广泛,包括癌症治疗、自身免疫病的治疗、传染病疫苗接种等,因此对生物制剂的研究具有非常重要的意义。
2.生物制剂的复杂性和特异性要求对其在制备、储存、输送和应用过程中进行严格的控制和管理,保证其安全性和有效性。
3.随着生物技术和制剂技术的不断进步,生物制剂领域的研究前景非常广阔,对生物药剂学的研究发展有着重要的促进作用。
药物动力学介绍什么是药物动力学?药物动力学是研究药物在体内吸收、分布、代谢和排泄的规律以及与时间、剂量等因素的关系的科学,它揭示了药物在体内的命运和作用过程。
药物动力学的研究成果对药物的合理使用和临床疗效评价具有重要意义。
药物动力学的研究内容1.药物的吸收:包括口服、注射、吸入等途径对药物吸收的影响,以及影响吸收的生理因素和药物本身的性质。
2.药物的分布:包括药物在体内组织器官中的分布规律,以及影响分布的因素和机制。
3.药物的代谢:包括药物在体内的代谢途径、代谢产物的生成规律,以及影响代谢的因素和机制。
1.生物药剂学(biopharmaceutics,biopharmacy)——研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学。
2.生物药剂学的剂型因素和生物因素.1剂型因素:化学性质、物理性质、剂型及服法、辅料、药物配伍、工艺条件等。
2生物因素3.口服药物消化道吸收的因素、解离度、脂溶性和分子量2、溶出速率3、药物4.影响体内药物分布的主要因素:体内循环与血管透过性的影响、药物与血浆蛋白结合的能力、药物的的理化性质与透过生物膜的能力、药物与组织的亲和力、药物相互作用对分制的影响。
5.影响药物代谢的因素给药途径对药物代谢的影响、给药剂量和剂型对药物代谢的影响、药物光学异构性对药物代谢的影响、、酶抑制和诱导对药物代谢的影响、生理因素对药物入体循环的过程。
分布(Distribution):药物进入体循环后向各组织、器官或者体液转运的过程。
代谢(Motabolism):药物在吸收过程或进入体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。
排泄(Excretion):药物或其代谢产物排出体外的过程。
转运(transport):分布和排泄过程统称为转运。
处置(disposition):分布、代谢和排泄过程称为处置。
消除(elimination):代谢与排泄过程药物被清除,合称为消除。
5片剂口服后的体内过程有:片剂崩解、药物的溶出、吸收、分布、代谢、排泄。
7生物膜的结构:细胞膜的组成:①膜脂:磷脂、胆固醇、糖脂②少量糖③蛋白质。
生物膜性质:膜的流动性;膜结构的不对称性;膜结构的半透性。
8膜转运途径。
细胞通道转运:药物借助其脂溶性或膜内蛋白的载体作用,透过细胞而被是小分子水溶性的药物转运吸收的通道。
细胞旁路通道转运:是指一些小分子物质通过细胞间连接处的微孔进入体循环的过程。
是脂溶性药物及一些经主动机制吸收药物的通道。
9药物通过生物膜的几种转运机制及特点:(一)、被动转运(passive transport)是指药物的膜转运服从浓度梯度扩散原理,即从高①.单纯扩散(passive diffusion) 又称脂溶扩散,脂溶性药物可溶于脂质而通过生物膜.绝大多数有机弱酸或有机弱碱药物在消化道内吸收.1)药物的油/水分配系数愈大,在脂质层的溶解愈大,就愈容易扩散。
1.药物代谢:药物被机体吸收后,在体内各种酶以及体液环境作用下,可发生一系列化学反应,导致药物化学结构上的转变。
2.相对生物利用度:又称比较生物利用度,是以其他非静脉途径给药的制剂为参比制剂获得的药物活性成分吸收进入体循环的相对量,是同一种药物不同制剂之间比较吸收程度和速度而得到的生物利用度。
