极坐标参数方程
- 格式:doc
- 大小:12.61 KB
- 文档页数:2
极坐标系的直线方程极坐标是一种描述平面上点位置的坐标系,它使用径向距离和角度来确定点的位置。
在极坐标系中,直线的方程可以用极坐标的参数方程来表示。
本文将介绍如何使用极坐标系的参数方程来表示直线的方程。
一、极坐标系下的直线方程直线在极坐标系中的参数方程可以表示为:r = a + bθ其中,r 是点到原点的距离,θ 是点与正半轴之间的角度,a 和 b 是常数。
该方程描述了一个以原点为极点、与正半轴夹角为 a/b 的直线。
当 b = 0 时,直线过极点并与正半轴重合,方程变为 r = a,表示了一个从极点到极轴上某一点的半射线。
当 a = 0 时,直线不通过极点,方程变为r = bθ,表示了一个以极点为顶点的角。
二、直线方程的解读1.可视化直线通过极坐标系的直线方程,我们可以将直线在极坐标系中可视化。
当a 为正时,直线从极点向外辐射;当 a 为负时,直线从极点向内辐射。
而 b 的正负决定了直线从哪个角度开始发散或收敛。
2.直线的方向和斜率在直角坐标系中,直线的斜率可以通过直线的参数方程表示。
在极坐标系中,直线的斜率可以通过对参数方程进行求导得到。
对r = a + bθ 进行求导,得到:dr/dθ = b我们可以看出,在极坐标系中,直线的斜率恒定为 b。
这意味着直线在极坐标系中的增长速率始终为常数。
正因为如此,极坐标系中的直线在直角坐标系中并不总是直线。
它们可以是直线、旋转线、螺旋线或双曲线。
三、示例以下是几个直线在极坐标系下的参数方程示例:1.对于r = 2 + θ,直线以极点为起点,角度θ大于0时,直线向外辐射。
斜率为 1。
2.对于 r = 3 - 2θ,直线以极点为起点,角度θ大于0时,直线向内辐射。
斜率为 -2。
3.对于 r = 4,直线过极点,与正半轴重合,没有斜率。
4.对于r = 5θ,直线以极点为顶点,从极点开始逆时针旋转。
斜率随角度的增大而增大。
四、结论极坐标系的直线方程可以通过参数方程r = a + bθ 来表示。
参数方程与极坐标(精华版)y y tsin注意:倾角为的直线,斜率为tan,所以tan=tan,即tcos=tsin,所以cos=sin,即=45,即直线与x轴或y轴夹45角。
Eg:已知直线L过点(1,2)且与x轴夹45角,求直线L的方程。
解:设直线L的参数方程为x=1+tcos45,y=2+tsin45,即x=1+t/2,y=2+t/2,将y=mx+b代入得到m=1,b=3/2,即直线L的方程为y=x+3/2.四、极坐标1、定义:在平面直角坐标系中,点P到原点O的距离r和OP与x轴正半轴的夹角唯一确定点P的位置,称(r,)为点P的极坐标,r为极径,为极角,记作P(r,)。
2、极坐标与直角坐标的转换x=r cos,y=r sinr2=x2+y2,tan=y/x3、常见曲线的极坐标方程1)圆:r=a2)半直线:=0或=3)双曲线:r=a sec或r=a cosec4)椭圆:r=a bcos或r=a sin5)心形线:r=a(1+cos)6)阿基米德螺线:r=a+b7)对数螺线:r=a e b8)伯努利双曲线:r2=a2 sec29)费马螺线:r=2a sin(/2)10)旋轮线:r=a或r=a sin(n)/sin(n为正整数)总结:极坐标的方程形式比较简单,但是不同曲线的极坐标方程需要记忆,转换成直角坐标系方程需要用到三角函数的知识。
P点的有向距离在点P两侧t的符号相反,可以通过直线的参数方程来表示。
其中,t代表有向距离的几何意义。
需要注意的是,t的符号相对于点P,正负在P点两侧,且|PP|=|t|。
直线参数方程可以有多种变式,比如y=y+tsinα和x=x+at,y=y+bt,但此时t的几何意义不是有向距离。
只有当t前面系数的平方和为1时,t的几何意义才是有向距离。
因此,可以将直线参数方程整理为x=x+a2+b2t,XXX,让a2+b2t作为t,这样t的几何意义就是有向距离了。
例如,对于直线x=-1+3t,y=2-4t,可以求其倾斜角。
极坐标求导和参数方程求导
极坐标求导是指通过极坐标系上的函数来计算其偏导的过程。
极坐标求导的基本步骤是先把极坐标表示的函数f(r,θ)转换成直角坐标系表达方式x=rcosθ,
y=rsinθ,来求函数f(x, y)在x, y处的偏导,然后再使用链式求导法,把f(x, y)在x,y处的偏导再俄数转换成极坐标系下的偏导值Σ∂f/∂r、Σ∂f/∂θ,从而得到极坐标系下函数f(r,θ)关于r和θ的偏导。
参数方程求导指的是解决参数方程得导数的过程。
参数方程求导的求导公式是该参数方程的偏导数的乘积法。
也就是说,首先通过参数方程的定义变量的规律,根据函数y=f(x)的求导定理,把函数改写成y=f(φ)的函数形式;然后求取
φ=φ(x, y)的偏导,再将这两个偏导数相乘,即可得到所求函数y=f(x)的导数。
由以上可以看出,极坐标求导与参数方程求导均采取了转换坐标的技术,并配合链式求导法,将极坐标方程和参数方程转换成相应的偏导数,再相乘,从而得到最终的求导结果。
这种方法使极坐标求导和参数方程求导变得更加的容易,可应用于各种实际问题中。
参数方程与极坐标系参数方程和极坐标系是数学中描述曲线的两种不同方式。
