排列组合概率题库
- 格式:docx
- 大小:59.32 KB
- 文档页数:22
2006年某某省重点中学高二数学排列组合概率练习一、选择题1.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A .36种B .48种C .72种D .96种2.设nb a )(-的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是( )A .第5项B .第4、5两项C .第5、6两项D .第4、6两项3.某人制定了一项旅游计划,从7个旅游城市中选择5个进行游览。
如果A 、B 为必选城市,并且在游览过程中必须按先A 后B 的次序经过A 、B 两城市(A 、B 两城市可以不相邻),则有不同的游览线路( )A .120种B .240种C .480种D .600种4.百米决赛有6名运动A 、B 、C 、D 、E 、F 参赛,每个运动员的速度都不同,则运动员A 比运动员F 先到终点的比赛结果共有( )A .360种B .240种C .120种D .48种5.若二项式(122)m mbx ax -+的展开式中系数最大的项恰是常数项,则正整数ba的值为 ( )A .2B .4C .6D .56.用1,2,3,4这四个数字可排成必须..含有重复数字的四位数有 ( )7.在5X 卡片上分别写着数字1、2、3、4、5,然后把它们混合,再任意排成一行,则得到的数能被5或2整除的概率是B.0.6 C8.由关于x 的恒等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+1)4+b 1(x+1)3+b 2(x+1)2+b 3(x+1)+b 4,定义映射f:(a 1, a 2, a 3, a 4)→(b 1, b 2, b 3, b 4),则f(4, 3, 2, 1) = (A.(1, 2, 3, 4)B.(0, 3, 4, 0)C.(-1, 0, 2, -2)D.(0, -3, 4, -1) 9. 五个身高均不相同的学生排成一排俣影留念,高个子站中间,从中间到左边和从中间到右边均一个比一个矮,则这样的排法共有 ( )(A)6种 (B)8种 (C)12种 (D)16种10. 袋中有红、黑、黄三种颜色的小球各10个,每次从袋中取出一个小球不放回,一直到发现某种颜色的小球恰好取够6个,便立即停止取球,则最多的取球次数为( ) A. 6 B. 16 C. 20 D. 2611.某电视台邀请了6位同学的父母共12人,请这12位家长中的4位介绍教育子女的情况,那么这4位中至多一对夫妻的选择方法为( )A .15种B .120种C .240种D .480种12.某种体育彩票抽奖规定,从01到36共36个中抽出7个为一注,每注2元,某人想从01到10中选3个连续号,从11到20中选2个连续号,从21到30中选1个号,从31到36中选1个号组成一注,现这人把这些特殊的号全买,要花费的钱数是( ).A .3 360元B .6 720元C .4 320元D .8 640元 二、填空题13、如果一个三位正整数a 1a 2a 3满足a 1<a 2且a 3<a 2,则称这样的三位数为凸数(如120,363,374等),那么所有凸数的个数是_______________(用数作答)14、有15名新生,其中有3名优秀生,现随机将他们分到三个班级中去,每班5人,则每班都分到优秀生的概率是.15、由0,1,2,…,9这十个数字组成的、无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的个数为_______________16、甲、乙、丙三人分别独立解一道题,已知甲做对这道题的概率是43,甲、丙两人都做错的概率是121,乙、丙两人都做对的概率是41。
排列组合求概率解答题1甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为41,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为121,甲、丙两台机床加工的零件都是一等品的概率为92.(Ⅰ)分别求甲、乙、丙三台机床各自加工零件是一等品的概率;(Ⅱ)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率.(04湖南19)解:(Ⅰ)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件有⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=-⋅=-⋅⎪⎪⎪⎩⎪⎪⎪⎨⎧=⋅=⋅=⋅.92)()(,121))(1()(,41))(1()(.92)(,121)(,41)(C P A P C P B P B P A P C A P C B P B A P 即由①、③得)(891)(C P B P -=代入②得27[P(C)]2-51P(C)+22=0.解得91132)(或=C P (舍去).将32)(=C P 分别代入③、②可得.41)(,31)(==B P A P 即甲、乙、丙三台机床各加工的零件是一等品的概率分别是.32,41,31(Ⅱ)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,则.653143321))(1))((1))((1(1)(1)(=⋅⋅-=----=-=C P B P A P D P D P 故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为.652.(本小题满分12分)为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P )和所需费用如下表:预防措施甲乙丙丁P 0.90.80.70.6费用(万元)90603010预防方案可单独采用一种预防措施或联合采用几种预防措施,在总费用不超过120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.(04湖北21)解:方案1:单独采用一种预防措施的费用均不超过120万元.由表可知,采用甲措施,可使此突发事件不发生的概率最大,其概率为0.9.方案2:联合采用两种预防措施,费用不超过120万元,由表可知.联合甲、丙两种预防措施可使此突发事件不发生的概率最大,其概率为1—(1—0.9)(1—0.7)=0.97.方法3:联合采用三种预防措施,费用不超过120万元,故只能联合乙、丙、丁三种预防措施,此时突发事件不发生的概率为1—(1—0.8)(1—0.7)(1—0.6)=1—0.024=0.976.综合上述三种预防方案可知,在总费用不超过120万元的前提下,联合使用乙、丙、丁三种预防措施可使此突发事件不发生的概率最大.3.(本小题满分12分)①②③甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)分别求甲、乙两人考试合格的概率;(Ⅱ)求甲、乙两人至少有一人考试合格的概率.(04福建18)解:(Ⅰ)设甲、乙两人考试合格的事件分别为A 、B ,则P(A)=310361426C C C C +=1202060+=32,P(B)=310381228C C C C +=1205656+=1514.答:甲、乙两人考试合格的概率分别为.151432和(Ⅱ)解法一、因为事件A 、B 相互独立,所以甲、乙两人考试均不合格的概率为P(B A ⋅)=P(A )P(B )=(1-32)(1-1514)=451.∴甲、乙两人至少有一人考试合格的概率为P=1-P(B A ⋅)=1-451=4544.答:甲、乙两人至少有一人考试合格的概率为4544.解法二:因为事件A 、B 相互独立,所以甲、乙两人至少有一人考试合格的概率为P=P(A ·B )+P(A ·B)+P(A ·B)=P(A)P(B )+P(A )P(B)+P(A)P(B)=32×151+31×1514+32×1514=4544.答:甲、乙两人至少有一人考试合格的概率为4544.4.(本小题满分12分)设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5。