3.肝肠循环:是指在胆汁中排泄的药物或其他代谢物在小肠中移动期间被吸收返回肝门静脉,并经肝脏重新进入全身循环,然后再分泌,直至最终从尿中排出的现象。
4.负荷剂量:为尽快达到有效治疗的目的,通常第一次给予一个较大的剂量。
使血药浓度达到有效治疗浓度,这个首次给予的剂量称为负荷剂量5.生物药剂学:研究药物及其剂型在体内吸收分布代谢和排泄过程。
阐明药物的剂型因素和机体生物因素和药物疗效之间相互关系的科学。
6.胃排空:胃内溶出物从胃幽门排入十二指肠的过程。
7.生物利用度:剂型中药物被吸收入机体的速度与程度。
8.清除率:机体在单位时间内能将多少毫升血浆中所含某种物质完全清除出去,这个被完全清除了某物质的血浆毫升数就称为该物质的清除率。
9.单室模型:是指药物在体内迅速达到平衡,即药物在全身各组织部位的转运速率相同或相似,此时把整个机体视为一个隔室,依次建立的药动学模型称为单室模型。
10.蓄积:当长期连续用药时,在机体的某些组织中的药物浓度有逐渐升高的趋势。
11.表观分布容积:用来描述药物在体内分布的程度,表示全血或血浆中药物浓度与体内药量的比例关系。
12.生物半衰期:药物在体内的药物量或血药浓度通过各种途径消耗一半所需要的时间。
13.首过效应:药物在消化道或肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原型药物量减少的现象。
14.药物的分布:是指药物从给药部位吸收进入血液后,由循环系统运送至各脏器、组织、体液和细胞的转运过程。
15.主动转运:借助载体或酶促系统的作用,药物从膜的低浓度侧向高浓度侧的吸收。
16.二室模型:该模型按照速度论的观点将机体划分为药物分布均匀程度不同的两个独立隔室,即中央室和外周室,且药物只从中央室消除。
生物药剂学与药物动力学
生物药剂学和药物动力学是药物研究领域中重要的学科。
它们研究药物在体内表观、
动力学特性及临床应用,为临床诊断和药物治疗提供科学依据。
生物药剂学是研究药物分布、代谢、排出及耐药性等生物学性质和表现在体内的过程
及机制,以及影响这些过程的因素的学科。
并且,在实际应用中,生物药剂学的目的是根
据药物的生物学性质,确定最理想的药物剂量和给药方式,以达到正确的治疗效果。
药物动力学是泛指对药物的表观动力学特征的研究,包括药物在给药后的吸收、分布、代谢和排出的确定及理解。
其中所涉及的知识点包括:药物与药物相互作用、药物代谢、
药物与体细胞表面相互作用、药物与体内酶系统之间的相互作用等。
在实际应用中,根据
药物动力学原理,以及临床给药方式的选择,来估计最理想的药物输出量,使药物达到最
佳的治疗效果。
生物药剂学和药物动力学之间有着千丝万缕的联系和协作。
在药物研究过程中,生物
学特性和表观特性在体内情况是构成一个有机整体的,而药物动力学则是用来描述生物学
特性(生物药剂学)和表观特性(药物动力学)表达在体内的动态变化过程的工具。
正是
借助于这种工具,我们才能更加深入地理解以药物靶点为基础的药物研发的过程,并将药
物的生物学特性和表观特性结合起来,更加有效地解决药物治疗中存在的问题。
生物药剂学和药物动力学生物药物学是研究生物制品的科学,包括生物药剂的研发、生产和应用。
生物制品包括基因工程药物、细胞治疗药物、基因治疗产品、蛋白质药物等。
生物药物学在药物开发和治疗上具有独特的优势,它能够针对特定的生物靶标,精准地调控细胞功能,对治疗一些慢性疾病和罕见病有很好的效果,具有良好的生物相容性,剂型多样化,可通过多种途径给药,没有毒性副作用等。
药物动力学是研究药物在体内的吸收、分布、代谢和排泄的科学,通过研究药物动力学,可以为新药的研发和临床用药提供参考。
