“超级全能生”2019高考全国卷26省9月联考甲卷-数学(理科)答案解析
- 格式:pdf
- 大小:818.30 KB
- 文档页数:4
“超级全能生”2019高考全国卷26省9月联考甲卷语文★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、保持卡面清洁,不折叠,不破损。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1-3题。
近年来,关于汉语在各国持续升温的报道不断见诸国内外媒体。
语言是民族的重要特征之一,语言的影响力和传播力也日益成为民族国家综合实力的体现。
海外“汉语热”实际上反映的是中国合作共赢、大国担当和文化自信的国际魅力。
互利共赢是重要动力汉语难学,但挡不住学习的热情,海外汉语热出现的根本原因是中国综合国力和国际影响力的大幅度提升,经济上的互利共赢是推动海外汉语热的根本动力。
首先,海外中资企业对熟悉汉语的当地员工的需求越来越大,尤其是对从事国际贸易的企业来说,懂汉语的员工在录用和薪酬方面往往都具有较大优势。
择业方面的语言优势以引领和示范作用影响着海外青年的外语学习选择。
其次,中国游客海外旅游数量屡破新高,而且展现出强大的消费能力,“学说中国话”成为外国商铺每天必须面对的市场现实。
经济搭台,文化唱戏,一些从业人员开始有意识地了解中国文化,了解中国人的生活习惯、行为方式甚至文化传统。
同时,一些有远见的海外家庭看好中国的发展前景,着手培养下一代的汉语语言能力,认为掌握汉语能让孩子站在更好的起点。
“超级全能生”2019高考全国卷26省9月联考甲卷语文注意事项:1.本试题共8页,满分150分,考试时间150分钟。
2.答题前,考生务必将自己的姓名、准考证号等填写在答题卡的相应位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
5.考试结束后,将本试题和答题卡一并交回。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1-3题。
近年来,关于汉语在各国持续升温的报道不断见诸国内外媒体。
语言是民族的重要特征之一,语言的影响力和传播力也日益成为民族国家综合实力的体现。
海外“汉语热”实际上反映的是中国合作共赢、大国担当和文化自信的国际魅力。
互利共赢是重要动力汉语难学,但挡不住学习的热情,海外汉语热出现的根本原因是中国综合国力和国际影响力的大幅度提升,经济上的互利共赢是推动海外汉语热的根本动力。
首先,海外中资企业对熟悉汉语的当地员工的需求越来越大,尤其是对从事国际贸易的企业来说,懂汉语的员工在录用和薪酬方面往往都具有较大优势。
择业方面的语言优势以引领和示范作用影响着海外青年的外语学习选择。
其次,中国游客海外旅游数量屡破新高,而且展现出强大的消费能力,“学说中国话”成为外国商铺每天必须面对的市场现实。
经济搭台,文化唱戏,一些从业人员开始有意识地了解中国文化,了解中国人的生活习惯、行为方式甚至文化传统。
同时,一些有远见的海外家庭看好中国的发展前景,着手培养下一代的汉语语言能力,认为掌握汉语能让孩子站在更好的起点。
由于学习汉语的主要难点是汉字识别和四声发音,需要耳濡目染,因此懂汉语的家政服务人员格外受欢迎,成为高级私教,收入明显高于普通家政服务人员。
为了保持不间断的汉语语言学习环境,这些家庭还在生活中大量使用智能语音服务或其他支持中外互译的手机软件。
2019年全国统一高考数学试卷(理科)(新课标Ⅰ)含详细答案一、选择题(本大题共12小题,共60.0分)1.已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=()A. {x|−4<x<3}B. {x|−4<x<−2}C. {x|−2<x<2}D. {x|2<x<3}2.设复数z满足|z−i|=1,z在复平面内对应的点为(x,y),则()A. (x+1)2+y2=1B. (x−1)2+y2=1C. x2+(y−1)2=1D. x2+(y+1)2=13.已知a=log20.2,b=20.2,c=0.20.3,则()A. a<b<cB. a<c<bC. c<a<bD. b<c<a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A. 165cmB. 175cmC. 185cmD. 190cm5.函数f(x)=sinx+xcosx+x2在[−π,π]的图象大致为()A. B.C. D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. 516B. 1132C. 2132D.11167.已知非零向量a⃗,b⃗ 满足|a⃗|=2|b⃗ |,且(a⃗−b⃗ )⊥b⃗ ,则a⃗与b⃗ 的夹角为()A. π6B. π3C. 2π3D. 5π68.