数字图像处理MATLAB程序【完整版】教学内容
- 格式:doc
- 大小:598.50 KB
- 文档页数:23
MATLAB图像处理与分析教学第一章:MATLAB基础知识与图像处理入门1.1 MATLAB简介与安装1.2 MATLAB界面及基本操作1.3 图像处理的基本概念和应用领域1.4 图像处理的基本流程1.5 MATLAB中的图像处理工具箱介绍第二章:图像的读取、显示与保存2.1 图像的读取与显示2.1.1 读取不同格式的图像文件2.1.2 调整图像显示的尺寸、亮度和对比度2.2 图像的保存与导出2.2.1 图像的保存为不同格式2.2.2 MATLAB图像数据与其他软件的数据交互第三章:灰度图像的处理与分析3.1 灰度图像的转换与显示3.1.1 灰度图像与彩色图像的相互转换3.1.2 灰度图像的直方图显示与均衡化3.2 灰度图像的滤波与增强3.2.1 均值滤波与中值滤波3.2.2 图像的边缘检测与锐化3.3 灰度图像的特征提取与分析3.3.1 图像的边缘检测与特征点提取3.3.2 灰度图像的纹理特征分析第四章:彩色图像的处理与分析4.1 彩色图像的基本特性与表示4.2 图像的颜色空间转换4.2.1 RGB色彩空间与其他常用色彩空间的相互转换4.2.2 色彩空间的调整与增强4.3 彩色图像的分割与目标提取4.3.1 基于颜色特征的图像分割4.3.2 彩色图像的目标提取与识别4.4 图像的融合与合成4.4.1 多幅图像融合与混合4.4.2 图像的合成与拼接第五章:图像处理算法与方法5.1 图像的数学形态学处理5.1.1 膨胀、腐蚀与空洞填充5.1.2 开运算与闭运算5.2 非线性滤波与图像分割5.2.1 均值滤波与中值滤波的改进算法5.2.2 基于阈值的图像分割方法5.3 图像的变换与重建5.3.1 图像的傅里叶变换与频谱分析5.3.2 图像的小波变换与多分辨率分析5.4 图像的分类与识别5.4.1 基于特征向量的图像分类方法5.4.2 基于机器学习的图像识别算法第六章:实例应用与案例分析6.1 图像处理在医学影像中的应用6.2 图像处理在智能交通中的应用6.3 图像处理在工业检测与质量控制中的应用6.4 图像处理在农业与农村发展中的应用6.5 图像处理在文化遗产保护中的应用6.6 图像处理在安全监控与图像搜索中的应用总结:本教学涵盖了MATLAB图像处理与分析的基础知识和常用方法,并结合实例应用与案例分析加深学习者对图像处理的理解和应用能力。
M A T L A B课程设计-图像处理完整版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANMATLAB课程设计设计题目:应用图像处理班级:学号:姓名:指导老师:设计时间:2013年4月8号-4月14号摘要21世纪是一个充满信息的时代,图像作为人类感知世界的视觉基础,是人类获取信息、表达信息和传递信息的重要手段。
图像处理,是用计算机对图像进行分析,以达到所需结果的技术。
又称影像处理。
基本内容图像处理一般指数字图像处理。
数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。
图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。
常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。
图像处理一般指数字图像处理。
所谓数字图像处理[7]就是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为。
实质上是一段能够被计算机还原显示和输出为一幅图像的数字码。
关键词:DCT变换;图像压缩;真色彩增强;平滑;锐化;直方图均衡;灰度变换;滤波;M文件的使用目录摘要 (I)1 概述 (II)2 课程设计任务及要求 (III)2.1.1设计任务2.1.2设计要求3 系统设计原理 (Ⅳ)3.1 DCT图像压缩原理3.2 真彩色增强3.2.1平滑3.2.2锐化3.3 灰度变换(直方图均衡化)3.4 图像滤波3.4.1中值滤波器3.4.2维纳滤波器4 程序代码及实验结果与分析 (Ⅵ)4.1 DCT图像压缩4.1.1程序代码4.1.2实验结果4.1.3结果分析4.2 真彩色增强4.2.1平滑程序代码4.2.2实验结果4.2.3结果分析4.2.4锐化程序代码4.2.5实验结果4.2.6结果分析4.3 灰度变换(直方图均衡化)4.3.1程序代码4.3.2实验结果4.3.3结果分析4.4 图像滤波4.4.1程序代码4.4.2实验结果4.4.3结果分析5 收获体会 (Ⅶ)6 参考文献 (Ⅷ)概述MATLAB作为一种矩阵语言,进行数字图像处理是非常方便的。
第一部分数字图像处理实验一图像的点运算实验1.1直方图一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备1.PC机一台;2.软件matlab。
三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif’);%读取图像subplot(1,2,1),imshow(I) %输出图像title(’原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1。
启动matlab双击桌面matlab图标启动matlab环境;2。