在生物药物学和药物动力学中,不同的药物形式会在体内产生不同的影响,因此在药物开发和临床应用上,需要对药物的生物学特性有深入的了解。
下面将分别介绍生物药物学和药物动力学的概念、研究方法及重要意义。
一、生物药物学1.概念生物制品是指通过生物技术手段制备的药品,包括基因工程药物、细胞治疗药物、基因治疗产品、蛋白质药物等。
生物制品与化学制剂有所不同,具有很强的特异性,能精确调控机体生理功能,对某些难治疾病有良好的疗效。
2.研究方法生物药物学的研究方法主要包括体外细胞培养、动物模型研究、临床试验等。
在生物药物学的研究中,体外细胞培养是非常重要的一环,通过对细胞的培养和药物处理,可以初步评估药物对细胞的影响和作用机制。
动物模型研究是将生物药物在动物体内进行评价,评估其药效和毒性。
临床试验是生物药物研究的最终环节,通过人体试验来评价生物制品的疗效和安全性。
3.重要意义生物药物学的研究对于生物制品的研发和临床应用具有重要的意义。
对于一些难治疾病,如肿瘤、免疫性疾病、罕见病等,生物药物的研究可以为这些疾病的治疗提供新的思路和方法。
此外,生物药物学的发展也为医药产业带来了新的发展机遇,促进了新药的研发和创新。
二、药物动力学1.概念药物动力学是研究药物在体内吸收、分布、代谢和排泄的科学。
药物在体内的动力学过程决定了药物的疗效和毒性,对于药物的研发和临床应用具有重要的指导意义。
生物药剂学和药物动力学生物药剂学是研究生物药物的制备、质量控制以及药物的稳定性和递送系统的一门学科。
而药物动力学则是研究药物在体内的吸收、分布、代谢和排泄过程,以及药物在体内产生的效应和用药剂量与效果之间的关系。
在药物研发和药物治疗中,这两个学科起着重要的作用。
生物药剂学主要研究生物药物的制备工艺和质量控制,包括药物的纯化、表征、稳定性的评估以及药物制备过程中的工艺优化。
生物药物一般由生物反应器中的细胞或微生物通过发酵或其他方式制备得到。
这些生物药物一般较大并且复杂,制备过程可能会受到多种因素的干扰,导致产品的质量波动。
生物药剂学通过优化制备工艺,控制生物反应过程中的环境参数和营养条件,以及设计适合的分离和纯化工艺,来保证药物的质量稳定性。
另外,生物药剂学还研究药物的递送系统。
由于生物药物一般较大,肠道吸收效率较低,因此需要设计合适的递送系统来解决这个问题。
递送系统可以通过改变药物的药物形态、封装药物为纳米粒子或微胶囊,以及利用载体来提高药物在体内的吸收效率。
生物药剂学通过研究不同的递送系统,可以提高药物的生物利用度和治疗效果。
药物动力学主要研究药物在体内的吸收、分布、代谢和排泄过程,以及药物在体内产生的效应和用药剂量与效果之间的关系。
药物在体内的吸收一般发生在胃肠道中,吸收效率会受到多种因素的影响,比如药物的溶解度、生物利用度以及药物与胃肠道的相互作用。
药物在体内的分布可以受到多种因素的影响,比如药物的组织亲和性、蛋白结合率以及生理血流情况。
药物在体内的代谢和排泄主要发生在肝脏和肾脏,这些器官中的代谢酶和排泄通道会对药物的代谢和排泄过程产生重要影响。
药物动力学研究还包括药物在体内产生的效应和用药剂量与效果之间的关系。
药物在体内可以通过结合受体、抑制酶活性或调节生物化学过程来产生治疗效果。
药物动力学研究可以评估药物的药效和药物的剂量效应关系,指导临床用药的选择和用药剂量的调整。
生物药剂学和药物动力学在药物研发和药物治疗中起着非常重要的作用。