下图是求12+12+12的程序框图,图中空白框中应填入()A. A=12+AB. A=2+1AC. A=11+2AD. A=1+12A9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A. a n=2n−5B. a n=3n−10C. S n=2n2−8nD. S n=12n2−2n 10.已知椭圆C的焦点为F1(−1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A. x22+y2=1 B. x23+y22=1 C. x24+y23=1 D. x25+y24=111.关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数②f(x)在区间(π2,π)单调递增③f(x)在[−π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A. ①②④B. ②④C. ①④D. ①③12.已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A. 8√6πB. 4√6πC. 2√6πD. √6π二、填空题(本大题共4小题,共20.0分)13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和.若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是 .16. 已知双曲线C :x 2a 2−y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c.设(sinB −sinC)2=sin 2A −sinBsinC . (1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD −A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点. (1)证明:MN//平面C 1DE ;(2)求二面角A −MA 1−N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x轴的交点为P .(1)若|AF|+|BF|=4,求l 的方程;(2)若AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.20.已知函数f(x)=sinx−ln(1+x),f′(x)为f(x)的导数.证明:)存在唯一极大值点;(1)f′(x)在区间(−1,π2(2)f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得−1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i−1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=−1),b=P(X=0),c= P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1−p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.22.在直角坐标系xOy中,曲线C的参数方程为{x=1−t21+t2y=4t1+t2(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】【分析】本题考查了一元二次不等式的解法和交集的运算,属基础题.利用一元二次不等式的解法和交集的运算即可得出.【解答】解:∵M={x|−4<x<2},N={x|x2−x−6<0}={x|−2<x<3},∴M∩N={x|−2<x<2}.故选C.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z−i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z−i=x+(y−1)i,∴|z−i|=√x2+(y−1)2=1,∴x2+(y−1)2=1,故选C.3.【答案】B【解析】【分析】本题考查了指数函数和对数函数的单调性运用,属基础题.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.【解答】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选B.4.【答案】B【解析】【分析】本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.充分运用黄金分割比例,计算可估计身高.