诱人的肠道微生物与大脑之间的联系(Nature:译文在后)
- 格式:docx
- 大小:365.76 KB
- 文档页数:11
危重病人由于各种病因造成吸收障碍或无法正常摄食,而同时机体又处于高代谢状态而造成摄入无法满足需求的矛盾,从而导致营养不良,研究已经公认营养不良会严重影响预后,使并发症和死亡率明显上升。
人类从20世纪抗生素时代走向21世纪微生物制剂时代,医学对肠道菌群和免疫系统的认识发生了一场革命。
对肠道微生态和黏膜屏障的维护,将成为最新进展的领域。
倍于人体的细胞数,约有15000-36000种细菌,每一宿主500-1500种细菌,可培养得结果者仅30%,人体细菌的基因数约为3.3m i l l i o n,150倍于人体的基因数。
肠道菌群如此庞大,与人体得交互关系如此复杂,关于肠道菌群仍有诸多悬而未解得难题。
很多科学家将其称为人体的另一个器官,甚至“另一个你”。
组成“另一个你”的细菌的数量,比组成“你”的细胞数量,还要多!3.调节你的生理:正常菌群,促进肠壁细胞的生长和更替,还能促进分泌更多的消化酶;调节肠黏膜的生长,让受损的肠黏膜更快的得到修复;肠道菌群能产生类胡萝卜素类物质,降低动脉硬化和中风的风险;能通过跟淋巴系统谈判,降低对食物的过敏反应;肠道菌群能根据它对食物的喜好,调节你的生理和心理状态。
∙它们将能在摄入后改善其在肠道中的功能,并提升其在产品中的存活性。
菌株必须安全。
∙∙因此菌株必须通过适当的分子技术鉴定,菌株必须具有临床证明的健康益处。
∙∙菌株应能耐酸耐胆汁。
∙∙菌株应具有良好的技术特性,比如能够在最终消费品中存活,无论是食品或膳食补充剂,并且为中性,或者有利于提升食品的味道确立益生菌菌株的真实品质和价值的唯一可靠方法,是通过系统的体外和体内研究,特别是人体临床试验。
∙∙权威机构许可认证。
∙有问题加微信个人号rdm155********。
肠道菌群失调与疾病的关系肠道菌群是人类消化系统内微生物的总称,主要居住在人体的肠道中。
它们所起的作用十分重要,不只与肠道的健康有关,还与人类的身体健康息息相关。
而肠道菌群失调是指这些微生物因为外界因素,环境改变等原因而失去平衡的状态。
科学研究发现,肠道菌群失调与许多疾病的发生直接相关。
本篇文章将探讨肠道菌群失调与疾病的关系。
一. 肠道菌群失调如何形成肠道菌群的失衡现象是由不良的生活方式和不良的饮食习惯造成的。
这些不良的生活方式和饮食习惯会破坏肠道菌群的平衡,导致一系列健康问题。
以下是造成肠道菌群失调的常见因素:1.抗生素的滥用:抗生素是一种能够较快地杀死细菌和微生物的药物,抗生素的使用可以有效地治疗许多细菌感染。
但是,它也会摧毁肠道菌群中的一部分微生物,使其暴露在有害物质和外部細菌侵害的危险之中。
2.人工甜味剂:人造甜味剂,如阿斯巴甜和蔗糖醇等,可以抑制有益菌的生长,并刺激有害菌的生长,从而破坏肠道菌群的平衡。
3.过剩的糖分:含糖量高的食物,如糖果,果汁饮料和甜点,可能在肠道中培养有害菌,并破坏有益菌的平衡。
4.缺乏运动:身体缺乏运动,肠道环境会变得缺氧,导致有害菌生长,破坏本来健康的肠道菌群平衡。
二. 肠道菌群失调与疾病的关系1.肠道菌群失调和消化系统疾病的关系肠道菌群失调是造成消化系统疾病的重要原因。
消化系统疾病包括胃酸反流症、慢性便秘、肠易激综合症等,研究表明,这些疾病至少与肠道菌群的失落有关。
肠道菌群失调会导致胃肠道的活动受到影响,胃酸反流会因此而发生。
此外,缺乏肠道菌群的食品可以导致通常消化良好的食品消化不良,因此引起便秘,肠道过敏和肠球菌过多生长。
2.肠道菌群失调和代谢综合症的关系代谢综合症(Metabolic Syndrome)是一种包括肥胖、高血糖、高血压和高胆固醇四种症状的综合症,它往往导致一系列严重的健康问题,如心血管疾病和二型糖尿病。
最近的研究表明,肠道菌群失调与代谢综合症之间存在着联系。
论文蛋白质表达与肠道菌群的相互作用研究在过去的几十年中,人们对人体内肠道菌群的研究取得了重大进展。
肠道菌群是指人体消化系统内生活的各种微生物的群落,包括细菌、真菌和其他微生物。
这些微生物与人体之间存在着紧密的相互作用,其中一个重要的研究方向是它们与蛋白质表达之间的关系。
一、肠道菌群对蛋白质表达的调控研究发现,肠道菌群可以通过多种方式调控宿主的蛋白质表达。
首先,它们可以通过分泌代谢产物来影响宿主的基因表达。
这些代谢产物可以通过改变宿主细胞内的信号转导通路以及转录因子的活性,从而影响蛋白质的合成和降解过程。
例如,一些肠道细菌产生的短链脂肪酸可以激活宿主细胞内的蛋白激酶,进而调节蛋白质合成和降解的速率。
其次,肠道菌群可以通过改变宿主的免疫系统来调控蛋白质表达。
肠道菌群与免疫系统之间存在着密切的联系,它们可以通过影响宿主免疫细胞的分化和功能,调节宿主对外界环境的应答。
免疫系统对蛋白质表达具有重要影响,它可以通过抗原呈递和细胞因子分泌等方式来调节蛋白质的合成和降解过程。
最后,肠道菌群还可以通过改变宿主的营养代谢来调控蛋白质表达。
一些肠道细菌具有产生酶的能力,它们可以分解食物中的蛋白质,使其更容易被宿主吸收和利用。
此外,一些肠道细菌可以合成维生素和氨基酸等营养物质,这些物质在蛋白质合成过程中扮演着重要角色。
二、蛋白质表达对肠道菌群的影响与此同时,蛋白质表达也可以影响肠道菌群的组成和功能。
研究发现,宿主的蛋白质摄入量和蛋白质合成速率可以影响肠道菌群的多样性和数量。
高蛋白饮食可以提高一些肠道菌群的相对丰度,而低蛋白饮食则可以降低它们的相对丰度。
此外,一些蛋白质可以作为肠道菌群的营养源,它们可以促进某些肠道菌群的生长和繁殖。
蛋白质表达还可以通过改变肠道菌群的代谢产物来影响它们的功能。
宿主的蛋白质合成过程中产生的一些代谢产物(如尿素)可以被肠道菌群利用为营养源,它们可以通过代谢这些物质来生产能量和其他生物活性物质。
微生物对人类的健康究竟有多大的作用?一、微生物在人体中存在的重要性微生物在人体中长期存在且与人体密切相关,极大地影响了人体的健康。
人体内的微生物有三类:益生菌、中性微生物和病原微生物。
益生菌与人体无害共存,如肠道细菌群等;中性微生物与人体无明显的关系,如皮肤上的细菌;病原微生物容易引起感染病,如流感病毒、肺结核杆菌等。
其中一类值得注意的是益生菌。
二、益生菌对人类健康的影响1.促进肠道健康肠道是人体最大的微生物群落的栖息地,消化道内共生着最多的微生物。
通过与肠道微生物的共生,益生菌不仅可以促进肠道消化吸收,提高免疫力,还可以调节体内菌群平衡,预防毒素吸收,保障肠道健康。
2.提高免疫力益生菌不仅可以调节人体免疫细胞的数量和活性,增强免疫力,还可以刺激由肠道粘膜诱导的免疫反应,防止感染性疾病的发生和发展。
同时,更加深入的科研证实了部分自身免疫性疾病如丙型肝炎、乙型肝炎、哮喘、哮喘过敏性鼻炎等均可受到益生菌的调节。
3.减轻肠胃不适很多人伴有肠胃不适的体验,如腹泻、便秘、腹胀等。
不过,这些肠胃不适循证医学研究证实,都可以明显缓解。
特别是肠道疾病,如克罗恩氏病、溃疡性结肠炎和肠易激综合症,通过食用多种益生菌,有明显的改善。
三、病原微生物对人类健康的危害病原微生物与人类的健康安全相对立,危害人体健康。