本文将介绍参数方程和极坐标系的定义、特点以及它们在数学和物理领域中的应用。
一、参数方程的定义与特点参数方程是通过用一个或多个参数来表示曲线上各点的坐标的一种方法。
具体而言,设曲线上的一点P的坐标为(x, y),则可以将P的坐标表示为关于参数t的函数形式,即x = f(t), y = g(t)。
这种表示形式可以描述各种各样的曲线,包括直线、圆、椭圆等。
参数方程的优势在于它可以很方便地描述参数对应于曲线上的点的关系。
通过改变参数的取值范围,我们可以得到曲线上的不同点。
参数方程还可以轻松地描述具有重复部分或具有周期性变化的曲线,这在绘制一些复杂图形时非常有用。
二、参数方程的应用1. 几何图形参数方程在几何图形的研究中得到广泛应用。
例如,通过适当选择参数的取值范围,我们可以绘制出各种形状的曲线,包括心形线、螺旋线、双纽线等。
这些曲线在数学和美学上都具有重要的意义。
2. 物理运动参数方程在描述物理运动时也非常有用。
例如,对于物体在三维空间中的运动,可以使用参数方程来描述物体的位置随时间的变化。
这在物理学中研究轨迹、弧线运动等问题时经常使用。
三、极坐标系的定义与特点极坐标系是用极径和极角来描述平面上的点的坐标系统。
对于平面上的一点P,其极坐标可以表示为(P, θ),其中P代表极径,θ代表极角。
极径表示点P到极点的距离,极角表示点P与极正轴的夹角。
极坐标系的特点在于它可以更直观地表示某一点的位置与极点之间的关系。
通过改变极径和极角,我们可以得到平面上的不同点,从而形成不同的曲线。
极坐标系特别适用于描述对称性较强的曲线,如圆、心形线等。
四、极坐标系的应用1. 绘图极坐标系在绘制对称图形时非常方便。
例如,通过改变极角的取值范围,我们可以绘制出各种形状的曲线,如双纽线、螺旋线等。
极坐标系还在计算机图形学中得到广泛应用,用于生成各种美观的图形。
2. 物理领域极坐标系在物理领域中也具有重要的应用。
极坐标与参数方程大题及答案一、极坐标问题1.求解方程$r = 2\\cos(\\theta)$的直角坐标方程。
首先,根据极坐标到直角坐标的转换公式:$$x = r\\cos(\\theta)$$$$y = r\\sin(\\theta)$$将$r = 2\\cos(\\theta)$代入上述两式,得到:$$x = 2\\cos(\\theta)\\cos(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = 2\\cos^2(\\theta)$$$$y = 2\\cos(\\theta)\\sin(\\theta)$$2.将直角坐标方程x2+y2−4x=0转换为极坐标方程。
首先,我们可以将直角坐标方程中的x2和y2替换成r2,从而得到:r2+y2−4x=0然后,将直角坐标方程中的x和y替换成$r\\cos(\\theta)$和$r\\sin(\\theta)$,得到:$$r^2 + (r\\sin(\\theta))^2 - 4(r\\cos(\\theta)) = 0$$将上述方程化简,得到极坐标方程为:$$r^2 + r^2\\sin^2(\\theta) - 4r\\cos(\\theta) = 0$$3.将极坐标方程$r = \\sin(\\theta)$转换为直角坐标方程。
使用极坐标到直角坐标的转换公式,将$r = \\sin(\\theta)$代入,得到:$$x = \\sin(\\theta)\\cos(\\theta)$$$$y = \\sin^2(\\theta)$$化简上述两个式子,得到直角坐标方程为:$$x = \\frac{1}{2}\\sin(2\\theta)$$$$y = \\sin^2(\\theta)$$二、参数方程问题1.求解方程$\\frac{x + y}{x - y} = 2$的参数方程。
新高考数学:极坐标与参数方程引言新高考数学课程的改革给了学生更多的选择余地。
在以往的高中数学课程中,极坐标与参数方程的学习通常是在高中数学的辅助章节中,内容相对较少,甚至被一些学生所忽略。
然而,在新高考数学中,极坐标与参数方程的重要性得到了更高的重视。
本文将探讨新高考数学中的极坐标与参数方程的知识点,并解释其与实际应用的相关性。
一、极坐标与参数方程的基本概念1. 极坐标极坐标是描述平面上的点位置的一种坐标系统。
与直角坐标系不同,极坐标系统使用两种数值来确定点的位置:极径和极角。
极径表示点到原点的距离,极角表示点与极轴之间的夹角。
2. 参数方程参数方程是一种描述曲线或曲面的方式,其中自变量和因变量都用参数表示。
对于平面上的曲线而言,通常使用参数t来表示。
参数方程可以帮助我们更直观地描述和分析曲线的运动、形状和属性。
二、极坐标与参数方程的联系与应用1. 极坐标与参数方程的转换极坐标与参数方程之间存在着一种转换关系。
通过参数方程中的参数,我们可以得到对应的极坐标点,反之亦然。
这种转换关系使得我们能够根据实际问题的要求,选择更合适的坐标系进行分析。
2. 极坐标与参数方程的实际应用极坐标与参数方程在实际问题中具有广泛的应用。
例如,在物理学中,极坐标可以用于描述旋转体的运动轨迹,参数方程可以用于描述质点在空间中的运动轨迹。
再例如,在工程中,极坐标可以用于描述圆形构件的设计和制造,参数方程可以用于描述复杂曲线的绘制和计算。