【解答】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,,由头顶至咽喉的长度与咽喉至肚脐的长度之比是√5−12可得咽喉至肚脐的长度小于√5−12=√5−1≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是√5−12,可得肚脐至足底的长度小于26+52√5−1√5−12≈110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×√5−12≈65cm,即该人的身高大于65+105=170cm,故选B.5.【答案】D【解析】【分析】本题考查了函数图象的作法及函数的奇偶性,解题关键是奇偶性和特殊值,属基础题.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C,从而可得结果.【解答】解:∵f(x)=sinx+xcosx+x2,x∈[−π,π],∴f(−x)=−sinx−xcos(−x)+x2=−sinx+xcosx+x2=−f(x),∴f(x)为[−π,π]上的奇函数,因此排除A;又f(π)=sinπ+πcosπ+π2=π−1+π2>0,因此排除B,C,故选D.6.【答案】A【解析】【分析】本题主要考查概率的求法,考查古典概型、组合的应用,考查运算求解能力,属于基础题.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=C63=20,则该重卦恰有3个阳爻的概率p=mn =2064=516.故选A.7.【答案】B【解析】【分析】本题考查了平面向量的数量积和向量的夹角,属基础题.由(a⃗−b⃗ )⊥b⃗ ,可得(a⃗−b⃗ )⋅b⃗ =0,进一步得到|a⃗||b⃗ |cos<a⃗,b⃗ >−b⃗ 2=0,然后求出夹角即可. 【解答】 解:∵(a ⃗ −b ⃗ )⊥b ⃗ ,∴(a ⃗ −b ⃗ )⋅b ⃗ =a ⃗ ⋅b ⃗ −b ⃗ 2=|a ⃗ ||b ⃗ |cos <a ⃗ ,b ⃗ >−b ⃗ 2=0, ∴cos <a ⃗ ,b ⃗ >=|b⃗ |2|a ⃗ ||b⃗ |=12,∵<a ⃗ ,b ⃗ >∈[0,π],∴<a ⃗ ,b ⃗ >=π3,故选B . 8.【答案】A【解析】【分析】本题考查了程序框图的应用问题,是基础题.模拟程序的运行,由题意,依次写出每次得到的A 的值,观察规律即可得解. 【解答】解:模拟程序的运行,可得: A =12,k =1;满足条件k ≤2,执行循环体,A =12+12,k =2;满足条件k ≤2,执行循环体,A =12+12+12,k =3;此时,不满足条件k ≤2,退出循环,输出A 的值为12+12+12,观察A 的取值规律可知图中空白框中应填入A =12+A . 故选A . 9.【答案】A【解析】【分析】本题考查等差数列的通项公式以及前n 项和公式,关键是求出等差数列的公差以及首项,属于基础题.根据题意,设等差数列{a n }的公差为d ,则有{4a 1+6d =0a 1+4d =5,求出首项和公差,然后求出通项公式和前n 项和即可. 【解答】解:设等差数列{a n }的公差为d , 由S 4=0,a 5=5,得 {4a 1+6d =0a 1+4d =5,∴{a 1=−3d =2, ∴a n =2n −5,S n =n (−3+2n−5)2=n 2−4n ,故选:A .10.【答案】B【解析】【分析】本题考查了椭圆的定义以及方程、余弦定理,属中档题.根据椭圆的定义以及余弦定理列方程可解得a=√3,b=√2,可得椭圆的方程.【解答】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=a2,∴|AF2|=a,|BF1|=32a,则|AF2|=|AF1|=a,所以A为椭圆短轴端点,在Rt△AF2O中,cos∠AF2O=1a,在△BF1F2中,由余弦定理可得cos∠BF2F1=4+(a2)2−(32a)22×2×a2=4−2a22a,根据cos∠AF2O+cos∠BF2F1=0,可得1a +4−2a22a=0,解得a2=3,∴a=√3,b2=a2−c2=3−1=2.所以椭圆C的方程为:x23+y22=1,故选B.11.【答案】C【解析】【分析】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.根据绝对值的应用,结合三角函数的性质分别进行判断即可.【解答】解:f(−x)=sin|−x|+|sin(−x)|=sin|x|+|sinx|=f(x),且f(x)的定义域为R,则函数f(x)是偶函数,故①正确;当x∈(π2,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误;当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0,得2sinx=0,即x=0或x=π,由f(x)是偶函数,得在[−π,0)上还有一个零点x=−π,即函数f(x)在[−π,π]有3个零点,故③错误;当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选C.12.