常见的病原微生物包括细菌,病毒,真菌和寄生虫。
细菌是最常见的病原微生物,如金黄色葡萄球菌,链球菌,腺病毒等。
对于细菌来说,除了致病菌,普通菌也可能引起疾病。
例如,金黄色葡萄球菌常引发急性环境湿疹;但若在创面上感染,在结缔组织和肝脓肿等部位亦可造成严重的并发症。
此外,真菌也常引起疾病,如肺曲霉菌感染,酿酒酵母致病等。
四、总结微生物在人体中的作用十分重要,益生菌对人体有很多的益处,可以促进肠道健康,提高免疫力,减轻肠胃不适,而病原菌则可能引发多种疾病,包括感冒、肺炎等。
人们应该充分认识微生物对健康的重要性,多从日常饮食中补充益生菌,采取合理预防措施,切实维护身体健康。
微生物群落与肠道代谢功能关联网络解析随着微生物组学研究的不断深入,人们对于肠道微生物群落与肠道代谢功能之间的关联关系也有了更深入的理解。
肠道微生物群落是指人体肠道内共生的微生物群落,包括细菌、真菌、病毒等微生物。
这些微生物在人体内起着重要的作用,对于消化吸收、免疫调节、维持肠道屏障功能等都有显著影响。
而肠道代谢功能则是指微生物群落与宿主间通过代谢物传递交流所产生的功能,如有益代谢物的合成、营养物质的利用以及有害物质的降解。
肠道微生物群落与肠道代谢功能之间的关系是相互影响、相互作用的。
微生物可以通过参与肠道代谢功能来维持肠道环境的稳定和功能的正常运行。
同样,肠道代谢功能的调节也可以影响微生物群落的组成和功能。
这种相互关系形成了一个复杂的网络,被称为微生物群落与肠道代谢功能关联网络。
首先,微生物群落的组成可以影响肠道代谢功能的稳定性。
研究表明,微生物群落的失衡与多种代谢性疾病的发生有关。
例如,肥胖、2型糖尿病、肠道炎症性疾病等都与微生物群落的失调有关。
微生物群落的改变会导致代谢物的紊乱,如脂肪酸、氨基酸、胆固醇等的代谢异常,从而进一步影响宿主的代谢功能。
其次,微生物群落通过代谢产物的合成来影响肠道代谢功能。
微生物具有丰富的代谢功能,可以合成多种有益物质,如维生素、胆汁酸等。
这些代谢产物能够影响宿主的生理功能和代谢状态。
例如,维生素B和K的合成依赖于肠道微生物群落,缺乏这些维生素的宿主可能会出现相关疾病。
另外,微生物合成的胆汁酸可以影响宿主的胆固醇代谢,进而调节脂质代谢的平衡。
此外,微生物群落还通过对营养物质的利用来影响肠道代谢功能。
微生物能够分解和利用宿主摄入的复杂碳水化合物、蛋白质和脂肪等营养物质。
这些代谢产物不仅可以提供能量供应,还可以影响宿主的胰岛素敏感性和葡萄糖代谢等重要代谢过程。
微生物对于纤维素的降解也能够产生短链脂肪酸,如丙酸、丁酸等,这些短链脂肪酸具有抗炎、抗肿瘤等多种保健功能。
最后,肠道代谢功能的调节也可以影响微生物群落的组成和功能。
肠道微生物与甘油磷脂代谢
其次,肠道微生物可以影响宿主机体内甘油磷脂的合成和降解
途径。
一些研究发现,肠道微生物可以影响宿主机体内甘油磷脂的
合成途径,从而改变宿主机体内甘油磷脂的含量和分布。
此外,肠
道微生物还可以通过影响宿主机体内的甘油磷脂降解途径,调节宿
主机体内甘油磷脂的代谢和利用。
另外,肠道微生物可以影响宿主机体内甘油磷脂的代谢产物。
研究发现,肠道微生物可以影响宿主机体内甘油磷脂的代谢产物,
如磷脂酰胆碱和磷脂酰肌醇等物质的含量和分布。
这些代谢产物对
宿主机体内的生理功能具有重要影响,如影响神经传导、细胞信号
传导等。
综上所述,肠道微生物与甘油磷脂代谢之间存在着密切的关联,肠道微生物可以通过多种途径影响宿主机体内甘油磷脂的合成、降
解和代谢产物,从而调节宿主机体内甘油磷脂的代谢平衡和生理功能。
这一领域的研究对于深入理解肠道微生物与宿主机体代谢的相
互作用,以及相关疾病的发病机制具有重要意义。
Nature:宏基因组关联分析综述——你想要的全在这本文转载自“锐翌基因”,已获授权。
Nature于去年7月6日紧随Science4月29日的特刊,推出业内顶级专家主笔的6篇有关“肠道菌群-宿主相互作用”的重量级综述和观点透视专辑,提供了肠道菌群在多个领域的和临床应用发展中的重要进展。
本期专辑的推出,为肠道菌群和肠道健康的研究和转化再一次摇旗呐喊。
宏基因组关联分析(MWAS)作为微生物组研究的一把利器,正在微生物与疾病研究中发挥越来越重要的作用。
今天小锐说事儿便跟大家聊聊6篇雄文中的一篇来自微生物研究领域大牛Jack A. Gilbert(美国环境、医院和家庭微生物组计划发起人,点击名字查看教授简介)主笔的综述文章,有关宏基因组关联分析在疾病领域的研究进展。
文章主旨本综述总结了疾病相关生物学过程中微生物的作用,并详细介绍了宏基因组关联分析(MWAS)方法以及它在关联微生物与疾病表型中的研究成果。
MWAS与GWAS的异同点从概念上来说,宏基因组关联分析(MWAS)与全基因组关联分析(GWAS)的确有共同点,都是将某些复杂的特征(比如物种或基因)与表型关联起来。
但是,这两者之间存在以下几个非常重要的区别:第一,微生物中的基因数量与人的基因数量比值接近100:1;第二,几乎所有的个体都具有相同的基因,但所携带的微生物种类和基因差异巨大;第三,人体的基因表达量很容易计算,而大部分微生物组数据只能通过相对丰度进行量化。
因此,微生物组分析很有难度;第四,人体基因组是不会改变的(除癌症等特殊情况),而个体所携带的微生物组在不断变化。
快速了解MWAS1.MWAS能够将物种注释到种水平,对基因进行预测及功能注释,另外还有少部分转录本和蛋白相关的分析。
2.宏基因组测序和组装为确保样品间的比较有意义,首先应保证足够测序数据量,因为被检测到的基因数会随着测序数据量的增加而增加,直到饱和。
与从肠粘膜、口腔、皮肤、阴道和胎盘这些部位采集的样品相比,粪便样品宿主污染比较少,不超过总数据量的1%。
微生物与健康的关系微生物是存在于我们身体内的无数个体,其数量比我们身体的细胞还多。
虽然微生物常被视为病原体,但微生物同时对健康和医学具有重要影响,包括消化、免疫、代谢等。
消化系统厌氧微生物在人体消化系统中起着关键作用。
我们的消化系统内有上千种不同的微生物,尤其是肠道微生物在刺激免疫的同时,促进食物的分解吸收。
厌氧菌分解我们无法消化的食物,并将其转化成人体可利用的营养成分。
肠道内的细菌还有一些其他的功能,包括帮助我们吸收铁和钙。
免疫系统免疫系统受到微生物影响非常大。
有一些微生物可以帮助我们的免疫系统,使其更有效地识别敌人和保护我们的身体。
比如乳酸菌通过制造抗生素来帮助我们的免疫系统。
此外,肠道中的某些厌氧菌可以促进生长T细胞。
代谢一些微生物可以影响我们的代谢。
例如肠道内有些微生物可以分解葡萄糖并将其转化为脂肪酸。
乳酸菌可降低血糖,并有助于体内钙的吸收。
微生物对代谢的影响进一步证明了微生物与人体健康的关系。
然而,微生物也可以影响人体健康。
研究表明肠道细菌和其他微生物的种类和数量与体内的疾病状态有着千丝万缕关联。
例如,许多疾病与微生物失调有关,肠道菌群失调和肥胖、糖尿病相关联。
另外一些疾病,例如自闭症和肾脏病,也与肠道微生物失调有关。
如何保持肠道菌群健康?许多人想知道如何保持肠道菌群的健康,这也是许多研究的核心问题。
一般来说,人们应该通过饮食方式来改善自己的肠道微生物群。