在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察图像matlab环境下的直方图分布.(a)原始图像(b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码;2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。
实验1.2 灰度均衡一.实验目的1.熟悉matlab图像处理工具箱中灰度均衡函数的使用;2.理解和掌握灰度均衡原理和实现方法;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像.I=imread('cameraman.tif’);%读取图像subplot(2,2,1),imshow(I) %输出图像title(’原始图像’) %在原始图像中加标题subplot(2,2,3),imhist(I) %输出原图直方图title(’原始图像直方图’) %在原图直方图上加标题a=histeq(I,256); %直方图均衡化,灰度级为256subplot(2,2,2),imshow(a) %输出均衡化后图像title(’均衡化后图像’) %在均衡化后图像中加标题subplot(2,2,4),imhist(a) %输出均衡化后直方图title('均衡化后图像直方图’)%在均衡化后直方图上加标题四.实验步骤1。
matlab数字图像课程设计一、教学目标本课程的教学目标是使学生掌握MATLAB在数字图像处理方面的基本理论和应用技能。
通过本课程的学习,学生应能理解数字图像处理的基本概念,熟练使用MATLAB进行数字图像的处理和分析。
具体来说,知识目标包括:1.掌握数字图像处理的基本概念和原理。
2.了解数字图像处理的基本算法和应用。
3.熟悉MATLAB数字图像处理工具箱的使用。
技能目标包括:1.能够使用MATLAB进行数字图像的基本处理,如图像读取、显示、转换等。
2.能够运用MATLAB实现数字图像的增强、滤波、边缘检测等算法。
3.能够利用MATLAB进行数字图像处理的实际应用,如图像分割、特征提取等。
情感态度价值观目标包括:1.培养学生的创新意识和实践能力,使他们能够运用所学知识解决实际问题。
2.培养学生团队合作精神,提高他们的问题解决能力。
3.培养学生对科学研究的兴趣和热情,提高他们的学术素养。
二、教学内容本课程的教学内容主要包括MATLAB的基本操作、数字图像处理的基本概念和算法,以及MATLAB在数字图像处理方面的应用。
具体来说,教学大纲如下:1.MATLAB基本操作:包括MATLAB的安装和界面熟悉,基本语法和函数的使用。
2.数字图像处理基本概念:包括数字图像的定义、表示方法和基本属性。
3.数字图像处理基本算法:包括图像增强、滤波、边缘检测等算法的学习和实现。
4.MATLAB数字图像处理应用:包括图像分割、特征提取等实际应用案例的分析和解题方法。
三、教学方法本课程采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等,以激发学生的学习兴趣和主动性。
具体来说,教学方法如下:1.讲授法:通过讲解和演示,使学生掌握MATLAB的基本操作和数字图像处理的基本概念。
2.讨论法:通过小组讨论和问题解答,培养学生的思考和问题解决能力。
3.案例分析法:通过分析实际案例,使学生掌握数字图像处理的基本算法和应用。
4.实验法:通过实验操作,使学生熟练使用MATLAB进行数字图像处理的应用。
数字图像处理matlab课程设计一、课程目标知识目标:1. 理解数字图像处理的基本概念,掌握图像的表示和存储方式;2. 学会使用MATLAB软件进行数字图像处理,掌握相关函数和工具箱的使用方法;3. 掌握图像增强、滤波、边缘检测等基本图像处理技术;4. 了解图像分割、特征提取等高级图像处理技术。
技能目标:1. 能够运用MATLAB进行图像读取、显示和保存操作;2. 能够独立完成图像的增强、滤波等基本处理操作;3. 能够运用边缘检测算法对图像进行处理,提取关键特征;4. 能够根据实际需求选择合适的图像处理技术,解决实际问题。
情感态度价值观目标:1. 培养学生对数字图像处理技术的兴趣,激发其学习热情;2. 培养学生的团队合作意识,使其学会在团队中分享和交流;3. 培养学生严谨的科学态度,使其注重实验数据的真实性;4. 培养学生的创新思维,鼓励其探索新方法,提高解决问题的能力。
本课程旨在通过数字图像处理MATLAB课程设计,使学生在掌握基本理论知识的基础上,运用MATLAB软件进行图像处理实践。
课程注重理论与实践相结合,培养学生具备实际操作能力,并能运用所学知识解决实际问题。
针对学生的年级特点,课程目标既注重知识技能的传授,又关注情感态度价值观的培养,为学生今后的学习和工作奠定基础。
二、教学内容1. 数字图像处理基础- 图像表示与存储(RGB、灰度、二值图像)- 图像类型转换- MATLAB图像处理工具箱介绍2. 图像增强- 直方图均衡化- 伽玛校正- 图像锐化3. 图像滤波- 均值滤波- 中值滤波- 高斯滤波- 双边滤波4. 边缘检测- 索贝尔算子- 拉普拉斯算子- Canny边缘检测5. 图像分割- 阈值分割- 区域生长- 分水岭算法6. 特征提取与描述- 霍夫变换- SIFT算法- ORB算法教学内容根据课程目标进行选择和组织,注重科学性和系统性。