【答案】D【解析】【分析】本题考查多面体外接球体积的求法,是中档题.设∠PAC=θ,PA=PB=PC=2x,EC=y,根据余弦定理以及勾股定理证明三条侧棱两两互相垂直,即可求外接球O的体积.【解答】解:设∠PAC=θ,PA=PB=PC=2x,EC=y,因为E,F分别是PA,AB的中点,所以EF=12PB=x,AE=x,在△PAC中,cosθ=4x2+4−4x22×2x×2=12x,在△EAC中,cosθ=x2+4−y22×2x,整理得x2−y2=−2,①因为△ABC是边长为2的正三角形,所以CF=√3,又∠CEF=90°,则x2+y2=3,②,由①②得x=√22,所以PA=PB=PC=√2,所以PA2+PB2=4=AB2,即PA⊥PB,同理可得PA⊥PC,PB⊥PC,则PA、PB、PC两两垂直,则球O是以PA为棱的正方体的外接球,则外接球的直径为√2+2+2=√6,所以球O的体积为.故选D.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究曲线上某点的切线方程,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y′=3(2x+1)e x+3(x2+x)e x=3e x(x2+3x+1),∴当x=0时,y′=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,属于基础题.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:设等比数列{a n}的公比为q,由a42=a6,得(a1q3)2=a1q5,即q6a12=q5a1,解得q=3,则S5=13(1−35)1−3=1213,故答案为1213.15.【答案】0.18【解析】【分析】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.【解答】解:甲队的主客场安排依次为“主主客客主客主”.甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,第六场一定是甲胜,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p 1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p 2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p 3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p 4=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p =p 1+p 2+p 3+p 4=0.036+0.036+0.054+0.054=0.18. 故答案为:0.18. 16.【答案】2【解析】【分析】本题考查双曲线的简单性质,是中档题.由题意画出图形,结合已知可得F 1B ⊥OA ,可得一条渐近线方程的倾斜角为,从而可得,进而求出离心率.【解答】 解:如图,∵F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,且F 1B ⃗⃗⃗⃗⃗⃗⃗ ⋅F 2B ⃗⃗⃗⃗⃗⃗⃗ =0, ∴F 1B ⊥F 2B,F 1A =AB , ∴OA ⊥F 1B ,则△AOF 1≌△AOB , 则,所以一条渐近线的斜率为,所以e =c a =√1+b 2a 2=2,故答案为:2.17.【答案】解:(1)∵△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sinB −sinC)2=sin 2A −sinBsinC .则sin 2B +sin 2C −2sinBsinC =sin 2A −sinBsinC , ∴由正弦定理得:b 2+c 2−a 2=bc , ∴cosA =b 2+c 2−a 22bc=bc 2bc =12,∵0<A <π,∴A =π3.(2)∵√2a +b =2c ,A =π3,∴由正弦定理得√2sinA +sinB =2sinC , ∴√62+sin(2π3−C)=2sinC ,即√62+√32cosC +12sinC =2sinC ,即√62+√32cosC −32sinC =0, 即sin(C −π6)=√22,,则,∴C −π6=π4,C =π4+π6, ∴sinC =sin(π4+π6)=sin π4cos π6+cos π4sin π6=√22×√32+√22×12=√6+√24.【解析】本题考查了正弦定理、余弦定理,属于中档题. (1)由正弦定理得:b 2+c 2−a 2=bc ,再由余弦定理求出A .(2)由已知及正弦定理可得:sin(C −π6)=√22,可解得C 的值,由两角和的正弦函数公式即可得解.18.