保持肠道微生物群健康的最好方式是吃各种营养丰富的食物,同时减少高脂肪、高糖和高盐的食物摄入。
此外,有些食物对肠道微生物群更好,例如含有益生菌或细菌的酸奶和发酵蔬菜。
结论微生物和健康之间的关联非常重要。
我们的身体内有着大量的微生物,这些微生物对我们的健康和医学有着巨大的影响。
微生物可以促进我们的消化、免疫和代谢,并有助于我们保持良好的健康状况。
然而,微生物失调也会对人体健康造成负面影响,因此我们应该通过健康的饮食方式来调节并保持健康的肠道微生物群。
The tantalizing links between gut microbes and the brain诱人的肠道微生物与大脑之间的联系Neuroscientists are probing the idea that intestinal microbiota might influence brain development and behaviour.神经科学家正在调查认为肠道菌群可能会影响大脑发育和行为。
Peter Andrey Smith彼得·安德烈史密斯14 October 2015 Corrected: 16 October 2015Illustration by Serge BlochNearly a year has passed since Rebecca Knickmeyer first met the participants in her latest study on brain development. Knickmeyer, a neuroscientist at the University of North Carolina School of Medicine in Chapel Hill, expects to see how 30 newborns have grown into crawling, inquisitive one-year-olds, using a battery of behavioural and temperament tests. In one test, a child's mother might disappear from the testing suite and then reappear with a stranger. Another ratchets up the weirdness with some Halloween masks. Then, if all goes well, the kids should nap peacefully as a noisy magnetic resonance imaging machine scans their brains.“We try to be prepared for everything,” Knickmeyer says. “We know exactly what to do if kids make a break for the door.”Knickmeyer is excited to see something else from the children — their faecal microbiota, the array of bacteria, viruses and other microbes that inhabit their guts. Her project (affectionately known as 'the poop study') is part of a small but growing effort by neuroscientists to see whether the microbes that colonize the gut in infancy can alter brain development.The project comes at a crucial juncture. A growing body of data, mostly from animals raised in sterile, germ-free conditions, shows that microbes in the gut influence behaviour and can alter brain physiology and neurochemistry.In humans, the data are more limited. Researchers have drawn links between gastrointestinal pathology and psychiatric neurological conditions such as anxiety, depression, autism, schizophrenia and neurodegenerative disorders — but they are just links.“In general, the problem of causality in microbiome studies is substantial,” says Rob Knight, a microbiologist at the University of California, San Diego. “It's very difficult to tell if microbial differences you see associated with diseases are causes or consequences.” There are many outstanding questions. Clues about the mechanisms by which gut bacteria might interact with the brain are starting to emerge, but no one knows how important these processes are in human development and health.That has not prevented some companies in the supplements industry from claiming that probiotics — bacteria that purportedly aid with digestive issues — can support emotional well-being.Pharmaceutical firms, hungry for new leads in treating neurological disorders, are beginning to invest in research related to gut microbes and the molecules that they produce.Scientists and funders are looking for clarity. Over