三、新高考数学中的极坐标与参数方程1. 新高考数学的要求根据新高考数学课程标准,学生需要掌握极坐标与参数方程的基本知识和转换关系。
他们需要能够理解并解决使用极坐标与参数方程描述的问题,并能够灵活运用相关知识解决实际问题。
2. 极坐标与参数方程的解题思路在解决与极坐标与参数方程相关的问题时,学生需要先建立合适的坐标系,然后根据问题的要求选择合适的描述方式。
他们需要熟练掌握极坐标与参数方程之间的转换关系,并能够利用这种转换关系解决问题。
直线的极坐标方程与参数方程转化公式引言在解决数学问题时,我们常常需要描述直线的方程。
直线可以用不同的方程形式进行表示,其中包括极坐标方程和参数方程。
本文将介绍直线的极坐标方程和参数方程之间的转化公式。
直线的极坐标方程直线的极坐标方程可以用极坐标系中的径向方程和角度方程来表示。
设直线上任意一点的极坐标为(r, θ),其中r表示点到原点的距离,θ表示点与正 x 轴的夹角,极坐标方程可以表示为:r = a/cos(θ - α)其中 a 表示直线到原点的最短距离(即极径),α 表示直线与正 x 轴的夹角。
直线的参数方程直线的参数方程可以用参数 t 表示直线上的点,参数方程可以表示为:x = x₀ + t * cos(θ)y = y₀ + t * sin(θ)其中(x₀, y₀) 表示直线上的一点,θ 表示直线与正 x 轴的夹角。
极坐标方程转化为参数方程有时候我们已知直线的极坐标方程,想要将其转化为参数方程。
首先,将极坐标方程中的 r 和θ 放到参数方程中的 x 和 y 中,得到:x = (a/cos(θ - α)) * cos(θ)y = (a/cos(θ - α)) * sin(θ)接下来,使用三角恒等式对极坐标方程进行化简。
根据三角函数的定义,有:cos(θ - α) = cos(θ)cos(α) + sin(θ)sin(α)sin(θ - α) = sin(θ)cos(α) -cos(θ)sin(α)将上述两式代入极坐标方程,得到:x = a(cos(α)cos(θ) + sin(α)sin(θ))y = a(sin(α)cos(θ - α) - cos(α)sin(θ))再次利用三角函数的定义进行化简,有:cos(θ) = cos(α - α + θ) = cos(α)cos(α - θ) + sin(α)sin(α - θ)sin(θ) = sin(α - α + θ) = sin(α)cos(α - θ) - cos(α)sin(α - θ)代入上述两式,可得到参数方程:x = a * cos(α)cos(α - θ) + a * sin(α)sin(α - θ)y = a * sin(α)cos(α - θ) - a *cos(α)sin(α - θ)这就是将直线的极坐标方程转化为参数方程的公式。
极坐标与参数方程一、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上(即曲线上的点在方程上,方程的解都在曲线上),那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.参数方程和普通方程的互化曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程. 练习1.若直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,则直线的斜率为( )A .23 B .23- C .32 D .32- 2.下列在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是( )A .1(,2B .31(,)42- C . D .3.将参数方程222sin ()sin x y θθθ⎧=+⎪⎨=⎪⎩为参数化为普通方程为( ) A .2y x =- B .2y x =+ C .2(23)y x x =-≤≤ D .2(01)y x y =+≤≤注:普通方程化为参数方程,参数方程的形式不一定唯一(由上面练习(1、3可知))。
应用参数方程解轨迹问题,关键在于适当地设参数,如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同。
3.圆的参数方程如图所示,设圆的半径为,点从初始位置出发,按逆时针方向在圆上作匀速圆周运动,设,则。
这就是圆心在原点,半径为的圆的参数方程,其中的几何意义是转过的角度(称为旋转角)。
圆心为,半径为的圆的普通方程是,它的参数方程为:。
4.椭圆的参数方程以坐标原点为中心,焦点在轴上的椭圆的标准方程为其参数方程为,其中参数称为离心角;焦点在轴上的椭圆的标准方程是其参数方程为其中参数仍为离心角,通常规定参数的范围为∈[0,2)。
圆锥曲线的极坐标方程与参数方程解析极坐标方程与参数方程是圆锥曲线的两种常用表示形式。
在研究圆锥曲线时,利用这两种方程形式可以更加直观地描述曲线的特征与性质。
本文将详细介绍圆锥曲线的极坐标方程和参数方程的解析过程,并通过具体的例子来进一步说明。
一、圆锥曲线的极坐标方程圆锥曲线的极坐标方程可以用极坐标系中的极径r和极角θ来表示。
对于圆锥曲线而言,其极坐标方程的一般形式如下:r = f(θ)其中,函数f(θ)代表了曲线的性质与形状,具体形式根据不同的圆锥曲线类型而异。