【答案】(1)证明:如图,过N 作NH ⊥AD ,连接BH ,则NH//AA 1,H 是AD 中点,且NH =12AA 1, 又MB//AA 1,MB =12AA 1,∴四边形NMBH 为平行四边形,则NM//BH ,由H 为AD 中点,而E 为BC 中点,∴BE//DH ,BE =DH ,则四边形BEDH 为平行四边形,则BH//DE , ∴NM//DE ,∵NM ⊄平面C 1DE ,DE ⊂平面C 1DE , ∴MN//平面C 1DE ;(2)解:以D 为坐标原点,以平面ABCD 内垂直于DC 的直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A 1(√3,−1,4),NM ⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2), 设平面A 1MN 的一个法向量为m⃗⃗⃗ =(x,y,z),由{m ⃗⃗⃗ ⋅NM ⃗⃗⃗⃗⃗⃗⃗ =√32x +32y =0m⃗⃗⃗ ⋅NA 1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x −12y +2z =0,取x =√3,得m ⃗⃗⃗ =(√3,−1,−1), 又平面MAA 1的一个法向量为n ⃗ =(1,0,0), ∴cos <m ⃗⃗⃗ ,n ⃗ >=m ⃗⃗⃗ ⋅n ⃗⃗|m ⃗⃗⃗ |⋅|n ⃗⃗ |=√3√5=√155. ∴二面角A −MA 1−N 的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N 作NH ⊥AD ,证明NM//BH ,再证明BH//DE ,可得NM//DE ,再由线面平行的判定可得MN//平面C 1DE ;(2)以D 为坐标原点建立空间直角坐标系,分别求出平面A 1MN 与平面MAA 1的一个法向量,由两法向量所成角的余弦值可得二面角A −MA 1−N 的正弦值.19.【答案】解:(1)设直线l :y =32x +t ,A (x 1,y 1),B (x 2,y 2),由题意可得F (34,0),故|AF |+|BF |=x 1+x 2+32, 因为|AF|+|BF|=4, 所以x 1+x 2=52, 联立{y =32x +t y 2=3x,整理得9x 2+12(t −1)x +4t 2=0,由韦达定理可知,x 1+x 2=−12(t−1)9,从而−12(t−1)9=52,解得t =−78,所以直线l 的方程为y =32x −78.(2)设直线l :y =32x +m ,A (x 1,y 1),B (x 2,y 2), 由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2, 联立{y =32x +m y 2=3x,整理得y 2−2y +2m =0,由韦达定理可知,y 1+y 2=2,又y 1=−3y 2,解得y 1=3,y 2=−1, 代入抛物线C 方程得,x 1=3,x 2=13, 即A (3,3),B (13,−1),故|AB |=√(3−13)2+(3+1)2=4√133.【解析】本题考查了抛物线的定义,考查直线与抛物线的位置关系,属于中档题.(1)根据韦达定理以及抛物线的定义可得.(2)由AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,可得y 1=−3y 2,由韦达定理可得y 1+y 2=2,从而解出A 、B 两点坐标,使用弦长公式计算即可.20.【答案】证明:(1)f(x)的定义域为(−1,+∞), 令f′(x )=ℎ(x)=cosx −11+x , ℎ′(x )=−sinx +1(1+x)2,令g(x)=−sinx +1(1+x)2,则g′(x)=−cosx −2(1+x)3<0在(−1,π2)恒成立, ∴ℎ′(x )在(−1,π2)上为减函数,又ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x )在(−1,π2)上存在唯一的零点x 0,结合单调性可得,f′(x )在(−1,x 0)上单调递增,在(x 0,π2)上单调递减, 可得f′(x )在区间(−1,π2)存在唯一极大值点; (2)由(1)知,当x ∈(−1,0)时,f′(x )单调递增, 则f′(x )<f′(0)=0,则f(x)单调递减; 当x ∈(0,x 0)时,f′(x )单调递增, 则f′(x )>f′(0)=0,f(x)单调递增; 由于f′(x )在(x 0,π2)上单调递减, 且f′(x 0)>0,,由零点存在定理可知,函数f′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f′(x )单调递减,则f′(x )>f′(x 1)=0,故f(x)单调递增; 当x ∈(x 1,π2)时,f′(x )单调递减, 则f′(x )<f′(x 1)=0,f(x)单调递减. 