第十五、十六章生物药剂学和药物动力学一、A型题(最佳选择题)1、下列叙述错误的是A、生物药剂学是研究药物在体内的吸收、分布、代谢与排泄的机理及过程的边缘科学B、大多数药物通过被动扩散方式透过生物膜C、主动转运是一些生命必需的物质和有机酸、碱等弱电解质的离子型等,借助载体或酶促系统从低浓度区域向高浓度区域转运的过程D、被动扩散一些物质在细胞膜载体的帮助下,由高浓度向低浓度区域转运的过程E、细胞膜可以主动变形而将某些物质摄入细胞内或从细胞内释放到细胞外,称为胞饮2、不是药物通过生物膜转运机理的是A、主动转运B、促进扩散C、渗透作用D、胞饮作用E、被动扩散3、以下哪条不是被动扩散特征A、不消耗能量B、有部位特异性C、由高浓度区域向低浓度区域转运D、不需借助载体进行转运E、无饱和现象和竞争抑制现象4、以下哪条不是主动转运的特征A、消耗能量B、可与结构类似的物质发生竞争现象C、由低浓度向高浓度转运D、不需载体进行转运E、有饱和状态5、以下哪条不是促进扩散的特征A、不消耗能量B、有结构特异性要求C、由高浓度向低浓度转运D、不需载体进行转运E、有饱和状态6、关于胃肠道吸收下列哪些叙述是错误的A、当食物中含有较多脂肪,有时对溶解度特别小的药物能增加吸收量B、一些通过主动转运吸收的物质,饱腹服用吸收量增加C、一般情况下,弱碱性药物在胃中容易吸收D、当胃空速率增加时,多数药物吸收加快E、脂溶性,非离子型药物容易透国细胞膜7、药物剂型对药物胃肠道吸收影响因素不包括A、药物在胃肠道中的稳定性B、粒子大小C、多晶型D、解离常数E、胃排空速率8、影响药物胃肠道吸收的生理因素不包括A、胃肠液成分与性质B、胃肠道蠕动C、循环系统D、药物在胃肠道中的稳定性E、胃排空速率9、一般认为在口服剂型中药物吸收的大致顺序A、水溶液>混悬液>散剂>胶囊剂>片剂B、水溶液>混悬液>胶囊剂>散剂>片剂C、水溶液>散剂>混悬液>胶囊剂>片剂D、混悬液>水溶液>散剂>胶囊剂>片剂E、水溶液>混悬液>片剂>散剂>胶囊剂10、已知某药口服肝脏首过作用很大,改用肌肉注射后A、t1/2不变,生物利用度增加B、t1/2不变,生物利用度减少C、t1/2增加,生物利用度也增加D、t1/2减少,生物利用度也减少E、t1/2和生物利用度皆不变化11、某药物对组织亲和力很高,因此该药物A、表观分布容积大B、表观分布容积小C、半衰期长D、半衰期短E、吸收速率常数Ka大12、关于表观分布容积正确的描述A、体内含药物的真实容积B、体内药量与血药浓度的比值C、有生理学意义D、个体血容量E、给药剂量与t时间血药浓度的比值13、关于生物半衰期的叙述正确的是A、随血药浓度的下降而缩短B、随血药浓度的下降而延长C、正常人对某一药物的生物半衰期基本相似D、与病理状况无关E、生物半衰期与药物消除速度成正比14、测得利多卡因的生物半衰期为3.0h,则它的消除速率常数为A、1.5h-1B、1.0h-1C、0.46h-1D、0.23h-1E、0.15h-115、某药物的t1/2为1小时,有40%的原形药经肾排泄而消除,其余的受到生物转化,其生物转化速率常数Kb约为A、0.05小时-1B、0.78小时-1C、0.14小时-1D、0.99小时-1E、0.42小时-116、某药静脉注射经2个半衰期后,其体内药量为原来的A、1/2B、1/4C、1/8D、1/16E、1/3217、地高辛的半衰期为40.8h,在体内每天消除剩余量的百分之几A、35.88%B、40.76%C、66.52%D、29.41%E、87.67%18、假设药物消除符合一级动力学过程,问多少个t1/2药物消除99.9%A、4 t1/2B、6 t1/2C、8 t1/2D、10 t1/2E、12 t1/219、单室模型药物,单次静脉注射消除速度常数为0.2h-1,问清除该药99%需要多少时间A、12.5hB、23hC、26hD、46hE、6h20、一病人单次静脉注射某药物10mg,半小时血药浓度是多少μg/mL。