概率、排列组合、二项式定理专项训练1.5名志愿者随机进入3个不同的奥运场馆参加接待工作,则每个场馆至少有一名志愿者的概率为( )A.53B.151C.85D.81502.先后抛掷两枚均匀的骰子,骰子落地后朝上的点数分别为x ,y ,则2log 1x y =的概率为( ) A .16 B .536C .12D .112 3.记集合(){}22,|16A x y xy =+≤,集合()(){},|40,,B x y x y x y A =+-≤∈表示的平面区域分别为12,ΩΩ.若在区域1Ω内任取一点(),P x y ,则点P 落在区域2Ω中的概率为( ) A .24ππ- B .324ππ+ C .24ππ+ D .324ππ- 4.如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆内的黄豆数为225颗,以此实验数据为依据可以估计出椭圆的面积约为( ). A .16 B .17 C .18 D .195.已知,m n 是某事件发生的概率取值,则关于x 的一元二次方程20x nx m -+= 有实根的概率是 ( )A.12B. 14C. 18D. 1166.某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,其他班有5位,若采取抽签方式确定他们演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为 ( ) A .110 B .120 C .140 D .11207.有10个人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有( )种排法。
A .510C B .105105A A ÷ C .10102A ÷ D .55105A A8.有6个人围成一圈站,不同的站法种数为( )A .720种B .420种C .120种D .60种 9.用0、1、2、3组成个位数字不是1且没有重复数字的四位数共有( ). A .10个 B .12个 C .14个 D .16个10.某校有六间不同的电脑室,每天晚上至少开放两间,欲求不同安排方案的种数,现有3位同学分别给出了下列三个结果:①26C ;②627-;③345666662C C C C+++,其中正确的结论是( )A .①B .①与②C .②与③D .①②③11.从1,3,5,7,9这5个奇数中选取3个数字,从2,4,6,8这4个偶数中选取2个数字,再将这5个数字组成没有重复数字的五位数,且奇数数字与偶数数字相间排列.这样的五位数的个数是( ) A.180 B.360 C.480 D.72012.设三位数n abc =,若以a ,b ,c 为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n 有 ( ) A. 45个B. 81个C. 165个D. 216个13.五名男同学,三名女同学外出春游,平均分成两组,每组4人,则女同学不都在同一组的不同分法有 A .30种 B .65种 C .35种 D .70种14.如图,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为( ) A.60 B.480 C.420 D.7015.若在231(3)2nx x-的展开式中含有常数项,则正整数n 取得最小值时的常数项为( ) A .1352- B .135- C .1352D .13516.7(1)x -展开式中系数最大的项为 ( ) A.第4项 B.第5项 C.第7项 D.第8项17.若521()1x a x ⎛⎫+- ⎪⎝⎭的展开式中常数项为-1,则a 的值为( )A .1B .8C .-1或-9D .1或918.在154)212(+x 的展开式中,系数是有理数的项共有( ) A.4项 B.5项 C.6项 D.7项19.若3162323()n n C C n N ++*=∈且2012(3)n n n x a a x a x a x -=++++ ,则012(1)nna a a a -+-+-= ( )A.256B.-256C.81D.-81 20.如果n 是正偶数,则C n 0+C n 2+…+C n n -2+C n n=( ) A. 2nB. 2n -1C. 2n -2D. (n -1)2n -121.若对任意实数x ,有3322103)2()2()2(-+-+-+=x a x a x a a x 成立,则=++321a a a ( ) A .1 B .8 C .19 D .27 22.若(010,)4k k k Z πθ=≤≤∈,则sin cos 1θθ+≥的概率为( )A .15 B .25 C .211 D .61123.连续抛掷一枚质地均匀的骰子,记下每次面朝上的点数,若出现三个不同的数就停止,则抛掷五次后恰好停止抛掷的不同记录结果总数是( )A .720B .840C .1200D .168024.有两个人在一座10层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则这两个人在不同层离开的概率为 ( ) A.19 B. 29 C. 49 D. 8925.有5个不同的红球和2个不同的黑球排成一列,在两端都有红球的排列中,其中红 球甲和黑球乙相邻的排法有( )A .720B .768C .960D .144026. 4人各写一张贺卡,先集中起来,然后每人从中拿一张别人写的贺卡,则四张贺卡的分配方式有( )A. 6种B. 9种C. 11种D. 23种27.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( ) A.24对 B.30对 C.48对 D.60对28.已知9922109)31(x a x a x a a x ++++=- ,则||||||||9210a a a a ++++ 等于( ) A .29B .49C .39D .129.已知2015220150122015(2)x a a x a x a x -=+++⋅⋅⋅+,则20242014()a a a a ++⋅⋅⋅+-21352015()a a a a ++⋅⋅⋅+= ( )A.12--B. 12-C. 1D.1- 30.已知()4220121x a a x a x +=++++ 7878a x a x +,则从集合,i j a M x x x R a ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭(0,1,2,,8;i = 0,1,2,,8j = )到集合{}1,0,1N =-的映射个数是( ) A .6561 B .316 C .2187 D .21031.设n a (2n ≥,*n N ∈)是(3)nx -的展开式中x 的一次项系数,则23182318333a a a +++= .32.为了庆祝六一儿童节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐3种卡片可获奖,现购买该种食品5袋,能获奖的概率为________.33.在区间[]0,1内随机的取两个数,a b ,则满足102a b ≤+≤的概率是 ;(用数字作答) 34.若二项式1nx x ⎛⎫+ ⎪⎝⎭展开式中只有第四项的系数最大,则这个展开式中任取一项为有理项的概率是____________.35.信号兵把红旗与白旗从上到下挂在旗杆上表示信号。
小学数学专项练习题排列组合与概率问题练习数学在小学阶段就开始学习,而排列组合与概率问题则是较为复杂的数学概念。
本文将为大家提供小学数学专项练习题,着重讲解排列组合与概率问题。
一、排列组合排列组合是数学中一个基础且复杂的概念,简单地说,排列就是从一定数量的元素中,取出特定数量的元素进行一定顺序的排列。
组合则是指无序选择元素时的情况。
例题1:从四个数(1、2、3、4)中选择两个数,可以组成多少个互不相同的二位数?解题思路:根据排列的定义,从四个数中选择两个数进行排列时,应为A4,2,即4个元素中取2个元素进行排列,每个元素只能出现1次。
排列的公式为:A n,m =n!/(n-m)!。
代入数据得:A 4,2 =4×3=12。
而题目要求组成的为二位数,因此应排除个位数为0的数。
故总方案数为:10-1-1×3=6,即组成的二位数为12、13、14、23、24、34。
例题2:5 个人参加运动会,其中 3 人获得前三名,问这 3 人获奖的方法有多少种?解题思路:根据排列的定义,从5个人中选择3个人进行排列时,应为A5,3,即5个元素中取3个元素进行排列,每个元素只能出现1次。
排列的公式为:A n,m =n!/(n-m)!。
代入数据得:A 5,3 =5×4×3=60。
因为排列中只有前三名才有奖,剩下的两个人就是普通选手,因此奖项无序。
也就是说,同一奖项内的三位选手排列顺序不重要。
因此,总方案数应除以获奖人数的阶乘,即60/3!=20。
二、概率问题概率是数学中一个基础而重要的概念,常见于其它学科中,如生物学、物理学等。
简单地说,概率是某事件发生的可能性。
例题3:在一个有7只红球,3只白球的罐子里,从罐子中任意取1个球,求取出红球的概率。
解题思路:根据概率的定义,一个事件发生的概率等于这个事件发生的次数与总次数之比。
因为罐子里总共有10只球,因此取球的总次数为:10。
在这十只球中取到红球的次数为:7。
2023年高中数学排列组合与概率试题2023年高中数学排列组合与概率试题是考察学生在这一知识领域掌握与应用能力的一套考题。
本试题包含多个小题,涵盖了排列组合和概率两个重要的数学概念。
以下将逐一解析每道试题,帮助同学们更好地理解和掌握这些知识。
题目一:已知集合A={x|2 ≤ x ≤ 6, x为整数},集合B={y|3 ≤ y ≤ 8, y为整数},求集合A和集合B的笛卡尔积的元素个数。
解析:集合A中的元素个数为6-2+1=5,集合B中的元素个数为8-3+1=6。
因此,集合A和集合B的笛卡尔积的元素个数为5*6=30。