当x ∈(π2,π)时,cosx <0,−11+x <0, 于是f′(x )=cosx −11+x <0,f(x)单调递减, 其中f(π2)=1−ln(1+π2)>1−ln(1+3.22)=1−ln2.6>1−lne =0,f(π)=−ln(1+π)<−ln3<0. 于是可得下表:结合单调性可知,函数f(x)在(−1,π2]上有且只有一个零点0,由函数零点存在性定理可知,f(x)在(π2,π)上有且只有一个零点x2,当x∈[π,+∞)时,f(x)=sinx−ln(1+x)<1−ln(1+π)<1−ln3<0,因此函数f(x)在[π,+∞)上无零点.综上,f(x)有且仅有2个零点.【解析】本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查逻辑思维能力,难度较大.(1)f(x)的定义域为(−1,+∞),求出原函数的导函数,令f′(x)=ℎ(x)=cosx−11+x,进一步求导,得到ℎ′(x)在(−1,π2)上为减函数,结合ℎ′(0)=1,ℎ′(π2)=−1+1(1+π2)2<−1+1=0,由零点存在定理可知,函数ℎ′(x)在(−1,π2)上存在唯一得零点x0,结合单调性可得,f′(x)在(−1,x0)上单调递增,在(x0,π2)上单调递减,可得f′(x)在区间(−1,π2)存在唯一极大值点;(2)由(1)知,当x∈(−1,0)时,f′(x)<0,f(x)单调递减;当x∈(0,x0)时,f′(x)> 0,f(x)单调递增;由于f′(x)在(x0,π2)上单调递减,且f′(x0)>0,,可得函数f′(x)在(x0,π2)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f(x)单调递增;当x∈(x1,π2)时,f(x)单调递减.当x∈(π2,π)时,f(x)单调递减,再由f(π2)>0,f(π)<0.然后列x、f′(x)与f(x)的变化情况表得答案.21.【答案】(1)解:X的所有可能取值为−1,0,1.P(X=−1)=(1−α)β,P(X=0)=αβ+(1−α)(1−β),P(X=1)=α(1−β),(2)(i)证明:∵α=0.5,β=0.8,∴由(1)得,a=0.4,b=0.5,c=0.1.因此p i=0.4p i−1+0.5p i+0.1p i+1(i=1,2,…,7),故0.1(p i+1−p i)=0.4(p i−p i−1),即p i+1−p i=4(p i−p i−1),又∵p1−p0=p1≠0,∴{p i+1−p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列;(ii)解:由(i)可得,p8=(p8−p7)+(p7−p6)+⋯+(p1−p0)+p0=p1(1−48)1−4=48−13p1,∵p 8=1,∴p 1=348−1,∴p 4=(p 4−p 3)+(p 3−p 2)+(p 2−p 1)+(p 1−p 0)+p 0=44−13p 1=1257.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理.【解析】本题主要考查数列的应用,考查离散型随机变量的分布列,属于难题. (1)由题意可得X 的所有可能取值为−1,0,1,再由相互独立试验的概率求P(X =−1),P(X =0),P(X =1)的值,则X 的分布列可求;(2)(i)由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i−1+bp i +cp i+1,得到(p i+1−p i )=4(p i −p i−1),由p 1−p 0=p 1≠0,可得{p i+1−p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列;(ii)由(i)可得,p 8=(p 8−p 7)+(p 7−p 6)+⋯+(p 1−p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=348−1,进一步求得p 4=1257,即可求解. 22.【答案】解:(1)由{x =1−t 21+t 2y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t2, 两式平方相加,得x 2+y 24=1(x ≠−1),∴C 的直角坐标方程为x 2+y 24=1(x ≠−1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0,即直线l 的直角坐标方程为2x +√3y +11=0.(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0,联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2−12=0. 