教学大纲明确分为六个部分,分别对应数字图像处理的基础知识、图像增强、滤波、边缘检测、图像分割和特征提取与描述。
第一部分数字图像处理实验一图像的点运算实验1.1 直方图一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备1.PC机一台;2.软件matlab。
三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察图像matlab环境下的直方图分布。
(a)原始图像 (b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码;2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。
实验1.2 灰度均衡一.实验目的1.熟悉matlab图像处理工具箱中灰度均衡函数的使用;2.理解和掌握灰度均衡原理和实现方法;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(2,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(2,2,3),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题a=histeq(I,256); %直方图均衡化,灰度级为256subplot(2,2,2),imshow(a) %输出均衡化后图像title('均衡化后图像') %在均衡化后图像中加标题subplot(2,2,4),imhist(a) %输出均衡化后直方图title('均衡化后图像直方图') %在均衡化后直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
目录实验一MATLAB数字图像处理初步 (2)实验二图像的代数运算 (6)实验三图像增强—灰度变换 (9)实验四图像增强—直方图变换 (11)实验五图像增强—空域滤波 (13)实验六图像的傅立叶变换 (17)实验七图像增强—频域滤波 (19)实验八彩色图像处理 (21)实验九图像分割 (24)实验十形态学运算 (27)实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。
2.熟练掌握在MATLAB中如何读取图像。
3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。
4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。
5.图像间如何转化。
二、实验内容及步骤1.利用imread( )函数读取一幅图像,假设其名为flower.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg 文件,设为flower.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flower.bmp。
7.用imread()读入图像:Lenna.jpg 和camema.jpg;8.用imfinfo()获取图像Lenna.jpg和camema.jpg 的大小;9.用figure,imshow()分别将Lenna.jpg和camema.jpg显示出来,观察两幅图像的质量。
10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
11.将每一步的函数执行语句拷贝下来,写入实验报告,并且将得到第3、9、10步得到的图像效果拷贝下来三、考核要点1、熟悉在MATLAB中如何读入图像、如何获取图像文件的相关信息、如何显示图像及保存图像等,熟悉相关的处理函数。
图像处理matlab的课程设计一、教学目标本课程的教学目标是使学生掌握图像处理的基本原理和方法,能够使用MATLAB软件进行图像处理和分析。
具体目标如下:1.了解图像处理的基本概念和常用算法。
2.掌握MATLAB图像处理工具箱的使用。
3.理解图像处理在实际应用中的重要性。
4.能够使用MATLAB进行图像读取、显示和保存。
5.能够使用MATLAB进行图像滤波、边缘检测、图像增强等基本操作。
6.能够运用所学知识解决实际图像处理问题。
情感态度价值观目标:1.培养学生的创新意识和实践能力。
2.培养学生的团队合作精神和沟通协调能力。
3.培养学生的科学思维和解决问题的能力。
二、教学内容根据课程目标,教学内容主要包括以下几个方面:1.图像处理基本概念:图像的定义、图像的表示、图像的属性等。
2.MATLAB图像处理工具箱:MATLAB图像处理工具箱的介绍、常用函数和工具的使用方法等。
3.图像处理基本算法:图像滤波、边缘检测、图像增强、图像分割等。
4.图像处理应用案例:图像处理在实际应用中的案例分析,如医学影像处理、工业检测等。
三、教学方法为了达到课程目标,将采用多种教学方法相结合的方式进行教学。
包括:1.讲授法:通过讲解图像处理的基本概念和原理,使学生掌握基本知识。
2.案例分析法:通过分析实际图像处理案例,使学生了解图像处理的应用和实际意义。
3.实验法:通过实验操作,使学生掌握MATLAB图像处理工具箱的使用和基本算法。
4.讨论法:通过小组讨论和交流,促进学生思考和解决问题,培养团队合作精神。