题目二:某班级有8位男生和6位女生,从中选取3位同学参加学校的代表团,其中至少有1位是男生。
问有多少种不同的选择方式?解析:首先,计算从14位同学中选取3位同学的总方式数,即C(14, 3) = 364种。
然后,计算只选女生的方式数,即C(6, 3) = 20种。
最后,计算至少有1位男生的方式数,即总方式数减去只选女生的方式数,即364-20=344种。
题目三:由数字1、2、3、4、5组成的五位数中,有多少个数的各位数字之和为7?解析:观察题目可知,这是一个由排列组合求解的问题。
我们可以将各位数字之和为7的情况分成五种情况:情况一:一个位数为7,其他位数为0的情况,例如:70000;情况二:两个位数之和为7,其他位数为0的情况,例如:43000;情况三:一个位数为6,一个位数为1,其他位数为0的情况,例如:61000;情况四:一个位数为5,一个位数为2,其他位数为0的情况,例如:50200;情况五:一个位数为5,一个位数为1,一个位数为1,其他位数为0的情况,例如:51100。
根据以上分析,我们可以得出共有5种满足各位数字之和为7的五位数。
题目四:一张扑克牌由52张牌组成,从中任意抽取5张牌,求这5张牌全是红心的概率。
解析:首先,计算抽取5张牌的总概率,即C(52, 5)。
然后,计算红心牌的张数,共有13张红心牌。
排列组合与概率(理)一、选择题1、(2004理11)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( ) A110 B 120 C 140 D 11202、(2005理8)若)12(x x -n 展开式中含21x 项的系数与含41x 项的系数之比为-5,则n 等于 ( ) A .4 B .6C .8D .10 3、(2006理5)若n x x ⎪⎪⎭⎫ ⎝⎛-13的展开式中各项系数之和为64,则展开式的常数项为( ) (A )-540 (B )-162 (C )162 (D )5404、(2006理6)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg ),得到频率分布直方图如下:根据上图可得这100名学生中体重在[)5.64,5.56的学生人数是( )(A )20 (B )30(C )40 (D )505、(2006理8)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )(A )30种 (B )90种(C )180种 (D )270种6、(2007理4)若n x x )1(+展开式的二项式系数之和为64,则展开式的常数项为( )A 、10B 、20C 、30D 、1207、(2007理6)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( )A 、41B 、12079C 、43D 、2423 8、(2008理5)已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<=( ) (A)15 (B)14 (C)13 (D)12 9、(2009理3)282()x x +的展开式中4x 的系数是( )A .16B .70C .560D .112010、(2009理6)锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。
高考数学最新真题专题解析—概率与排列组合(新高考卷)【母题来源】2022年新高考I卷【母题题文】从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.23【答案】【解析】【分析】本题考查了古典概型及其计算,涉及组合数公式、对立事件的概率公式,属基础题.【解答】解:由题可知,总的取法有72=21种,不互质的数对情况有:两个偶数,3和6.所以两个数互质的概率为=1−42+121=23.【母题来源】2022年新高考II卷【母题题文】甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有( )A.12种B.24种C.36种D.48种【答案】【分析】本题考查排列、组合的运用,属于基础题.【解答】解:先利用捆绑法排乙丙丁成四人,再用插空法选甲的位置,则有223321=24种.【命题意图】第1题考察计数原理,考察排列组合的应用,考察古典概型的计算,考察应用排列组合计算古典概型问题的概率。
第2题考察排列组合的捆绑法、插空法等计算方法。
试题通过设计优化情境,应用型、创新性的考察。
【命题方向】排列组合与概率是高考必考的知识点之一,其中概率是相对容易排列组合则时难时易。
主要考察分类、分布计算原理的应用,考察古典概型及几何概型,突出考察分类讨论思想,考察转化化归数学思想应用,试题在问题情境的设置上越来越接近生活,把实际问题合理、正确的转化为排列组合概率问题,以此来考察思想、应用、创新等能力。
排列、组合与概率常以现实生活、社会热点为载体【得分要点】涉及到排列组合的综合问题,处理此类问题一般先分析如何安排,在安排时是分类还是分步,元素之间是否讲顺序,以及分组问题注意重复情况的处理,对各种情况一定要仔细斟酌题意,写全切不要重复1.古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.2.古典概率中的“人坐座位模型基础”:特征:1.一人一位;2、有顺序;3、座位可能空;4、人是否都来坐,来的是谁;5、必要时,座位拆迁,剩余座位随人排列。
2023届新高考卷概率与统计热门考题汇编第一部分:基本原理和重要概念一、分类加法计数原理和分步乘法计数原理分类加法计数原理分步乘法计数原理相同点用来计算完成一件事的方法种类不同点分类完成,类类相加分步完成,步步相乘每类方案中的每一种方法都能独立完成这件事每步依次完成才算完成这件事(每步中的一种方法不能独立完成这件事)注意点类类独立,不重不漏步步相依,步骤完整二、常见的一些排列问题及其解决方法直接法把符合条件的排列数直接列式计算优先法优先安排特殊元素或特殊位置捆绑法把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中定序问题除法处理对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列间接法正难则反,等价转化的方法三、分组分配问题(1)分组问题属于“组合”问题,常见的分组问题有三种:①完全均匀分组,每组的元素个数均相等;②部分均匀分组,应注意不要重复,有n组均匀,最后必须除以n!;③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.四、二项式定理(1)一般地,对于任意正整数,都有:(a+b)n=C0n a n+C1n a n-1b+⋯+C r n a n-r b r+⋯+C n n b n(n∈N∗),这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做的二项展开式.式中的C r n a n-r b r做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:T r+1=C r n a n-r b r,其中的系数C rn (r =0,1,2,⋯,n )叫做二项式系数,2.(2)两个常用的二项展开式:①(a -b )n =C 0n a n +C 1n a n -1b +L +-1 r C r n a n -r b r +L +-1 n C n n b n (n ∈N ∗),②1+x n =1+C 1n x +C 2n x 2+L +C r n x r +L +x n(3)二项式系数的性质(杨辉三角形)①每一行两端都是1,即C 0n =C n n ;其余每个数都等于它“肩上”两个数的和,即C m n +1=C m -1n +C m n .②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即C m n =C n -m n .③二项式系数和令a =b =1,则二项式系数的和为C 0n +C 1n +C 2n +⋯+C r n +⋯+C n n =2n ,变形式C 1n +C 2n +⋯+C r n +⋯+C n n =2n -1.④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令a =1,b =-1,则C 0n -C 1n +C 2n -C 3n +⋯+(-1)n C n n =(1-1)n =0,从而得到:C 0n +C 2n +C 4n ⋅⋅⋅+C 2r n +⋅⋅⋅=C 1n +C 3n +⋯+C 2r +1n +⋅⋅⋅=12⋅2n =2n -1.⑤最大值:如果二项式的幂指数n 是偶数,则中间一项T n 2+1的二项式系数C n 2n 最大;如果二项式的幂指数n 是奇数,则中间两项T n +12,T n +12+1的二项式系数C n -12n ,C n +12n相等且最大.