以下是几种常见的圆锥曲线的极坐标方程及其解析过程:(一)圆的极坐标方程圆是一种特殊的圆锥曲线,其极坐标方程可以表示为:r = a其中,a代表圆的半径。
(二)椭圆的极坐标方程椭圆的极坐标方程形式如下:r = a(1 - ε²) / (1 - εcosθ)其中,a代表椭圆的半长轴长度,ε代表椭圆的离心率。
(三)双曲线的极坐标方程双曲线的极坐标方程可以写为:r = a(1 + εcosθ) / (1 - εcosθ)其中,a代表双曲线的焦距,ε代表双曲线的离心率。
(四)抛物线的极坐标方程抛物线的极坐标方程可以表示为:r = a / (1 + cosθ)其中,a代表抛物线的焦点到准线的距离。
通过以上例子可以看出,圆锥曲线的极坐标方程形式多样,每一种形式代表了不同的曲线类型和特征。
研究圆锥曲线时,可以根据需要选择不同的极坐标方程进行分析。
二、圆锥曲线的参数方程除了极坐标方程外,参数方程也是描述圆锥曲线常用的一种形式。
在参数方程中,圆锥曲线的坐标可以通过参数t的取值得到。
一般来说,圆锥曲线的参数方程具有以下形式:x = f(t)y = g(t)其中,函数f(t)和g(t)分别表示曲线的x坐标与y坐标,具体形式根据不同的圆锥曲线类型而定。
以下是几种常见圆锥曲线的参数方程及其解析过程:(一)圆的参数方程圆的参数方程可以表示为:x = acos(t)y = asin(t)其中,a代表圆的半径,t取值范围通常为0到2π。
直线的极坐标方程和参数方程在数学中,直线是一种最简单且常见的几何形状,它可以通过不同的方式来表示。
其中,直线的极坐标方程和参数方程是两种常见的表示形式。
本文将详细介绍直线的极坐标方程和参数方程的定义及其应用。
极坐标方程极坐标是一种用极径和极角来表示平面点坐标的方法。
在极坐标系统中,平面上的点可以用(r, θ)来表示,其中r表示该点到原点的距离,θ表示该点与极轴的夹角。
对于直线来说,可以将其表示为极坐标方程。
一般来说,直线的极坐标方程可以表示为:r = a + bθ其中a和b为常数。
这个极坐标方程表示了以a为极轴截距,以b为斜率的直线。
参数方程参数方程是一种使用参数表示曲线上各点坐标的方法。
对于直线来说,可以通过将x和y坐标都表示为参数t的函数来将其表示为参数方程。
一般来说,直线可以使用参数方程表示为:x = at + b y = ct + d其中a、b、c和d为常数。
这个参数方程表示了直线上任意一点的x和y坐标。
极坐标方程和参数方程的联系极坐标方程和参数方程都是表示直线的方法,它们之间有一定的联系。
通过将极坐标方程转化为参数方程或将参数方程转化为极坐标方程,可以在不同的坐标系下更方便地描述直线。
以将极坐标方程转化为参数方程为例,可以通过以下步骤实现:1.将极坐标方程中的r表示为x和y的函数,即r = √(x^2 + y^2);2.将极坐标方程中的θ表示为参数t的函数,即θ = atan2(y, x);3.将极坐标方程中的r和θ带入直线的极坐标方程,得到参数方程。
同样地,可以通过逆向的方式将参数方程转化为极坐标方程。
应用举例直线的极坐标方程和参数方程在实际问题中有广泛的应用。
以下是一些具体的应用举例:1.机器人导航:在机器人导航系统中,极坐标方程和参数方程可以用来描述机器人的移动轨迹和路径规划。
2.电子游戏设计:在游戏设计中,直线的极坐标方程和参数方程可以用来描述游戏中的道路、轨道等线性元素。
3.图像处理:在图像处理算法中,直线的参数方程常常用于检测图像中的直线和边缘。
极坐标和参数方程知识点总结在数学的广阔天地中,极坐标和参数方程是两个独具特色且非常有用的工具。
它们为我们解决各类几何和物理问题提供了新的视角和方法。
接下来,让我们一同深入探索极坐标和参数方程的奥秘。
一、极坐标极坐标是一种用距离和角度来表示平面上点的位置的坐标系统。
在极坐标系中,一个点由极径和极角来确定。
1、极坐标的定义极径:表示点到极点(通常是坐标原点)的距离,用符号ρ 表示。
极角:表示极径与极轴(通常是 x 轴正半轴)所成的角,用符号θ 表示。
2、极坐标与直角坐标的转换(1)直角坐标转极坐标极径ρ =√(x²+ y²)极角θ = arctan(y / x) (需要根据点所在的象限确定θ 的取值)(2)极坐标转直角坐标x =ρ cosθy =ρ sinθ3、常见的极坐标曲线(1)圆圆心在极点,半径为 a 的圆的极坐标方程:ρ = a圆心在点(a, 0),半径为 a 的圆的极坐标方程:ρ =2a cosθ(2)直线过极点且与极轴夹角为α 的直线的极坐标方程:θ =α过点(a, 0) 且垂直于极轴的直线的极坐标方程:ρ cosθ = a4、极坐标的应用在物理学中,描述物体的平面运动轨迹,如圆周运动,极坐标常常能使问题简化。
二、参数方程参数方程是通过引入参数来表示曲线或曲面的方程。
1、参数方程的定义对于平面曲线,如果曲线上任意一点的坐标 x 和 y 都可以表示为某个变量 t 的函数,即 x = f(t),y = g(t),那么我们称这两个方程为该曲线的参数方程,t 称为参数。