the past two years, the US National Institute of Mental Health (NIMH) in Bethesda, Maryland, has funded seven pilot studies with up to US$1 million each to examine what it calls the 'microbiome–gut–brain axis' (Knickmeyer's research is one of these studies). This year, the US Office of Naval Research in Arlington, Virginia, agreed topump around US$14.5 million over the next 6–7 years into work examining the gut's role in cognitive function and stress responses. And the European Union has put €9 million (US$10.1 million) towards a five-year project called MyNewGut, two main objectives of which target brain development and disorders.Nature special:Human microbiotaThe latest efforts aim to move beyond basic observations and correlations — but preliminary results hint at complex answers. Researchers are starting to uncover a vast, varied system in which gut microbes influence the brain through hormones, immune molecules and the specialized metabolites that they produce.“There's probably more speculation than hard data now,” Knickmeyer says. “So there's a lot of open questions about the gold standard for methods you should be applying. It's very exploratory.”Gut reactionsMicrobes and the brain have rarely been thought to interact except in instances when pathogens penetrate the blood–brain barrier — the cellular fortress protecting the brain against infection and inflammation. When they do, they can have strong effects: the virus that causes rabies elicits aggression, agitation and even a fear of water. But for decades, the vast majority of the body's natural array of microbes was largely uncharacterized, and the idea that it could influence neurobiology was hardly considered mainstream. That is slowly changing.Studies on community outbreaks were one key to illuminating the possible connections. In 2000, a flood in the Canadian town of Walkerton contaminated the town's drinking water with pathogens such as Escherichia coli and Campylobacter jejuni. About 2,300 people suffered from severe gastrointestinal infection, and many of them developed chronic irritable bowel syndrome (IBS) as a direct result.During an eight-year study1 of Walkerton residents, led by gastroenterologist Stephen Collins at McMaster University in Hamilton, Canada, researchers noticed that psychological issues such as depression and anxiety seemed to be a risk factor for persistent IBS. Premysl Bercik, another McMaster gastroenterologist, says that this interplay triggered intriguing questions. Couldpsychiatric symptoms be driven by lingering inflammation, or perhaps by a microbiome thrown out of whack by infection?The McMaster group began to look for answers in mice. In a 2011 study2, the team transplanted gut microbiota between different strains of mice and showed that behavioural traits specific to one strain transmitted along with the microbiota. Bercik says, for example, that “relatively shy” mice would exhibit more exploratory behaviour when carrying the microbiota of more-adventurous mice. “I think it is surprising. The