⑥求(a +bx )n 展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为A 1,A 2,⋅⋅⋅,A n +1,设第r +1项系数最大,应有A r +1≥A rA r +1≥A r +2 ,从而解出r 来.(4)二项式系数和的计算与赋值五、二项分布1.n 重伯努利试验的概念只包含两个可能结果的试验叫做伯努利试验,将一个伯努利试验独立地重复进行n 次所组成的随机试验称为n 重伯努利试验.2.n 重伯努利试验具有如下共同特征(1)同一个伯努利试验重复做n 次;(2)各次试验的结果相互独立.3.二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为:P (X =k )=C k n p k(1−p )n −k ,k =0,1,2,⋅⋅⋅n ,如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从二项分布,记作X ~B (n ,p )4.一般地,可以证明:如果X ~B (n ,p ),那么EX =np ,DX =np (1−p ).六、超几何分布1.超几何分布模型是一种不放回抽样,一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -kN -MC nN,k =m ,m +1,m +2,⋯,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max {0,n -N +M },r =min {n ,M }.如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布.2.超几何分布的期望E (X )==np (p 为N 件产品的次品率).七、二项分布与超几何分布的区别1.看总体数是否给出,未给出或给出总体数较大一般考查二项分布,此时往往会出现重要的题眼“将频率视为概率”.2.看一次抽取抽中“次品”概率是否给出,若给出或可求出一般考查二项分布.3.看一次抽取的结果是否只有两个结果,若只有两个对立的结果A 或A ,一般考查二项分布.4.看抽样方法,如果是有放回抽样,一定是二项分布;若是无放回抽样,需要考虑总体数再确定.5.看每一次抽样试验中,事件是否独立,事件发生概率是否不变,若事件独立且概率不变,一定考查二项分布,这也是判断二项分布的最根本依据.6.把握住超几何分布与二项分布在定义叙述中的区别,超几何分布多与分层抽样结合,出现“先抽,再抽”的题干信息.7.二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为:P (X =k )=C k n p k(1−p )n −k ,k =0,1,2,⋅⋅⋅n ,如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从二项分布,记作X ~B (n ,p )8.一般地,可以证明:如果X ~B (n ,p ),那么EX =np ,DX =np (1−p ).八、二项分布的两类最值(1)当p 给定时,可得到函数f (k )=C k n p k (1−p )n −k ,k =0,1,2,⋅⋅⋅n ,这个是数列的最值问题.p kp k −1=C n k p k (1−p )n −k C k −1n p k −1(1−p )n −k +1=(n −k +1)p k (1−p )=k (1−p )+(n +1)p −k k (1−p )=1+(n +1)p −k k (1−p ).分析:当k <(n +1)p 时,p k >p k −1,p k 随k 值的增加而增加;当k >(n +1)p 时,p k <p k −1,p k 随k 值的增加而减少.如果(n +1)p 为正整数,当k =(n +1)p 时,p k =p k −1,此时这两项概率均为最大值.如果(n +1)p 为非整数,而k 取(n +1)p 的整数部分,则p k 是唯一的最大值.注:在二项分布中,若数学期望为整数,则当随机变量k 等于期望时,概率最大.(2)当k 给定时,可得到函数f (p )=C k n p k(1−p )n −k ,p ∈(0,1),这个是函数的最值问题,这可以用导数求函数最值与最值点.分析:f '(p )=C k n kp k −1(1−p )n −k −p k (n −k )(1−p )n −k −1=C k n p k −1(1−p )n −k −1k (1−p )−(n −k )p =C k n p k −1(1−p )n −k −1(k −np ).当k =1,2,⋯,n −1时,由于当p <k n 时,f '(p )>0,f (p )单调递增,当p >kn时,f '(p )<0,f (p )单调递减,故当p =k n 时,f (p )取得最大值,f (p )max =f kn.又当p →0,f (p )→1,当p →0时,f (p )→0,从而f (p )无最小值.九、复杂概率计算(1)善于引入变量表示事件:可用“字母+变量角标”的形式表示事件“第几局胜利”,例如:A i 表示“第i 局比赛胜利”,则A i表示“第i 局比赛失败”.(2)理解事件中常见词语的含义:A ,B 中至少有一个发生的事件为A ∪B ;A ,B 都发生的事件为AB ;A ,B 都不发生的事件为;A ,B 恰有一个发生的事件为A ∪B ;A ,B 至多一个发生的事件为A ∪B ∪.(3)善于“正难则反”求概率:若所求事件含情况较多,可以考虑求对立事件的概率,再用P A =1-P A解出所求事件概率.十、条件概率1.条件概率定义一般地,设A ,B 为两个随机事件,且P (A )>0,我们称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率,简称条件概率.可以看到,P (B |A )的计算,亦可理解为在样本空间A 中,计算AB 的概率. 于是就得到计算条件概率的第二种途,即P (B |A )=n (AB )n (A )=n AB n Ω n A n Ω=P ABP A.特别地,当P (B |A )=P (B )时,即A ,B 相互独立,则P (AB )=P (A )P (B ).2.条件概率的性质设P (A )>0,全样本空间定义为Ω,则(1)P Ω|A =1;(2)如果B 与C 是两个互斥事件,则P ((B ∪C )|A )=P B |A +P C |A ;(3)设事件A 和B 互为对立事件,则P (B∣A )=1-P (B ∣A ).十一、全概率公式与贝叶斯公式1.在全概率的实际问题中我们经常会碰到一些较为复杂的概率计算,这时,我们可以用“化整为零”的思想将它们分解为一些较为容易的情况分别进行考虑一般地,设A 1,A 2,⋯,A n 是一组两两互斥的事件,A 1∪A 2∪⋯∪A n =Ω,且P A i >0,i =1,2,⋯,n ,则对任意的事件B ⊆Ω,有P (B )=ni =1P A i P B ∣A i .我们称上面的公式为全概率公式,全概率公式是概率论中最基本的公式之一.2.贝叶斯公式设A 1,A 2,⋯,A n 是一组两两互斥的事件,A 1∪A 2∪⋯∪A n =Ω,且P A i >0,i =1,2,⋯,n ,则对任意事件B ⊆Ω,P B >0,有P A i ∣B =P A i P B ∣A iP (B )=P A i P B ∣A ink =1P A k P B ∣A k,i =1,2,⋯,n .在贝叶斯公式中,P A i 和P A i |B 分别称为先验概率和后验概率.十二、一维随机游走与马尔科夫链1.转移概率:对于有限状态集合S ,定义:P i ⋅j =P X n +1=j X n =i 为从状态i 到状态j 的转移概率.2.马尔可夫链:若P X n +1=i X n =i ,X n -1=i n -1,⋅⋅⋅,X 0=i 0=P X n +1=j X n =i =P ij ,即未来状态X n +1只受当前状态X n 的影响,与之前的X n -1,X n -2,⋅⋅⋅,X 0无关.3.一维随机游走模型.设数轴上一个点,它的位置只能位于整点处,在时刻t =0时,位于点x =i i ∈N + ,下一个时刻,它将以概率α或者βα∈0,1 ,α+β=1 向左或者向右平移一个单位. 若记状态X t =i 表示:在时刻t 该点位于位置x =i i ∈N + ,那么由全概率公式可得:P X t +1=i =P X t =i -1 ⋅P X t +1=i X t =i -1 +P X t =i +1 ⋅P X t +1=i X t =i +1 另一方面,由于P X t +1=i X t =i -1 =β,P X t +1=i X t =i +1 =α,代入上式可得:P i =α⋅P i +1+β⋅P i -1进一步,我们假设在x =0与x =m m >0,m ∈N + 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,P 0=0,P m =1随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:P i =a ⋅P i +1+b ⋅P i +c ⋅P i -1有了这样的理论分析,下面我们看全概率公式及以为随机游走模型在2019年全国1卷中的应用.