2、参数方程的常见形式(1)直线的参数方程若直线过点(x₀, y₀),倾斜角为α,则直线的参数方程为:x = x₀+ t cosαy = y₀+t sinα (t 为参数)(2)圆的参数方程圆心在点(a, b),半径为 r 的圆的参数方程为:x = a +r cosθy = b +r sinθ (θ 为参数)(3)椭圆的参数方程焦点在 x 轴上的椭圆 x²/ a²+ y²/ b²= 1 的参数方程为:x =a cosθy =b sinθ (θ 为参数)3、参数的几何意义在直线的参数方程中,参数 t 通常具有几何意义,如表示直线上动点到定点的距离。
球的极坐标参数方程在数学中,球的极坐标参数方程是描述球体形状的一种数学表示方法。
球体是一种具有无限多个点的几何体,它的每个点与球心的距离都相等。
球的极坐标参数方程可以用以下形式表示:r = Rθ = φφ ∈ [0, π]θ ∈ [0, 2π]其中,r是球心到球体表面上某一点的距离,R是球体的半径,θ是球心到与x轴的连线的夹角,φ是球心到与z轴的连线的夹角。
通过极坐标参数方程,我们可以方便地计算球体上任意点的坐标。
例如,对于球体的一个表面点P,我们可以通过给定的参数值r、θ和φ来确定它的位置。
球体在三维坐标系中的形状是一个完美的圆形,对称于球心。
通过改变球体的半径R,我们可以得到不同大小的球体。
而通过改变θ和φ的取值范围,我们可以观察到球体的不同截面。
对于球体的截面,当φ固定时,它与x-y平面的交线是一个圆,圆心在x-y平面上的投影点,半径为Rsin(φ)。
当θ固定时,它与y-z平面的交线是一个圆,圆心在y-z平面上的投影点,半径为Rsin(θ)。
球体的体积可以通过积分计算得到。
由于球体在每个方向上的半径都相等,因此球体的体积可以表示为V = (4/3)πR³,其中π是圆周率。
球体在数学和物理学中都具有广泛的应用。
在几何学中,球体是最简单的几何体之一,研究球体的性质有助于理解其他复杂几何体的性质。
在物理学中,球体常用于描述天体、分子结构和流体力学等领域。
总结起来,球的极坐标参数方程是描述球体形状的一种数学表示方法。
通过该方程,我们可以方便地计算球体上任意点的坐标,并观察到球体的不同截面。
球体在数学和物理学中都有广泛的应用,是研究其他几何体和描述天体、分子结构等的重要工具。
极坐标与参数方程1.直角坐标系与极坐标系可以互相转换。
在两个坐标系中取相同的长度单位,将直角坐标系的原点作为极点,x轴正半轴作为极轴。
对于任意点M,其直角坐标为(x,y),极坐标为(ρ,θ),其中ρ表示点M到原点的距离,θ表示点M与极轴的夹角。
它们之间的关系是ρ²=x²+y²,x=ρcosθ,y=ρsinθ,tanθ=y/x(当x≠0时)。
2.直线的极坐标方程为ρsin(θ-α)=d,其中d为直线到极点的距离,α为极轴到直线的角度。
对于特殊位置的直线,如过极点的直线、过点M(a,0)且垂直于极轴的直线、过点M(b,π/2)且平行于极轴的直线,它们的极坐标方程分别为θ=α、ρcosθ=a、ρsinθ=b。
3.圆的极坐标方程为2ρ²-2ρr cos(θ-θ0)+r²=0,其中M(ρ,θ)为圆心,r为半径,θ0为极轴与圆心连线的角度。
对于特殊位置的圆,如圆心位于极点且半径为r的圆,其极坐标方程为ρ=r;圆心位于M(r,0)且半径为r的圆,其极坐标方程为ρ=2rcosθ;圆心位于M(r,π/2)且半径为r的圆,其极坐标方程为ρ=2r sinθ。
4.直线的参数方程为x=x0+t cosα,y=y0+t sinα,其中M(x0,y0)为直线上的一点,α为直线倾斜角,t为参数。
5.圆的参数方程为x=x0+r cosθ,y=y0+r sinθ,其中M(x0,y0)为圆心,r为半径,θ为参数,0≤θ≤2π。
6.椭圆的参数方程为x=a cosθ,y=b sinθ,其中a、b为长轴和短轴的长度;抛物线的参数方程为x=2pt²,y=2pt,其中p 为焦距的一半。
1.给定曲线C的极坐标方程ρ=2cosθ,在以极点为原点、x 轴正半轴为极轴的直角坐标系中,其参数方程为x=2cos(t),y=2sin(t)。
2.给定曲线C的参数方程为x=t²,y=t,在以原点为极点、x轴正半轴为极轴的极坐标系中,其极坐标方程为ρ=tan(θ)。
极坐标与参数方程知识点及题型归纳总结知识点精讲一、极坐标系在平面上取一个定点O ,由点O 出发的一条射线Ox 、一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.点O 称为极点,Ox 称为极轴.平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ (弧度制)来刻画(如图16-31和图16-32所示). 这两个实数组成的有序实数对(,)ρθ称为点M 的极坐标. ρ称为极径,θ称为极角.二、极坐标与直角坐标的互化设M 为平面上的一点,其直角坐标为(,)x y ,极坐标为(,)ρθ,由图16-31和图16-32可知,下面的关系式成立:cos sin x y ρθρθ=⎧⎨=⎩或222tan (0)x y yx x ρθ⎧=+⎪⎨=≠⎪⎩(对0ρ<也成立). 三、极坐标的几何意义r ρ=——表示以O 为圆心,r 为半径的圆;0θθ=——表示过原点(极点)倾斜角为0θ的直线,0(0)θθρ=≥为射线;2cos a ρθ=表示以(,0)a 为圆心过O 点的圆.(可化直角坐标: 22cos a ρρθ=222x y ax ⇒+=222()x a y a ⇒-+=.)