(已知t1/2=4h,V=60L)A、0.153B、0.225C、0.301D、0.458E、0.61021、单室模型药物,生物半衰期为6h,静脉输注达稳态血药浓度的95%需要多长时间A、12.5hB、25.9hC、30.5hD、50.2hE、40.3h22、缓控释制剂,人体生物利用度测定中采集血样时间至少应为A、1~2个半衰期B、3~5个半衰期C、5~7个半衰期D、7~9个半衰期E、10个半衰期23、以静脉注射为标准参比制剂求得的生物利用度A、绝对生物利用度B、相对生物利用度C、静脉生物利用度D、生物利用度E、参比生物利用度二、B型题(配伍选择题)][1—4]A、被动扩散B、主动转运C、促进扩散D、胞饮E、吸收1、大多数药物的吸收方式2、有载体的参加,有饱和现象,消耗能量3、有载体的参加,有饱和现象,不消耗能量4、细胞膜可以主动变形而将某些物质摄入细胞内[5—8]A、口服给药B、肺部吸入给药C、经皮全身给药D、静脉注射给药E、A、B和C5、有首过效应6、没有吸收过程7、控制释药8、起效速度同静脉注射[9—12]A、肠肝循环B、生物利用度C、生物半衰期D、表观分布容积E、单室模型9、药物在体内消除一半的时间10、药物在体内各组织器中迅速分布并迅速达到动态分布平衡11、药物随胆汁进入小肠后被小肠重新吸收的现象12、体内药量X与血药浓度C的比值[13—16]A、Cl=KVB、T1/2=0.693/KC、GFRD、V=X0/C0E、AUC13、生物半衰期14、曲线下的面积15、表观分布容积16、清除率[17—19]A、清除率B、表观分布容积C、双室模型D、单室模型E、多室模型17、反映肾功能的一个指标18、具有明确的生理学意义19、反映药物消除的快慢[20—23]A、单室单剂量血管外给药c—t 关系式B、单室单剂量静脉滴注给药c—t关系式C、单室单剂量静脉注射给药c—t关系式D、单室多剂量静脉注射给药c—t关系式E、多剂量函数20、C=C0e—kt21、C=kαFX0/V(kα-k)·(e—kt-e—kat)22、γ=(1-e—nkτ)/(1-e—kτ)23、C=k0/Kv(1- e—kτ)[24—27]A、消除速率常数KB、吸收速率常数KaC、多剂量函数D、A和BE、B和C24、Wagmer—Nelson法的公式可求25、单室模型单剂量静脉注射给药的尿药排泄速度法公式可求26、单室模型单剂量血管外给药的c—t关系式可求27、单室模型静脉滴注给药、停止滴注后的c—t关系式可求[28—31]A、F=(AUC0→∞)口服/(AUC0→∞)静注B、C=kαFX0/V(kα-k)·(e—kt-e—kat)C、C=k0/Kv(1- e—kτ)D、C=C0e—ktE、C = C0(1-e—nkτ)/(1-e—kτ)·e—kt28、表示单室模型、单剂量静脉滴注给药后的血药浓度变化规律29、表示单室模型,单剂量口服给药后的血药浓度变化规律30、表示单室模型,多剂量静脉注射给药后的血药浓度变化规律31、表示某口服制剂的绝对生物利用度三、X型题(多项选择题)1、下列叙述错误的是A、生物药剂学是研究药物吸收、分布、代谢与排泄的经时过程及其与药效之间关系的科学B、大多数药物通过这种方式透过生物膜,即高浓度向低浓度区域转运的过程称促进扩散C、主动转运是一些生命必需的物质和有机酸、碱等弱电解质的离子型等,借助载体或酶促系统从低浓度区域向高浓度区域转运的过程D、被动扩散一些物质在细胞膜载体的帮助下,由高浓度向低浓度区域转运的过程E、细胞膜可以主动变形而将某些物质摄入细胞内或从细胞内释放到细胞外,称为胞饮2、药物通过生物膜转运机理有A、主动转运B、促进扩散C、主动扩散D、胞饮作用E、被动扩散3、以下哪几条是被动扩散特征A、不消耗能量B、有部位特异性C、由高浓度区域向低浓度区域转运D