由Δ=16m 2−64(m 2−12)=0, 得m =±4,∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小, 即为直线2x +√3y +4=0与直线2x +√3y +11=0之间的距离√22+3=√7.【解析】本题考查简单曲线的极坐标方程,考查参数方程化为普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x =ρcosθ,y =ρsinθ代入2ρcosθ+√3ρsinθ+11=0,可得直线l 的直角坐标方程.(2)写出与直线l 平行的直线方程为2x +√3y +m =0,与曲线C 联立,化为关于x 的一元二次方程,利用判别式等于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证1a +1b+1c≤a2+b2+c2;因为abc=1.即证:abca +abcb+abcc≤a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即证:2bc+2ac+2ab≤2a2+2b2+2c2;即证:2a2+2b2+2c2−2bc−2ac−2ab≥0,即证(a−b)2+(a−c)2+(b−c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a−b)2≥0;(a−c)2≥0;(b−c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a−b)2+(a−c)2+(b−c)2≥0得证.故1a +1b+1c≤a2+b2+c2得证.(2)已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.a+b≥2√ab;b+c≥2√bc;c+a≥2√ac;当且仅当a=b,b=c,c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)⋅(b+c)⋅(c+a)≥3×8√ab⋅√bc⋅√ac=24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.【解析】本题考查基本不等式的运用,分析法和综合法的证明方法,属于中档题.(1)利用基本不等式和“1”的运用可证;(2)利用综合法可证.。
浙江省超级全能生2019年9月高三数学第一次联考试卷一、单选题 (共10题;共20分)1.(2分)记全集U=R,集合A={x|x2−4≥0},集合B={x|2x≥2},则(∁U A)∩B=()A.[2,+∞)B.ØC.[1,2)D.(1,2)2.(2分)已知复数z=2−i1+i(i为虚数单位),则复数z的模长等于()A.√102B.3√22C.√3D.√523.(2分)若实数x,y满足约束条件{x+y+2≥0,3x−2y−4≤0,2x−3y+4≥0,则z=2x+y的最大值为()A.-2B.12C.-4D.84.(2分)在同一直角坐标系中,函数y=ax2+bx,y=a x−b(a>0且a≠1)的图象可能是()A.B.C.D.5.(2分)已知直线m,l,平面α,β满足l⊥α,m⊂β,则“ l∥m”是“ α⊥β”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.(2分)已知随机变量ξ满足下列分布列,当p∈(0,1)且不断增大时,()A .E(ξ) 增大, D(ξ) 增大B .E(ξ) 减小, D(ξ) 减小C .E(ξ) 增大, D(ξ) 先增大后减小D .E(ξ) 增大, D(ξ) 先减小后增大7.(2分)已知双曲线 x 2−y 2b2=1(b >0) 右焦点为 F ,左顶点为 A ,右支上存在点 B 满足BF ⊥AF ,记直线AB 与渐近线在第一象限内的交点为 M ,且 AM⇀=2MB ⇀ ,则双曲线的渐近线方程为( ) A .y =±2xB .y =±12xC .y =±43xD .y =±34x8.(2分)已知函数 f(x)=(lnx −1)(x −2)i −m(i =1,2) ,e 是自然对数的底数,存在 m ∈R( )A .当 i =1 时, f(x) 零点个数可能有3个B .当 i =1 时, f(x) 零点个数可能有4个C .当 i =2 时, f(x) 零点个数可能有3个D .当 i =2 时, f(x) 零点个数可能有4个9.(2分)三棱柱 ABC −A 1B 1C 1 中, AA 1⊥ 平面 ABC ,动点 M 在线段 CA 1 上滑动(包含端点),记 BM 与 B 1A 1 所成角为 α , BM 与平面 ABC 所成线面角为 β ,二面角 M −BC −A 为 γ ,则( ) A .β≥α,β≤γ B .β≤α,β≤γ C .β≤α,β≥γD .β≥α,β≥γ10.(2分)已知函数 f(x)={|x −1|−1,x ≤2,−12f(x −2),x >2, 若函数 g(x)=x ⋅f(x)−a (a ≥−1) 的零点个数为2,则( ) A .23<a <87 或 a =−1B .23<a <87C .78<a <32或 a =−1 D .78<a <32二、填空题 (共7题;共11分)11.(1分)《九章算术》是中国古代的数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右书中对一些特殊的柱体、锥体有特定的命名。