四、直线的参数方程直线的参数方程可以从其普通方程转化而来,设直线的点斜式方程为00()y y k x x -=-,其中tan (k αα=为直线的倾斜角),代人点斜式方程:00sin ()()cos 2y y x x απαα-=-≠,即00cos sin x x y y αα--=. 记上式的比值为t ,整理后得00cos t sin x x t y y αα=+⎧⎨=+⎩,2πα=也成立,故直线的参数方程为00cos t sin x x t y y αα=+⎧⎨=+⎩(t 为参数,α为倾斜角,直线上定点000(,)M x y ,动点(,)M x y ,t 为0M M 的数量,向上向右为正(如图16-33所示).五、圆的参数方程若圆心为点00(,)M x y ,半径为r ,则圆的参数方程为00cos (02)sin x x r y y r θθπθ=+⎧≤≤⎨=+⎩.六、椭圆的参数方程椭圆2222C :1x y a b +=的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数,(02)θπ≤≤).七、双曲线的参数方程双曲线2222C :1x y a b -=的参数方程为sec tan x a y b θθ=⎧⎨=⎩(,)2k k πθπ≠+∈Z .八、抛物线的参数方程抛物线22y px =的参数方程为222x pt y pt⎧=⎨=⎩(t 为参数,参数t 的几何意义是抛物线上的点与顶点连线的斜率的倒数).题型归纳即思路提示题型1 极坐标方程化直角坐标方程 思路提示对于极坐标方程给出的问题解答一般都是通过化为直角坐标方程,利用直角坐标方程求解.这里需注意的是极坐标系与直角坐标系建立的对应关系及其坐标间的关系cos sin x y ρθρθ=⎧⎨=⎩. 例16.7 在极坐标系中,圆4sin ρθ=的圆心到直线6πθ=(ρ∈R )的距离是 .分析 将极坐标方程转化为平面直角坐标系中的一般方程求解.解析 极坐标系中的圆4sin ρθ=转化为平面直角坐标系中的一般方程为224x y y +=,即22(2)4x y +-=,其圆心为(0,2),直线6πθ=转化为平面直角坐标系中的方程为:y x =,即0x =.圆心(0,2)到直线0x ==. 变式1 已知曲线12,C C 的极坐标方程分别为cos 3ρθ=,4cos ρθ=,(0,0)2πρθ≥≤<,则曲线1C 与2C 交点的极坐标为 .变式2 ⊙1O 和⊙2O 的极坐标方程分别为4cos ρθ=,4sin ρθ=-.(1)把⊙1O 和⊙2O 的极坐标方程分别化为直角坐方程; (2)求经过⊙1O 和⊙2O 交点的直线的直角坐标方程.变式3已知一个圆的极坐标方程是5sin ρθθ=-,求此圆的圆心和半径. 例16.8 极坐标方程(1)()0(0)ρθπρ--=≥表示的图形是( )A. 两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线分析 将极坐标方程化为直角坐标方程.解析 因为(1)()0(0)ρθπρ--=≥,所以1ρ=或θπ=(0)ρ≥.11ρ=⇒=,得221x y +=,表示圆心在原点的单位圆;(0)θπρ=≥表示x 轴的负半轴,是一条射线.故选C.变式1 极坐标方程cos ρθ=和参数方程123x ty t =--⎧⎨=+⎩(t 参数)所表示的图形分别是( )A.圆、直线B.直线、圆C.圆、圆D.直线、直线 变式2 在极坐标系中,点(2,)6P π-到直线:sin()16l πρθ-=的距离是 .变式3 直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为 .题型2 直角坐标方程化为极坐标方程思路提示如果题目中已知的曲线为直角坐标方程,而解答的问题是极坐标系下的有关问题,这里要利用直角坐标与极坐标关系式cos sin x y ρθρθ=⎧⎨=⎩,将直角坐标方程化为极坐标方程.例16.9 在直角坐标系xOy 中,圆1C :224x y +=,圆2C :22(2)4x y -+=.(1)在以O 为极点,x 轴为极轴的极坐标系中,分别写出圆1C , 2C 的极坐标方程,并求出圆1C , 2C 的交点坐标(用极坐标表示);(2)求出1C 与2C 的公共弦的参数方程.解析 (1)圆1C 的极坐标方程为2ρ=,圆2C 的极坐标方程为4cos ρθ=.24cos ρρθ=⎧⎨=⎩解得2ρ=,3πθ=±,故圆1C 与圆2C 的交点的坐标为(2,),(2,)33ππ-. 注:极坐标系下点的表示不唯一.(2)解法一:由cos sin x y ρθρθ=⎧⎨=⎩,得圆1C 与圆2C 的交点的坐标分别为.故圆1C 与2C 的公共弦的参数方程为1(x t y t=⎧≤≤⎨=⎩.解法二: 将1x =代入cos sin x y ρθρθ=⎧⎨=⎩得cos 1ρθ=,从而1cos ρθ=.于是圆1C 与2C 的公共弦的参数方程为1()tan 33x y ππθθ=⎧-≤≤⎨=⎩.变式1 曲线C 的直角坐标方程为2220x y x +-=,以原点为极点,x 轴的正半轴为极抽建立极坐标系,则曲线C 的极坐标方程为 _.题型3 参数方程化普通方程 思路提示已知直线或曲线的参数方程讨论其位置关系、性质问题一般要通过消参(代入法、加减法,三角法)转化为普通方程解答.