microbiota is really driving the behavioural phenotype of host. There's a marked difference,” Bercik says. Unpublished research suggests that taking faecal bacteria from humans with both IBS and anxiety and transplanting it into mice induces anxiety-like behaviour, whereas transplanting bacteria from healthy control humans does not.Such results can be met with scepticism. As the field has developed, Knight says, microbiologists have had to learn from behavioural scientists that how animals are handled and caged can affect things such as social hierarchy, stress and even the microbiome.And these experiments and others like them start with a fairly unnatural model: germ-free — or 'gnotobiotic' — mice. These animals are delivered by Caesarean section to prevent them from picking up microbes that reside in their mothers' birth canals. They are then raised inside sterile isolators, on autoclaved food and filtered air. The animals are thus detached from many of the communal microbes that their species has evolved with for aeons.In 2011, immunologist Sven Pettersson and neuroscientist Rochellys Diaz Heijtz, both at the Karolinska Institute in Stockholm, showed that in lab tests, germ-free mice demonstratedless-anxious behaviour than mice colonized with natural indigenous microbes3. (Less anxiety is not always a good thing, evolutionarily speaking, for a small mammal with many predators.) When the Karolinska team examined the animals' brains, they found that one region in germ-free mice, the striatum, had higher turnover of key neurochemicals that are associated with anxious behaviour, including the neurotransmitter serotonin. The study also showed that introducing adult germ-free mice to conventional, non-sterile environments failed to normalize their behaviour, but the offspring of such 'conventionalized' mice showed some return to normal behaviour, suggesting that there is a critical window during which microbes have their strongest effects.By this time, many researchers were intrigued by the mounting evidence, but results stemmed mostly from fields other than neuroscience. “The groups working on this are primarily gut folks, with a few psychology-focused people collaborating,” says Melanie Gareau, a physiologist at the University of California, Davis. “So the findings tended to describe peripheral and behavioural changes rather than changes to the central nervous system.”Innovations in the microbiomeBut Pettersson and Diaz Heijtz's research galvanized the field, suggesting that researchers could get past observational phenomenology and into the mechanisms affecting the brain. Nancy Desmond, a programme officer involved in grant review at the NIMH, says that the paper sparked interest at the funding agency soon after its publication and, in 2013, the NIMH formed a study section devoted to neuroscience research that aims to unravel functional mechanisms and develop drugs or non-invasive treatments for psychological disorders.Judith Eisen, a neuroscientist at the University of Oregon in