四、教学资源为了支持教学内容和教学方法的实施,将准备以下教学资源:1.教材:《图像处理matlab教程》等。
2.参考书:《数字图像处理》、《MATLAB图像处理》等。
3.多媒体资料:PPT课件、实验演示视频等。
4.实验设备:计算机、MATLAB软件、图像处理相关硬件设备等。
通过以上教学资源的支持,将能够丰富学生的学习体验,提高学生的学习效果。
数字图像处理matlab课程设计一、教学目标本课程的教学目标是使学生掌握数字图像处理的基本理论和方法,学会使用MATLAB软件进行图像处理和分析。
通过本课程的学习,学生应达到以下具体目标:1.理解数字图像处理的基本概念、原理和算法。
2.熟悉MATLAB图像处理工具箱的使用。
3.能够运用数字图像处理的基本算法解决实际问题。
4.能够使用MATLAB进行图像处理和分析,撰写相关的程序代码。
情感态度价值观目标:1.培养学生的创新意识和团队协作精神。
2.培养学生对数字图像处理技术的兴趣,提高其综合素质。
二、教学内容根据课程目标,本课程的教学内容主要包括以下几个部分:1.数字图像处理基本概念:图像处理的基本概念、图像数字化、图像表示和图像变换。
2.图像增强和复原:图像增强、图像去噪、图像复原。
3.图像分割和描述:图像分割、图像特征提取和描述。
4.图像形态学:形态学基本运算、形态学滤波、形态学重建。
5.MATLAB图像处理工具箱的使用:MATLAB图像处理工具箱的基本功能、常用图像处理函数。
6.图像处理实例分析:结合实际案例,分析数字图像处理技术的应用。
三、教学方法为了实现课程目标,本课程将采用以下教学方法:1.讲授法:通过讲解图像处理的基本概念、原理和算法,使学生掌握图像处理的基本知识。
2.案例分析法:通过分析实际案例,使学生了解数字图像处理技术在实际中的应用。
3.实验法:通过上机实验,使学生熟练掌握MATLAB图像处理工具箱的使用,提高学生的实际操作能力。
4.讨论法:学生进行课堂讨论,激发学生的思维,培养学生的创新意识和团队协作精神。
四、教学资源为了支持教学内容和教学方法的实施,本课程将采用以下教学资源:1.教材:《数字图像处理(MATLAB版)》。
2.参考书:相关领域的经典教材和论文。
3.多媒体资料:教学PPT、视频教程等。
4.实验设备:计算机、MATLAB软件、图像处理相关硬件设备。
五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。
数字图像处理M A T L A B 程序【完整版】第一部分数字图像处理实验一图像的点运算实验1.1 直方图一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备1.PC机一台;2.软件matlab。
三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察图像matlab环境下的直方图分布。
(a)原始图像 (b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码;2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。
实验1.2 灰度均衡一.实验目的1.熟悉matlab图像处理工具箱中灰度均衡函数的使用;2.理解和掌握灰度均衡原理和实现方法;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(2,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(2,2,3),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题a=histeq(I,256); %直方图均衡化,灰度级为256subplot(2,2,2),imshow(a) %输出均衡化后图像title('均衡化后图像') %在均衡化后图像中加标题subplot(2,2,4),imhist(a) %输出均衡化后直方图title('均衡化后图像直方图') %在均衡化后直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的灰度均衡函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察matlab环境下图像灰度均衡结果及直方图分布。
(a)原始图像 (b)均衡化后图像(c)原始图像直方图 (d)均衡化后图像直方图六.实验报告要求1、给出实验原理过程及实现代码;2、输入一幅灰度图像,给出其灰度均衡结果,并进行灰度均衡化前后图像直方图分布对比分析。
实验二图像滤波实验2.1 3*3均值滤波一.实验目的1.熟悉matlab图像处理工具箱及均值滤波函数的使用;2.理解和掌握3*3均值滤波的方法和应用;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用图像增强(均值滤波)函数,设置相关参数,再输出处理后的图像。
I = imread('cameraman.tif');figure,imshow(I);J=filter2(fspecial(‘average’,3),I)/255;figure,imshow(J);四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的图像增强(均值滤波)函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察matlab环境下原始图像经3*3均值滤波处理后的结果。