例16.10 若直线340x y m ++=与圆1cos 2sin x y θθ=+⎧⎨=-+⎩( θ为参数)没有公共点,则实数m 的取值范围是 . 解析 将圆的参数方程1cos 2sin x y θθ=+⎧⎨=-+⎩( θ为参数)化为普通方程22(1)(2)1x y -++=,圆心(1,2)-,半径1r =.直线与圆无公共点,则圆心到直线的距离大于半径,|38|15m -+>|5|5m ⇒->,得10m >或0m <,即m 的范围是(,0)(10,)-∞+∞.变式 1 在平面直角坐标系xOy 中,直线l 的参数方程33x t y t=+⎧⎨=-⎩(参数t ∈R ),圆C 的参数方程为2cos 2sin 2x y θθ=⎧⎨=+⎩(参数[0,2]θ∈π),则圆C 圆心坐标为 _,圆心到直线l 的距离为 . 变式2 (2013湖北理16)在庄角坐标系xOy 中,椭圆C 的参数方程cos sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数,0a b >>),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l与圆O 的极坐标方程分别为sin()4πρθ+=(m 为非零数)与b ρ=.若直线l 经过椭圆C 的焦点,且与圆O 相切,则椭圆C 的离心率为 . 变式3 参数方程sin cos sin cos x y θθθθ=+⎧⎨=⎩(θ是参数)的普通方程是 .例16.11 已知动圆22:2cos 2sin 0C x y ax by θθ+--=(,a b 是正常数,a b ≠,θ是参数),则圆心的轨迹是 .解析 由动圆22:2cos 2sin 0C x y ax by θθ+--=得222222(cos )(sin )cos sin x a y b a b θθθθ-+-=+.圆心坐标为(cos ,sin )a b θθ(θ为参数),设cos x a θ=,sin y b θ=,则221x y a b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即22221x y a b +=为所求轨迹方程,所以圆心的轨迹是椭圆.变式1 方程2232(05)1x t t y t ⎧=+⎪≤≤⎨=-⎪⎩表示的曲线是( ) A. 线段 B. 双曲线的一支 C. 圆弧 D. 射线变式2 已知直线11cos :sin x t C y t αα=+⎧⎨=⎩(t 为参数),2cos :sin x C y θθ=⎧⎨=⎩(θ为参数).(1)当3πα=时,求1C 与2C 的交点坐标;(2)过坐标原点O 作1C 的垂线,垂足为A ,P 为OA 的中点.当α变化时,求点P 轨迹的参数方程,并指出它是什么曲线.题型4 普通方程化参数方程 思路提示对于直线与圆锥曲线方程化为参数方程问题实质是引入第三个变量的换元法,这里有代数换元(如抛物线22y px =的参数方程222x pt y pt =⎧⎨=⎩)或三角换元(如椭圆22221x y a b +=的参数方程cos sin x a y b θθ=⎧⎨=⎩).例16.12 在平面直角坐标系xOy 中,设(,)P x y 是椭圆2213x y +=上的一个动点,求S x y =+的最大值.分析 利用椭圆的参数方程,建立,x y 与参数θ的关系,运用三角函数最值的求法,求解x y +的最大值.解析 点(,)P x y 是椭圆2213x y +=上的一个动点,则sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),[0,2]θ∈π,则sin x y θθ+=+2sin()3πθ=+,[0,2]θ∈π,故max ()2x y +=.变式1 已知点(,)P x y 是圆2220x y y +-=上的动点.(1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围. 变式2 直线l 过(1,1)P ,倾斜角6πα=.(1) 写出l 的参数方程;(2)l 与圆224x y +=相交于,A B 两点,求P 到,A B 两点的距离之积.变式3 已知抛物线2:4C y x =,点(,0)M m 在x 轴的正半轴上,过M 的直线l 与C 相交于,A B 两点,O 为坐标原点.(1)若1m =时,l 的斜率为1,求以AB 为直径的圆的方程;(2)若存在直线l 使得||,||,||AM OM MB 成等比数列,求实数m 的取值范围.题型5 参数方程与极坐标方程的互化 思路提示参数方程与极坐标方程的互化问题,需要通过普通方程这一中间桥梁来实现,先将参数方程(极坐标方程)化为普通方程,再将普通方程化为极坐标方程(参数方程).例16.13 已知曲线C的参数方程为x ty t⎧=⎪⎨=⎪⎩(t 为参数),C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 .分析 把曲线C 的参数方程化为普通方程,求出切线l 的普通方程,然后把求出的直线l 的普通方程化为极坐标方程.