十三、统计1.线性回归方程与最小二乘法(1)回归直线方程过样本点的中心(x ,y ),是回归直线方程最常用的一个特征(2)我们将y =b x +a称为Y 关于x 的线性回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线.这种求经验回归方程的方法叫做最小二乘法,求得的b ,a叫做b ,a 的最小二乘估计(leastsquaresestimate ),其中b =ni =1x i -xy i -y n i =1x i -x 2 =ni =1x i y i -nx ⋅y ni =1x 2i -nx2a =y -b x .(3)残差的概念对于响应变量Y ,通过观测得到的数据称为观测值,通过经验回归方程得到的y称为预测值,观测值减去预测值称为残差.残差是随机误差的估计结果,通过残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面工作称为残差分析.(4)刻画回归效果的方式(i )残差图法:作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图.若残差点比较均匀地落在水平的带状区域内,带状区域越窄,则说明拟合效果越好.(ii )残差平方和法:残差平方和ni =1y i -y i 2 ,残差平方和越小,模型拟合效果越好,残差平方和越大,模型拟合效果越差.(iii )利用R 2刻画回归效果:决定系数R 2是度量模型拟合效果的一种指标,在线性模型中,它代表解释变量客立预报变量的能力.R 2=1ni =1y i -yi 2ni =1y i -y2,R 2越大,即拟合效果越好,R 2越小,模型拟合效果越差.第二部分.试题汇编一、单选题2.(福建省福州市普通高中2023届高三毕业班质量检测(二检))若二项式3x 2+1x2n展开式中存在常数项,则正整数n 可以是()A.3B.5C.6D.7【详解】二项式3x 2+1x2n展开式的通项为T r +1=C r n(3x 2)n -r1x 2r =3n -r C r n x 2n -4r,令2n -4r =0,解得:r =n2,又因为0≤r ≤n 且r 为整数,所以n 为2的倍数,所以n =6,故选:C .3.(福建省福州市普通高中2023届高三毕业班质量检测(二检))为培养学生“爱读书、读好书、普读书”的良好习惯,某校创建了人文社科类、文学类、自然科学类三个读书社团.甲、乙两位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,则这两位同学恰好参加同一个社团的概率为()A.13B.12C.23D.34【详解】记人文社科类、文学类、自然科学类三个读书社团分别为a ,b ,c ,则甲、乙两位同学各自参加其中一个社团的基本事件有a ,a ,a ,b ,a ,c ,b ,a ,b ,b ,b ,c ,c ,a ,c ,b ,c ,c 共9种,而这两位同学恰好参加同一个社团包含的基本事件有a ,a ,b ,b ,c ,c 共3种,故这两位同学恰好参加同一个社团的概率P =39=13.故选:A 4.(福建省厦门市2023届高三下学期第二次质量检测)ax +y 5的展开式中x 2y 3项的系数等于80,则实数a =()A.2B.±2C.22D.±22【详解】展开式的通项公式是T r +1=C r 5⋅ax 5-r ⋅y r ,当r =3时,x 2y 3项的系数为C 35⋅a 2=80,解得:a =±2 2.故选:D5.(福建省厦门市2023届高三下学期第二次质量检测)厦门山海健康步道云海线全长约23公里,起于东渡邮轮广场,终于观音山沙滩,沿线申联贸鸟湖、狐尾山、仙岳山、园山、薛岭山、虎头山、金山、湖边水库、五缘湾、虎仔山、观音山等“八山三水”.市民甲计划从“八山三水”这11个景点中随机选取相邻的3个游览,则选取的景点中有“水”的概率为()A.13B.49C.59D.109165【详解】11个景点随机选取相邻的3个游览,共有9种情况,选取景点中有“水”的对立事件是在狐尾山、仙岳山、园山、薛岭山、虎头山、金山中选取3个相邻的,共有4种情况,则其概率P =49,则11个景点中随机选取相邻的3个游览,则选取的景点中有“水”的概率P =1-49=59.故选:C 6.(广东省2023届高考一模)如图,在两行三列的网格中放入标有数字1,2,3,4,5,6的六张卡片,每格只放一张卡片,则“只有中间一列两个数字之和为5”的不同的排法有()A.96种B.64种C.32种D.16种【详解】根据题意,分3步进行,第一步,要求“只有中间一列两个数字之和为5”,则中间的数字只能为两组数1,4或2,3中的一组,共有2A 22=4种排法;第二步,排第一步中剩余的一组数,共有A 14A 12=8种排法;第三步,排数字5和6,共有A 22=2种排法;由分步计数原理知,共有不同的排法种数为4×8×2=64.故选:B .7.(广东省佛山市2023届高三教学质量检测(一))已知事件A ,B ,C 的概率均不为0,则P A =P B的充要条件是()A.P A ∪B =P A +P BB.P A ∪C =P B ∪CC.P AB =P ABD.P AC =P BC【详解】解:对于A :因为P A ∪B =P A +P B -P A ∩B ,由P A ∪B =P A +P B ,只能得到P A ∩B =0,并不能得到P A =P B ,故A 错误;对于B :因为P A ∪C =P A +P C -P A ∩C ,P B ∪C =P B +P C -P B ∩C ,由P A ∪C =P B ∪C ,只能得到P A -P A ∩C =P B -P B ∩C ,由于不能确定A ,B ,C 是否相互独立,故无法确定P A =P B ,故B 错误;对于C :因为P AB =P A -P AB ,P AB =P B -P AB ,又P AB =P AB ,所以P A =P B ,故C 正确;对于D :由于不能确定A ,B ,C 是否相互独立,若A ,B ,C 相互独立,则P AC =P A P C ,P BC =P B P C ,则由P AC =P BC 可得P A =P B ,故由P AC =P BC 无法确定P A =P B ,故D 错误;故选:C8.(广东省广州市2023届高三综合测试(一))“回文”是古今中外都有的一种修辞手法,如“我为人人,人人为我”等,数学上具有这样特征的一类数称为“回文数”、“回文数”是指从左到右与从右到左读都一样的正整数,如121,241142等,在所有五位正整数中,有且仅有两位数字是奇数的“回文数”共有()A.100个B.125个C.225个D.250个【详解】依题意,五位正整数中的“回文数”具有:万位与个位数字相同,且不能为0;千位与十位数字相同,求有且仅有两位数字是奇数的“回文数”的个数有两类办法:最多1个0,取奇数字有A15种,取能重复的偶数字有A14种,它们排入数位有A22种,取偶数字占百位有A15种,不同“回文数”的个数是A15A14A22A15=200个,最少2个0,取奇数字有A15种,占万位和个位,两个0占位有1种,取偶数字占百位有A15种,不同“回文数”的个数是A15A15=25个,由分类加法计算原理知,在所有五位正整数中,有且仅有两位数字是奇数的“回文数”共有200+25=225个.故选:C9.(广东省深圳市2023届高三第一次调研)安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为()A.15B.310C.325D.625【详解】5名大学生分三组,每组至少一人,有两种情形,分别为2,2,1人或3,1,1人;当分为3,1,1人时,有C35A33=60种实习方案,当分为2,2,1人时,有C25C23A22⋅A33=90种实习方案,即共有60+90=150种实习方案,其中甲、乙到同一家企业实习的情况有C13A33+C23A33=36种,故大学生甲、乙到同一家企业实习的概率为36150=625,故选:D.10.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)一组数据按照从小到大的顺序排列为1,2,3,5,6,8,记这组数据的上四分位数为n,则二项式2x-1xn展开式的常数项为()A.-160B.60C.120D.240【详解】因为6×75%=4.5,所以n=6,所以2x-1 x6展开式的通项为:T r+1=C r62x6-r-1 xr=C r6⋅26-r⋅-1 r⋅x6-32r,令6-32r=0得:r=4,所以展开式的常数项为C46×22×-14=60,故选:B.11.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)已知x3+2x2n的展开式中各项系数和为243,则展开式中常数项为()A.60B.80C.100D.120【详解】当x=1时,3n=243,解得n=5,则x3+2 x2n的展开式第r+1项T r+1=C r5(x3)5-r2x2 r=C r5 x15-3r2r x-2r=C r52r x15-5r,令15-5r=0,解得r=3,所以C3523=10×8=80,故选:B12.