Eugene, earned a grant to study germ-free zebrafish, whose transparent embryos allow researchers to easily visualize developing brains. “Of course, 'germ-free' is a completely unnatural situation,” Eisen says. “But it provides the opportunity to learn which microbial functions are important for development of any specific organ or cell type.”Chemical explorationMeanwhile, researchers were starting to uncover ways that bacteria in the gut might be able to get signals through to the brain. Pettersson and others revealed that in adult mice, microbial metabolites influence the basic physiology of the blood–brain barrier4. Gut microbes break down complex carbohydrates into short-chain fatty acids with an array of effects: the fatty acid butyrate, for example, fortifies the blood–brain barrier by tightening connections between cells (see 'The gut–brain axis').Recent studies also demonstrate that gut microbes directly alter neurotransmitter levels, which may enable them to communicate with neurons. For example, Elaine Hsiao, a biologist now at the University of California, Los Angeles, published research5 this year examining how certain metabolites from gut microbes promote serotonin production in the cells lining the colon — an intriguing finding given that some antidepressant drugs work by promoting serotonin at the junctions between neurons. These cells account for 60% of peripheral serotonin in mice and more than 90% in humans.Read next: Microbiomes raise privacy concernsLike the Karolinska group, Hsiao found that germ-free mice have significantly less serotonin floating around in their blood, and she also showed that levels could be restored by introducing to their guts spore-forming bacteria (dominated by Clostridium, which break down short-chain fatty acids). Conversely, mice with natural microbiota, when given antibiotics, had reduced serotonin production. “At least with those manipulations, it's quite clear there's a cause–effect relationship,” Hsiao says.But it remains unclear whether these altered serotonin levels in the gut trigger a cascade of molecular events, which in turn affect brain activity — and whether similar events take place in humans, too. “It will be important to replicate previous findings, and translate these findings into human conditions to really make it to the textbooks,” Hsiao says.For John Cryan, a neuroscientist at University College Cork in Ireland, there is little question that they will. His lab has demonstrated6 that germ-free mice grow more neurons in a specific brain region as adults than do conventional mice. He has been promoting the gut–brain axis to neuroscientists, psychiatric-drug researchers and the public. “If you look at the hard neuroscience that has emerged in the last year alone, all the fundamental processes that neuroscientists spend their lives working on are now all shown to be regulated by microbes,” he says, pointing to research on the regulation of the blood–brain barrier, neurogenesis in mice and the activation of microglia, the immune-like