、需借助载体进行转运E、无饱和现象和竞争抑制现象4、以下哪几条是主动转运的特征A、消耗能量B、可与结构类似的物质发生竞争现象C、由高浓度向低浓度转运D、不需载体进行转运E、有饱和状态5、核黄素属于主动转运而吸收的药物,因此,应该A、反后服用B、饭前服用C、大剂量一次性服用D、小剂量分次服用E、有肠肝循环现象6、关于胃肠道吸收下列哪些叙述是正确的A、大多数脂溶性药物以被动扩散为主要转运方式吸收B、一些生命必需的物质如氨基酸等的吸收通过主动转运来完成C、一般情况下,弱碱性药物在胃中容易吸收D、当胃空速率增加时,多数药物吸收加快E、脂溶性、离子型药物容易透过细胞膜7、药物理化性质对药物胃肠道吸收的影响因素是A、溶出速率B、粒度C、多晶型D、解离常数E、消除速率常数8、影响药物胃肠道吸收的生理因素A、药物的给药途径B、胃肠道蠕动C、循环系统D、药物在胃肠道中的稳定性E、胃排空速率9、下列有关生物利用度的描述正确的是A、反后服用维生素B2将使生物利用度提高B、无定形药物的生物利用度大于稳定型的生物利用度C、药物微粉化后都能增加生物利用度D、药物脂溶性越大,生物利用度越差E、药物水溶性越大,生物利用度越好10、下列有关药物表观分布容积地叙述中,叙述正确的是A、表观分布容积大,表明药物在血浆中浓度小B、表观分布容积表明药物在体内分布的实际容积C、表观分布容积有可能超过体液量D、表观分布容积的单位是升或升/千克E、表观分布容积具有生理学意义11、可完全避免肝脏首过效应的是A、舌下给药B、口服肠溶片C、静脉滴注给药D、栓剂直肠给药E、鼻黏膜给药12、关于药物动力学中用“速度法”从尿药数据求算药物动力学的有关参数的正确描述是A、至少有一部分药物从肾排泄而消除B、须采用中间时间t中来计算C、必须收集全部尿量(7个半衰期,不得有损失)D、误差因素比较敏感,试验数据波动大E、所需时间比“亏量法”短13、关于隔室模型的概念正确的有A、可用AIC法和拟合度法来判别隔室模型B、一室模型是指药物在机体内迅速分布,成为动态平衡的均一体C、是最常用的动力学模型D、一室模型中药物在各个器官和组织中的男均相等E、隔室概念比较抽象,有生理学和解剖学的直观性14、用于表达生物利用度的参数有A、AUCB、CLC、TmD、KE、Cm15、非线性动力学中两个最基本的参数是A、KB、VC、CLD、KmE、Vm16、关于生物利用度测定方法叙述正确的有A、采用双周期随机交叉试验设计B、洗净期为药物的3~5个半衰期C、整个采样时间至少7个半衰期D、多剂量给药计划要连续测定三天的峰浓度E、所用剂量不得超过临床最大剂量17、药物动力学模型的识别方法有A、图形法B、拟合度法C、AIC判断法D、F检验E、亏量法18、生物半衰期是指A、吸收一半所需的时间B、药效下降一半所需时间C、血药浓度下降一半所需时间D、体内药量减少一般所需时间E、与血浆蛋白结合一半所需时间19、影响达峰时间tm的药物动力学参数有A、KB、tmC、X0D、FE、Ka答案:一、A型题1、D2、C3、B4、D5、D6、C7、E8、D9、A 10、A 11、A 12、B 13、C 14、D 15、E 16、B 17、B 18、D 19、B 20、A 21、B 22、B 23、A二、B型题[1—4]ABCD [5—8]ADCB [9—12]CEAD [13—16]BEDA [17—19]AAA [20—23]CAEB [24—27]BADA [28—31]CBEA四、X型题1、ABD2、ABDE3、ACE4、ABE5、AD6、ABD7、ABCD8、BCE9、ABC 10、ACD 11、ACE 12、ABDE 13、AB 14、ACE 15、DE 16、AE 17、ABCD 18、CD 19、AE。