(江苏省南京市、盐城市2023届高三下学期一模)某种品牌手机的电池使用寿命X(单位:年)服从正态分布N 4,σ2 σ>0 ,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为()A.0.9B.0.7C.0.3D.0.1【详解】由题得:P x ≥2 =0.9,故P x <2 =0.1,因为6+22=4,所以根据对称性得:P x ≥6 =P x <2 =0.1.故选:D .13.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))“绿水青山,就是金山银山”,随着我国的生态环境越来越好,外出旅游的人越来越多.现有两位游客慕名来江苏旅游,他们分别从“太湖鼋头渚、苏州拙政园、镇江金山寺、常州恐龙园、南京夫子庙、扬州瘦西湖”这6个景点中随机选择1个景点游玩.记事件A 为“两位游客中至少有一人选择太湖鼋头渚”,事件B 为“两位游客选择的景点不同”,则P B A =()A.79B.89C.911D.1011【详解】由题可得P A =6×6-5×56×6=1136,P AB =2×56×6=518,所以P B A =P ABP A=5181136=1011.故选:D .14.(2023年湖北省八市高三(3月)联考)甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有A ,B ,C 三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在A 小区的概率为()A.193243B.100243C.23D.59【详解】首先求所有可能情况,5个人去3个地方,共有35=243种情况,再计算5个人去3个地方,且每个地方至少有一个人去,5人被分为3,1,1或2,2,1当5人被分为3,1,1时,情况数为C 35×A 33=60;当5人被分为2,2,1时,情况数为C 15×C 24A 22×A 33=90;所以共有60+90=150.由于所求甲不去A ,情况数较多,反向思考,求甲去A 的情况数,最后用总数减即可,当5人被分为3,1,1时,且甲去A ,甲若为1,则C 34×A 22=8,甲若为3,则C 24×A 22=12,共计8+12=20种,当5人被分为2,2,1时,且甲去A ,甲若为1,则C 24A 22×A 22=6,甲若为2,则C 14×C 13×A 22=24,共计6+24=30种,所以甲不在A 小区的概率为150-20+30 243=100243,故选:B .15.(山东省济南市2023届高三下学期3月一模)从正六边形的6个顶点中任取3个构成三角形,则所得三角形是直角三角形的概率为()A.310B.12C.35D.910【详解】以点A为例,以点A为其中一个顶点的三角形有△ABC,△ABD,△ABE,△ABF,△ACD,△ACE,△ACF,△ADE,△ADF,△AEF,共10个,其中直角三角形为△ABD,△ABE,△ACD,△ACF,△ADE,△ADF,共6个,故所得三角形是直角三角形的概率为610=35.故选:C16.(山东省青岛市2023届高三下学期第一次适应性检测)某次考试共有4道单选题,某学生对其中3道题有思路,1道题完全没有思路.有思路的题目每道做对的概率为0.8,没有思路的题目,只好任意猜一个答案,猜对的概率为0.25.若从这4道题中任选2道,则这个学生2道题全做对的概率为()A.0.34B.0.37C.0.42D.0.43【详解】设事件A表示“两道题全做对”,若两个题目都有思路,则P1=C23C24×0.82=0.32,若两个题目中一个有思路一个没有思路,则P2=C11C13C24×0.8×0.25=0.1,故P(A)=P1+P2=0.32+0.1=0.42,故选:C17.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知随机变量X服从正态分布N2,σ2,且P(X>3)=16,则P(X<1)=()A.13B.23C.16D.56【详解】随机变量X服从正态分布N2,σ2,显然对称轴X=2,所以由对称性知P(x<1)=P(x>3)=16,故选:C.18.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)(1+x)n展开式中二项式系数最大的是C5n,则n不可能是()A.8B.9C.10D.11【详解】当n=9时,C59是最大的二项式系数,符合要求,当n=10时,C510是最大的二项式系数,符合要求,当n =11时,C 511=C 611是最大的二项式系数,符合要求,当n =8时,显然C 58<C 48,不满足,故选:A .19.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)一枚质地均匀的骰子,其六个面的点数分别为1,2,3,4,5,6.现将此骰子任意抛掷2次,正面向上的点数分别为X 1,X 2.设Y 1=X 1,X 1≥X 2X 2,X 1<X 2 ,设Y 2=X 1,X 1≤X 2X 2,X 1>X 2 ,记事件A =“Y 1=5”,B =“Y 2=3”,则P B ∣A =()A.19B.29C.15D.211【详解】将此骰子任意抛掷2次,则基本事件的方法总数为36种,显然Y 1是取大函数,所以A =“Y 1=5”,则X 1,X 2中有一个数字是5,另一个数字小于等于5,有5×2-1=9种;显然Y 2是取小函数,所以A =“Y 1=5”,B =“Y 2=3”同时发生,则有3,5 和5,3 ;所以P A =936=14,P BA =236,所以P B ∣A =P BA P A=29.故选:B .二、多选题20.(福建省厦门市2023届高三下学期第二次质量检测)李明每天7:00从家里出发去学校,有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到:坐公交车平均用时30分钟,样本方差为36;自行车平均用时34分钟,样本方差为4.假设坐公交车用时X 和骑自行车用时Y 都服从正态分布,则()A.P (X >32)>P (Y >32)B.P (X ≤36)=P (Y ≤36)C.李明计划7:34前到校,应选择坐公交车D.李明计划7:40前到校,应选择骑自行车【详解】A .由条件可知X ∼N 30,62 ,Y ∼N 34,22 ,根据对称性可知P Y >32 >0.5>P X >32 ,故A 错误;B .P X ≤36 =P X ≤μ+σ , P Y ≤36 =P Y ≤μ+σ ,所以P X ≤36 =P Y ≤36 ,故B 正确;C . P X ≤34 >0.5=P Y ≤34 ,所以P X ≤34 >P Y ≤34 ,故C 正确;D . P X ≤40 <P X <42 =P X <μ+2σ ,P Y ≤40 =P Y ≤μ+3σ ,所以P X ≤40 <P Y ≤40 ,故D 正确.故选:BCD21.(广东省佛山市2023届高三教学质量检测(一))中国共产党第二十次全国代表大会的报告中,一组组数据折射出新时代十年的非凡成就,数字的背后是无数的付出,更是开启新征程的希望.二十大首场新闻发布会指出近十年我国居民生活水平进一步提高,其中2017年全国居民恩格尔系数为29.39%,这是历史上中国恩格尔系数首次跌破30%.恩格尔系数是由德国统计学家恩斯特·恩格尔提出的,计算公式是“恩格尔系数=食物支出金额总支出金额×100%”.恩格尔系数是国际上通用的衡量居民生活水平高低的一项重要指标,一般随居民家庭收入和生活水平的提高而下降,恩格尔系数达60%以上为贫困,50%~60%为温饱,40%~50%为小康,30%~40%为富裕,低于30%为最富裕.如图是近十年我国农村与城镇居民的恩格尔系数折线图,由图可知()A.城镇居民2015年开始进入“最富裕”水平B.农村居民恩格尔系数的平均数低于32%C.城镇居民恩格尔系数的第45百分位数高于29%D.全国居民恩格尔系数等于农村居民恩格尔系数和城镇居民恩格尔系数的平均数【详解】对于A:从折线统计图可知2015年开始城镇居民的恩格尔系数均低于30%,即从2015年开始进入“最富裕”水平,故A正确;对于B:农村居民恩格尔系数只有2017、2018、2019这三年在30%∼32%之间,其余年份均大于32%,且2012、2013这两年大于(等于)34%,故农村居民恩格尔系数的平均数高于32%,故B错误;对于C:城镇居民恩格尔系数从小到大排列(所对应的年份)前5位分别为2019、2018、2017、2021、2020,因为10×45%=4.5,所以第45百分位数为第5位,即2020年的恩格尔系数,由图可知2020年的恩格尔系数高于29%,故C正确;对于D:由于无法确定农村居民与城镇居民的比例,显然农村居民占比要大于50%,故不能用农村居民恩格尔系数和城镇居民恩格尔系数的平均数作为全国居民恩格尔系数,故D错误;故选:AC22.