cells that reside in the brain and spinal cord.At the 2015 Society for Neuroscience meeting in Chicago, Illinois, this month, Cryan and his colleagues plan to present research showing that myelination — the formation of fatty sheathing that insulates nerve fibres — can also be influenced by gut microbes, at least in a specific part of the brain. Unrelated work7 has shown that germ-free mice are protected from an experimentally induced condition similar to multiple sclerosis, which is characterized by demyelination of nerve fibres. At least one company, Symbiotix Biotherapies in Boston, Massachusetts, is alreadyinvestigating whether a metabolite produced by certain types of gut bacterium might one day be used to stem the damage in humans with multiple sclerosis.A move to therapyTracy Bale, a neuroscientist at the University of Pennsylvania in Philadelphia, suspects that simple human interventions may already be warranted. Bale heard about Cryan's work on the radio programme Radiolab three years ago. At the time, she was researching the placenta, but wondered how microbes might fit into a model of how maternal stress affects offspring.In research published this year8, Bale subjected pregnant mice to stressful stimuli. She found that it noticeably reduced the levels of Lactobacilli present in the mice's vaginas, which are the main source of the microbes that colonize the guts of offspring. These microbial shifts carried over to pups born vaginally, and Bale detected signs that microbiota might affect neurodevelopment, especially in males.Read next:Gut–brain link grabs neuroscientistsIn work that her group plans to present at the Society for Neuroscience meeting, Bale has shown that by feeding vaginal microbiota from stressed mice to Caesarean-born infant mice, they can recapitulate the neurodevelopmental effects of having a stressed mother. Bale and her colleagues are now wrapping up research investigating whether they can treat mice from stressed mums with the vaginal microbiota of non-stressed mice.The work, Bale says, has “immediate translational effects”. She points to a project headed by Maria Dominguez-Bello, a microbiologist at the New York University School of Medicine, in which babies born by means of Caesarean section are swabbed on the mouth and skin with gauze taken from their mothers' vaginas. Her team wants to see whether these offspring end up with microbiota similar to babies born vaginally. “It's not standard of care,” Bale says, “but I will bet you, one day, it will be.”Many are still sceptical about the link between microbes and behaviour and whether it will prove important in human health — but scientists seem more inclined to entertain the idea now than they have in past. In 2007, for example, Francis Collins, now director of the US National Institutes of Health, suggested that the Human Microbiome Project, a large-scale study of the microbes that colonize humans, might help to unravel mental-health disorders. “It did surprise a few people who assumed we were talking