(a)原始图像 (b)3*3均值滤波处理后的图像图(3)六.实验报告要求输入一幅灰度图像,给出其图像经3*3均值滤波处理后的结果,然后对每一点的灰度值和它周围24个点,一共25个点的灰度值进行均值滤波,看看对25个点取均值与对9个点取中值进行均值滤波有什么区别?有没有其他的算法可以改进滤波效果。
实验2.2 3*3中值滤波一.实验目的1.熟悉matlab图像处理工具箱及中值滤波函数的使用;2.理解和掌握中值滤波的方法和应用;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用图像增强(中值滤波)函数,设置相关参数,再输出处理后的图像。
I = imread('cameraman.tif');figure,imshow(I);J=medfilt2(I,[5,5]);figure,imshow(J);四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的图像增强(中值滤波)函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察matlab环境下原始图像经3*3中值滤波处理后的结果。
(a)原始图像 (b)3*3中值滤波处理后的图像图(4)六.实验报告要求输入一幅灰度图像,给出其图像经3*3中值滤波处理后的结果,然后对每一点的灰度值和它周围24个点,一共25个点的灰度值进行排序后取中值,然后该点的灰度值取中值。
看看对25个点取中值与对9个点取中值进行中值滤波有什么区别?实验三图像几何变换实验3.1 图像的缩放一.实验目的1.熟悉matlab图像处理工具箱及图像缩放函数的使用;2.掌握图像缩放的方法和应用;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用图像缩放函数,设置相关参数,再输出处理后的图像。
I = imread('cameraman.tif');figure,imshow(I);scale = 0.5;J = imresize(I,scale);figure,imshow(J);四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的图像缩放函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察matlab环境下图像缩放后的结果。
(a)原始图像 (b)缩放后的图像图(5)六.实验报告要求输入一幅灰度图像,给出其图像缩放后的结果,然后改变缩放比率,观察图像缩放后结果柄进行分析。
实验3.2 图像旋转一.实验目的1.熟悉matlab图像处理工具箱及图像旋转函数的使用;2.理解和掌握图像旋转的方法和应用;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用图像旋转函数,设置相关参数,再输出处理后的图像。
I = imread('cameraman.tif');figure,imshow(I);theta = 30;K = imrotate(I,theta); % Try varying the angle, theta.figure, imshow(K)四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的图像旋转函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察matlab环境下图像旋转后的结果。
(a)原始图像 (b)旋转后的图像图(7)六.实验报告要求输入一幅灰度图像,给出其图像旋转后的结果,然后改变旋转角度,观察图像旋转后结果柄进行分析。
实验四图像边缘检测实验4.1 边缘检测(Sobel、Prewitt、Log边缘算子)一.实验目的1.熟悉matlab图像处理工具箱及图像边缘检测函数的使用;2.理解和掌握图像边缘检测(Sobel、Prewitt、Log边缘算子)的方法和应用;二.实验设备1.PC机一台;2.软件matlab;三.程序设计在matlab环境中,程序首先读取图像,然后调用图像边缘检测(Sobel、Prewitt、Log边缘算子)函数,设置相关参数,再输出处理后的图像。
I = imread('cameraman.tif');J1=edge(I,'sobel');J2=edge(I,'prewitt');J3=edge(I,'log');subplot(1,4,1),imshow(I);subplot(1,4,2),imshow(J1);subplot(1,4,3),imshow(J2);subplot(1,4,4),imshow(J3);四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的边缘检测(Sobel边缘算子、Prewitt边缘算子、Log边缘算子)函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果观察经过图像边缘检测(Sobel、Prewitt、Log边缘算子)处理后的结果。