(广东省广州市2023届高三综合测试(一))某校随机抽取了100名学生测量体重,经统计,这些学生的体重数据(单位:kg)全部介于45至70之间,将数据整理得到如图所示的频率分布直方图,则()A.频率分布直方图中a 的值为0.07B.这100名学生中体重低于60kg 的人数为60C.据此可以估计该校学生体重的第78百分位数约为62D.据此可以估计该校学生体重的平均数约为62.5【详解】对于A 项,因为5×(0.01+a +0.06+0.04+0.02)=1,解得:a =0.07,故A 项正确;对于B 项,(0.01+0.07+0.06)×5×100=70人,故B 项错误;对于C 项,因为0.01×5+0.07×5+0.06×5=0.7,0.01×5+0.07×5+0.06×5+0.04×5=0.9,0.7<0.78<0.9,所以第78百分位数位于[60,65)之间,设第78百分位数为x ,则0.01×5+0.07×5+0.06×5+(x -60)×0.04=0.78,解得:x =62,故C 项正确;对于D 项,因为0.01×5×47.5+0.07×5×52.5+0.06×5×57.5+0.04×5×62.5+0.02×5×67.5=57.25,即:估计该校学生体重的平均数约为57.25,故D 项错误.故选:AC .23.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)下列命题中正确的是()A.若样本数据x 1,x 2,⋯,x 20的样本方差为3,则数据2x 1+1,2x 2+1,⋯,2x 20+1的方差为7B.经验回归方程为y=0.3-0.7x 时,变量x 和y 负相关C.对于随机事件A 与B ,P A >0,P B >0,若P A B =P A ,则事件A 与B 相互独立D.若X ∼B 7,12,则P X =k 取最大值时k =4【详解】对于A ,数据2x 1+1,2x 2+1,⋯,2x 20+1的方差为22×3=12,所以A 错误;对于B ,回归方程的直线斜率为负数,所以变量x 与y 呈负的线性相关关系,所以B 正确;对于C ,由P A B =P ABP B=P A ,得P AB =P A ⋅P B ,所以事件A 与事件B 独立,所以C正确;对于D ,由P X =k ≥P X =k +1P X =k ≥PX =k -1,即C k 712 7≥C k +17127C k 712 7≥Ck -17127,解得k =3或k =4,所以D 错误.故选:BC .24.(湖北省武汉市2023届高三下学期二月调研)在一次全市视力达标测试后,该市甲乙两所学校统计本校理科和文科学生视力达标率结果得到下表:甲校理科生甲校文科生乙校理科生乙校文科生达标率60%70%65%75%定义总达标率为理科与文科学生达标人数之和与文理科学生总人数的比,则下列说法中正确的有()A.乙校的理科生达标率和文科生达标率都分别高于甲校B.两校的文科生达标率都分别高于其理科生达标率C.若甲校理科生和文科生达标人数相同,则甲校总达标率为65%D.甲校的总达标率可能高于乙校的总达标率【详解】由表中数据可得甲校理科生达标率为60%,文科生达标率为70%,乙校理科生达标率为65%,文科生达标率为75%,故选项AB 正确;设甲校理科生有x 人,文科生有y 人,若0.6x =0.7y ,即6x =7y ,则甲校总达标率为0.6x +0.7yx +y=4265,选项C 错误;由总达标率的计算公式可知当学校理科生文科生的人数相差较大时,所占的权重不同,总达标率会接近理科生达标率或文科生达标率,当甲校文科生多于理科生,乙校文科生少于理科生时,甲校的总达标率可能高于乙校的总达标率,选项D 正确;故选:ABD25.(湖北省武汉市2023届高三下学期二月调研)已知离散型随机变量X 服从二项分布B n ,p ,其中n ∈N ∗,0<p <1,记X 为奇数的概率为a ,X 为偶数的概率为b ,则下列说法中正确的有()A.a +b =1 B.p =12时,a =b C.0<p <12时,a 随着n 的增大而增大 D.12<p <1时,a 随着n 的增大而减小【详解】对于A 选项,由概率的基本性质可知,a +b =1,故A 正确,对于B 选项,由p =12时,离散型随机变量X 服从二项分布B n ,12 ,则P =X =k =C kn12k1-12n -kk =0,1,2,3,⋯,n ,所以a =12nC 1n +C 3n +C 5n +⋯⋯ =12n×2n -1=12,b =12nC 0n+C 2n+C 4n+⋯⋯ =12n×2n -1=12,所以a =b ,故B 正确,。
排列组合与概率公考例题
排列组合与概率是公考中常见的数学问题,下面提供一些相关的例题。
1.概率问题
题目:在某项测试中,测试结果为甲、乙、丙、丁、戊五个等级。
已知甲级和乙级均占30%,丙级占25%,丁级占20%,戊级占5%。
如果得分在75分以上(含75分)则评为甲级,那么随机抽取一人,其测试结果被评为甲级的概率是多少?
答案:0.3
解析:根据题目条件,甲级和乙级均占30%,即60%的得分在75分以上或75分以下。
因此,甲级的概率为30% / 60% = 0.5。
所以,随机抽取一人,其测试结果被评为甲级的概率是0.5,或者简单说,概率为0.3。
2.排列组合问题
题目:现有8名学生分配到3个不同的岗位进行工作,其中每个岗位至少有1名学生,则不同的分配方式共有_______ 种.
答案:105
解析:根据题意,可以分为两种情况进行讨论:第一种,3、2、3分配,有C83×C52×C32×A33=1680种;第二种,4、2、2分配,有A22 C84×C42×C32×C22×A33=105种,共有1680+105=1785种,故答案为:1785.。
一、投信箱法⑴5由数字0,1,2,3,4可组成多少个可重复数字的四位数?⑵5人到4家旅馆住店有几种住法?⑶已知A=﹛a,b,c,d﹜B=﹛1,2﹜从集A到集合B有多少种不同的映射?⑷将3个不同的小球,放在4个不同的盒子内,有多少种放法?(5)有五群鸽子其中有两群各自分别栖息在甲已两片树林中的栖息方法有多少种?⑼将3个相同的小球,放在4个不同的盒子内,有多少种放法?⑷设A={1,2,3,4,5} B={a,b,c}从A到B的映射使B中的每一个元素都有原象共有()个?5、4个小组,分别从3个风景点中选一处进行观光旅游,不同的选择方案的种数是. 二关于错排问题1.三和四个元素的全错排。
2、五个不同的元素a b c d e 每次全取作排列,如果a不能排在首位e不能排在末位,共有几种排法?781、六个不同的球分别装在六个有编号的小盒中,其中甲球不能放在A盒,乙球不能放在B 盒,有多少种放法?2、课程表问题:某一天的课程表要排入政治,语文,数学,物理,体育,美术六节课,如果第一节不排体育,最后一节不排数学,共有几种排法?(504)错排问题的推广:4、从6个运动员中选出4人参加4*100米接力赛,如果甲已两人都不跑第一棒,那么共有多少种不同的参赛方法?5、7个人按下列要求排成一纵队,分别有多少种不同的排法?① A ,B两人必须排在两头(240)②A不在队首,B不在队尾(3720)③A,B,C三人中两两互不相邻(1440)④A,B,C三人的前后顺序一定⑤A,B,C三人相邻(720)⑥A,B,C三人中至少有一人排在两头(3600)二邻或不邻,怎么办?1.一排6张椅子上坐3个人,每两人之间至少有一张空椅子,则共有多少种不同的坐法?2一条长椅子上有7个人,四人坐,求其中两个空位相邻另一张空位与这两个空位不相邻的坐法种数?3.要排一张有五个独唱和三个和唱节目的演出节目表,如果和唱节目不排头,并且任何两个和唱节目不相邻,则不同的排法种数是多少?4.由数字1,2,3,4,5,组成多少个没有重复数字1与2不相邻的五位数?5.由数字1,2,3,4,5,组成多少个没有重复数字1与2相邻的五位数?5.由数字0,1,2,3,4,5组成多少个没有重复数字3与4必须相邻的四位数?6.由1,2,3,4,5这五个数字可以组成多少个没有重复数字且3在4右边的五位数?7.9人成一排,规定甲,乙之间必须有四个人,问有多少种不同的排法?8.在一张节目表中原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,求有多少种不同的按排方法?9.三名男歌唱家和两名女歌唱家联合举办一场音乐会,演出的出场顺序要求两名女歌唱家之间恰有一名男歌唱家,共有多少出场方案。
10.计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同品种的画必须连在一起,并且水彩画不放在两端,则不同的陈列方式。
11.身高互不相同的7名运动员站成一排,甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?12.⑴四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?⑵四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?三、查字典法1 由0,1,2,3,4,5六个数字可以组成多少个没有重复数字比324105大的数?(297)练习⑴由数字1,2,3,4,5可以组成多少个没有重复数字且大于13000的自然数?⑵由数字1,2,3,4,5,6可以组成多少个没有重复数字且比500000大的偶数?3、用0、1、2、3、4五个数字,可以组成比2000大、且百位数字不是3的四位数有多少个?2 、求用0,1,2,3,6,9六个数码组成符合下列条件的无重复数字的三位数的个数①能被6整除②大于320而小于920 (21 39)3、由数字0,1,2,3,4,5可以组成多少个没有重复数字能被3整除的五位数?(216)4、数字0,1,2,3,4可以组成多少个没有重复数字的⑴四位偶数?⑵个位不是1的四位数。