解析 由22sin cos 1t t +=得曲线C 的普通方程为222x y +=,过原点O 及切点(1,1)的直线的斜率为1,故切线l 的斜率为1-,所以切线l 的方程为1(1)y x -=--,即20x y +-=.把cos x ρθ=,sin y ρθ=代入直线l 的方程可得cos sin 20ρθρθ+-=sin()204πθ+-=,化简得sin()4πθ+=变式1 设曲线C 的参数方程为2x ty t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 .有效训练题 1.极坐标方程cos 2sin 2ρθθ=表示的曲线为( )A. 一条射线和一个圆B. 两条直线C. 一条直线和一个圆D. 一个圆 2.圆cos )ρθθ=-的圆心的一个极坐标是( )A. (B. (2,)4πC. 3(2,)4π D. 7(2,)4π3.在极坐标系中,若等边△ABC 的两个顶点是(2,)4A π,5(2,)4B π.那么顶点C 的坐标可能是( )A. 3(4,)4πB. 3)4πC. )πD. (3,)π4.直线的参数方程为sin 501cos50x t y t ⎧=-⎪⎨=-⎪⎩(t 为参数),则直线的倾斜角为( )A. 40B. 50C. 140D.1305.过点(2,3)A 的直线的参数方程为232x ty t =+⎧⎨=+⎩(t 为参数),若此直线与直线30x y -+=相交于点B ,则||AB =( )6.设曲线C 的参数方程23cos 13sin x y θθ=+⎧⎨=-+⎩( θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l的点的个数为( ) A. 1 B. 2 C.3 D.4 7.已知直线l的极坐标方程为sin()42πρθ-=,圆M 的参数方程为22cos 12sin x y θθ=+⎧⎨=-+⎩( θ为参数),则圆M 上的点到直线l 的最短距离为 .8.在平面直角坐标系xOy 中,曲线1C 和2C的参数方程分别为x y θθ⎧=⎪⎨=⎪⎩(θ为参数,02πθ≤≤)和1x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),则曲线1C 与2C 的交点坐标为 . 9.已知抛物线的参数方程为222x pt y pt=⎧⎨=⎩(t 为参数),其中0p >,焦点为F ,准线为l ,过抛物线上一点M 作准线l 的垂线,垂足为E ,若||||EF MF =,点M 的横坐标是3,则p = .10.在极坐标系中,O 为极点,已知两点,M N 的极坐标分别为2(4,)3π,)4π,求△OMN 的面积. 11.已知椭圆221164x y +=,O 为坐标原点,,P Q 为椭圆上的两动点,若OP OQ ⊥,求22||||OP OQ +的最大值.12. 已知曲线12cos :sin x C y θθ=⎧⎨=⎩(θ为参数),曲线2247:cos 016C ρθ-+=.(1)若,P Q 分别是曲线1C 和曲线2C 上的两个动点,求线段PQ 长度的最小值;(2)若曲线1C 上与x 轴、y 轴的正半轴分别交于,A B 点,P 是曲线1C 上第一象限内的动点,O 是坐标原点,试求四边形OAPB 面积的最大值.。
极坐标参数方程
极坐标参数方程能够有效地描述曲线的形状,尤其是对曲线的性质、定义域、极坐标参数方程、极坐标参数方程在极坐标平面中的投影、在极坐标平面中曲线的趋势、参数方程的限制区域等有重要的应用,它也被应用于工程及科学领域。
本文将重点介绍极坐标参数方程的定义、特点、及其应用。
一、极坐标参数方程的定义
极坐标参数方程,又称极形式参数方程,是指在极坐标系下的方程的形式,它的一般形式为r = f(θ),即“曲线上点的到原点的
极径”与“极角”之间的函数关系,其中r为极径,θ为极角,f(θ)为极坐标的函数。
由极坐标参数方程产生的曲线,有可能是对称的,也可能是不对称的、单调的,或者非连续的等。
二、极坐标参数方程的特点
极坐标参数方程比直角坐标参数方程更容易描述曲线的形状,这是由于极坐标参数方程的函数只有一个变量,其中极径变量保持不变。
另外,在极坐标参数方程中,θ的变化可以更自然地表示曲线的变化,而在直角坐标参数方程中,x和y的变化更容易混淆。
此外,极坐标参数方程能够有效地描述曲线的形状,尤其是对曲线的性质、定义域、极坐标参数方程、极坐标参数方程在极坐标平面中的投影、在极坐标平面中曲线的趋势、参数方程的限制区域等有重要的应用。
三、极坐标参数方程的应用
极坐标参数方程在工程及科学领域被广泛应用,比如在机械和航
空工程中,极坐标参数方程常被应用于设计螺旋桨、螺旋桨翼等零件,这类零件通常具有单调不断的曲线,所以极坐标参数方程是最适合的。
此外,极坐标参数方程也被应用于电路设计,用极坐标参数方程可以比较容易地定义出大量的复杂电路形状,而不需要考虑每个元件的位置,只需要定义函数的变化范围就可以得到相应的电路。
四、结论
极坐标参数方程是一种常用的参数方程,它可以有效地描述曲线的形状,尤其是对曲线的性质、定义域、极坐标参数方程、极坐标参数方程在极坐标平面中的投影、在极坐标平面中曲线的趋势、参数方程的限制区域等有重要的应用,它也被应用于工程及科学领域。
极坐标参数方程的定义在特定的问题中表现出很大的效率,由此可以看出,极坐标参数方程对我们的工作有着重大的作用。