about things that are more intestinal than cerebral,” Collins says. “It was a little bit of leap, but it's been tentatively backed up.”Funding agencies are supporting the emerging field, which spans immunology, microbiology and neuroscience, among other disciplines. The NIMH has offered seed funding for work on model systems and in humans to probe whether the area is worth more-substantial investment, a move that has already brought more researchers into the fold. The MyNewGut project in Europe has an even more optimistic view of the value of such research, specifically seeking concrete dietary recommendations that might alleviate brain-related disorders.Today, Knickmeyer's project on infants represents what she calls “a messy take-all-comers kind of sample”. Among the brain regions that Knickmeyer is scanning, the amygdala and prefrontal cortex hold her highest interest; both have been affected by microbiota manipulations in rodent models. But putting these data together with the dozens of other infant measures that she is taking will be a challenge. “The big question is how you deal with all the confounding factors.” The children's diets, home lives and other environmental exposures can all affect their microbiota and their neurological development, and must be teased apart.Knickmeyer speculates that tinkering with microbes in the human gut to treat mental-health disorders could fail for other reasons. Take, for instance, how microbes might interact with the human genome. Even if scientists were to find the therapeutic version of a “gold Cadillac of microbiota”, she points out, “maybe your body rejects that and goes back to baseline because your own genes promote certain types of bacteria.” There is much more to unravel, she says. “I'm always surprised. It's very open. It's a little like a Wild West out there.”Nature 526,312–314 (15 October 2015) doi:10.1038/526312aTweet Follow @NatureNewsCorrectionsCorrected:An earlier version of this story incorrectly stated that the US Office ofNaval Research agreed to commit US$52 million into gut–brain research. Infact, the figure is closer to $14.5 million over the next 6–7 years. Thetext has now been corrected.References:1.Marshall, J. K. et al. Gut 59, 605–611 (2010).Show context Article PubMed2.Bercik, P. et al. Gastroenterology 141, 599–609 (2011).Show context Article PubMed ChemPort3.Diaz Heijtz, R. et al. Proc. Natl Acad. Sci. USA 108, 3047–3052 (2011).Show context Article PubMed4.Braniste, V. et al. Sci. Transl. Med. 6, 263ra158 (2014).Show context Article PubMed ChemPort5.Yano, J. M. et al. Cell 161, 264–276 (2015).Show context Article PubMed ChemPort6.Ogbonnaya, E. S. et al. Biol. Psychiatry 78, e7–e9 (2015).Show context Article PubMed7.Lee, Y.-K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proc. Natl Acad. Sci. USA 108, 4615–4622 (2010).Show context Article PubMed8.Jašarević, E., Howerton, C. L., Howard, C. D. & Bale, T. L. Endocrinology 156, 3265–3276 (2015). Show context Article PubMed ChemPortNature:肠道微生物与大脑之间的诱人关系很多发现常常让我感到吃惊。