例1.6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分例2.4名男生和6名女生组成至少有1个男生参加的三人实践活动小组,问组成方法共有多少种?⑽四个不同的小球放入编号为1、2、3、4四个盒子中,则恰有一个空盒的放法()例6.有13个队参加篮球赛,比赛时先分成两组,第一组7个队,第二组6个队.各组都进行单循环赛(即每队都要与本组其他各队比赛一场),然后由各组的前两名共4个队进行单循环赛决定冠、亚军,共需要比赛多少场?13.马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?四分类选取法1.有红、黄、蓝三种颜色的小球各五只,都分别标有字母A、、B、C、D、E现再次取五只要求字母各不相同且颜色齐备,有多少种不同的取法?2.将5本不同的书全部分给3人,每人至少1本,则不同的分法种数?(C51C41+C51C43+C53C21+C51C42+C52C31 +C52C32=150)3.有划船运动员10员,其中3人会划右舷,2人只会划左舷,其中5人既会划右舷又会划左舷,现在要从这10人当中选出6人平均分配在一只船的两舷划桨,不考虑在同一舷中3人的顺序,有多少种选法?6754.现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?5.四名优等生保送到三所学校,每所学校至少一名,则不同的选送方案是()6.九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?解:可以分为两类情况:①若取出6,则有种方法;②若不取6,则有种方法.根据分类计数原理,一共有+ =602种方法.7.1、2、、、、100中每次取不等的两数相乘,使它们的积是7的倍数,这样的取法有多少种?8.从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各1台,有多少种不同的取法?70例1.100件产品中有合格品90件,次品10件,现从中抽取4件检查.⑴都不是次品的取法有多少种?⑵至少有1件次品的取法有多少种?⑶不都是次品的取法有多少种?例2.从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?236例3、从5双不同的鞋中任取4只,4只鞋中至少有2只配成一双的可能取法种数?130 例4.甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?例5.6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?9、件不同礼品分送给4人,每人至少一件,而且礼品全部送出,那么送出礼品的方法数是.六平均分组法例1.6本不同的书,按下列要求各有多少种不同的选法:⑴分给甲、乙、丙三人,每人两本;⑵分为三份,每份两本;⑶分为三份,一份一本,一份两本,一份三本;⑷分给甲、乙、丙三人,一人一本,一人两本,一人三本;⑸分给甲、乙、丙三人,每人至少一本.例2、有9本不同的书,按2:3:4①分成3堆,有几种分法?②②分给甲乙丙三个学生,有几种分法?⑶一堆为5本,其余2堆本数相等④3堆本数相等例3、10个人按下列要求分组,有多少种不同的分法?①平均分成两组。
②平均分成两组,一组植树,另一组种草。
③分成三组,各组人数分别为2,3,5。
④分成三组,两组各三人,另一组4人。
⑤分成三组,各组人数分别为2,3,5,一组植树,一组种草,另一组打扫卫生。
⑥分成四组,两组各两人,另外两组各三人,分别参加四项不同的比赛。
故所求方法总数为种方法.⑿有5个队参加篮球比赛,首轮平均分成三组进行单循环赛,并规定同组的两个队不再赛第两场,则共进行的比赛有()场。
七插隔板法⑴某运输公司有7个车队,每个车队的车多于4辆,现在从这7个车队中抽出10辆车组成运输队,且每个车队至少1辆,则不同的抽法有()84⑵把10本相同的笔记本分给6名学生,每人至少1本,有多少种分法?C95=126⑶方程a+b+c+d=12有多少组正整数解?(分析:将12个完全相同的球排成一列,在它们之间形成的11个间隙中任意插入3块隔板,把球分成4堆,而每一种分派所得4堆球的各堆球的数目,即为a,b,c,d的一组正整数解,故原方程的正整数解的组数共有C113)⑻将10个名额分配给7个班,每个班至少有一个名额的分配方法()八环行排列:一般地,从n个不同元素中取m个元素进行环行排列,不同的排列种数为Pnm/m1.教师2人,学生6人,师生8人围圆桌而坐,有多少种不同的坐法?九“选取次品”模式1.某班有48名学生,其中有一名正班长,两名副班长,现在要选5名学生参加一活动,其中正、副班长都必须在内有多少种选法?9901. 三名新同学准备转入甲、乙、丙、丁四个班学习,在保证甲班有新同学的前提下每个新同学去哪个班可由他们自己选择,则有不同的分配方案----------------种。
2. 在排成4*4的方阵的16个点中,中心4个点在某一个圆内,其余12个点在圆外。
在16个点中任取3个点构成三角形,其中至少有一个顶点在圆内的三角形有()。
十表格法(较复杂的问题通过表格直观化)1、9人组成篮球队,其中7人善打前锋,3人善打后卫,现从中选5人(两卫三锋,且锋分左、中、右,卫分左、右)组队出场,有多少不同的组队方法?(分析由题设,必有1人即可打锋,又可打卫,则只会锋的有6人,只会卫的有2人)人数6人只会锋2人只会卫1人即又卫结果不同选法 3 2 A63A223 1 1(卫)A63C21A222 2 1(锋)C62A33A22十一、染色23 1 541、一个地区分5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色。
现有4种颜色可供选择,则不同的着色方法共有(72种)2、5 162433、一个地区分6个行政区域,现给地图着色,要求相邻区域不得使用同一颜色。
现有5种颜色可供选择,则不同的着色方法共有多少种?3、将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端点颜色不同;如果只有5种颜色可供使用,求不同的颜色方法总数。
4204、在一个正六边形的中种植四种不同颜色的植物,要求相邻区域不得种植同一颜色的植物,共有多少中种方法?9.某校高中一年级有6个班,高二年级有5个班,高三年级有8个班.各年级分别进行班与班的排球单循环赛,一共需要比赛多少场?②一个集合由8个不同的元素组成,这个集合中含有3个元素的子集有个.2.某班有三个小组,分别又12人、10人和9人组成,现要选派不属于同一组的两人参加班际之间的活动,不同的选派方法共有种.(A)318 (B)465 (C)636 (D)930.3.4名学生和3位老师站成一排照相,老师不站在两端,有多少种排法?4.某班选正、副班长的方法数与选4名运动员的方法数之比为1∶94,求该班同学的人数?2.书架上竖排着六本数,现将新购的3本书上架,要求不调乱书架上原有的书,那么不同的上架方式共有多少种?3.小李打算从10位朋友中邀请4位去旅游,这10位朋友中,有一对双胞胎,对这两位朋友,要么邀请,要么不邀请.求不同的邀请方案的种数.一、排列组合应用题1.5个相同的白子和3个相同的黑子紧邻地排成一列,可排得多少种不同的图案?2.1、2、3、4、7、9六个数字任取两个作为一个对数的底数和真数可得多少不同的数值?2.从参加决赛的6名运动员中决出前4名,在这4名中甲名列乙前的有多少种可能的结果?3.从4位教师6个学生中选出5人组成一个科研小组,若至少要有2位教师参加,有多少种选法?4.有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法有(2520 )5.角AOB的两边上除顶点O外,OA上再取5点,OB上再取4点,这10个点可以连成多少个三角形?6.求以正方体的顶点为顶点的四面体的个数?7.平面内有9个点,其中只有4个点在同一直线上⑴过这9个点中的每2个点,可连几条直线?⑵过这9个点中的每3个点,可作几个三角形?⑶过这9个点中的每4个点,可作几个四边形?(包括凹四边形)(1)过这9个点中的每2个点,可连几条射线?(2)过这9个点中的每2个点,可连几个向量?9(1)空间10个点,其中5个点在同一平面内,其余再无4点共面,过这些点可以连成多少个棱锥?(2)已知直线ax+by+c=0中的是取自集合 -3、-2、-1、0、1、2、3 中的3个不同元素,并且该直线的傾斜角为锐角,求符合这些条件的直线的条数。