2019届高三理科数学全国大联考试卷及解析C.4.已知⎝⎛⎭⎪⎪⎫2x 2-1x n (n ∈N *)的展开式中各项的二项式系数之和为128,则其展开式中含1x项的系数是(A)T f (2b >0,则a >-c ,从而f (a )>f (-c )=-f (c ),即f (a )+f (c )>0,选A.6.设x 为区间[-2,2]内的均匀随机数,则计算机执行下列程序后,输出的y 值落在区间⎣⎢⎢⎡⎦⎥⎥⎤12,3内的概率为(C))数y =2sin 2x 的图象向左平移π4个单位得到.其中正确结论的个数是A .1B .2C .3D .4【解析】f (x )=sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4.①因为ω=2,则f (x )的最小正周期T =π, 2:x >0题中为真命题的是(A)A .p ∧qB .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )【解析】若a >2且b >2,则1a <12且1b <12,得1a+1b <1,即a +b ab<1,从而a +b <ab ,所以命题p 为真.因为直线y =x -1与函数y =⎝ ⎛⎭⎪⎪⎫12x的图象在(0,+∞)内有唯一交点,则方程x -1=⎝ ⎛⎭⎪⎪⎫12x有正数解,即方程(x -1)·2x =1有正数解,所以命题q 为真,选A.9.已知实数x ,y 满足|x |+|y |≤1,则z =2|x |-|y |的最大值为(D)A .5B .4C .3D .2【解析】令|x |=a ,|y |=b ,则⎩⎪⎨⎪⎧a +b ≤1,a ≥0,b ≥0,且z =2a -b .作可行域,平移直线l :b =2a -z ,由图知,当直线l 过点(1,0)时,直线l 的纵截距最小,从而z 为最大,且z max =2×1-0=2,选D.10.如图,在平面四边形ABCD 中,AB =AD =CD =1,AB ⊥AD ,BD ⊥CD .将该四边形沿对角线BD 折成一个直二面角A ―BD ―C ,则四面体ABCD 的外接球的体积为(B)A.23π B.32πC.2πD.3π因为|MO|=|MF2|,则A为OF2的中点,所以|AF2|=c2,|AF1|=3c2.设|MF2|=m,则|MF1|=2m.在Rt△MAF1中,|MA|2=4m2-9 4c 2.在Rt △MAF 2中,|MA |2=m 2-c24,则4m 2-94c 2=m 2-c24,即3m 2=2c 2. 因为|MF 1|-|MF 2|=2a ,则m =2a ,所以32X n ,≠记中的最大元素,当X n 的所有非空子I (A )的和记为S (n ),则2 018 2 017 A )S (2 018)=2 017×22 018+1,选D.二、填空题,本大题共4小题,每小题5分,共20分.13.已知cos ⎝ ⎛⎭⎪⎫α-π3=13,则sin ⎝⎛⎭⎪⎫2α-π6=__-79__. 【解析】sin ⎛⎪⎫2α-π=sin ⎢⎡⎥⎤2 ⎛⎪⎫α-π+π=⎭ABC 中,mAB →+=13DC →,15.已知函数f (x )=|2x -1|-a ,若存在实数x 1,x 2(x 1≠x 2),使得f (x 1)=f (x 2)=-1,则a 的取值范围是__(1,2)__.【解析】令f (x )=-1,则|2x -1|=a -1.据题意,直线y =a -1与函数y =|2x -1|的图象两个不同的交点,由图可知,0<a -1<1,即1<a <2.16.设数列{a n }的前n 项和为S n ,已知a 1=1,且S n =4-⎝⎛⎭⎪⎪⎫1+2n a n (n ∈N *),则数列{a n }的通⎝ ⎛a =2,∠BAD =60°,∠BCD =120°.(1)若BC =22,求∠CBD 的大小;(2)设△BCD 的面积为S ,求S 的取值范围.【解析】(1)在△ABD中,因为AB=4,AD =2,∠BAD=60°,则BD2=AB2+AD2-2AB·AD·cos∠BAD=16+4-2×4×2×12=12,所以BD=2 3.(3分)=3sin 2θ-23sin2θ=3sin 2θ-3(1-cos 2θ)=3sin 2θ+3cos 2θ-3=23sin(2θ+30°)- 3.(11分)因为0°<θ<60°,则30°<2θ+30°<150°,12<sin(2θ+30°)≤1,所以0<S ≤ 3. 故S 的取值范围是(0,3].(12分)18.(本小题满分12分)如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,PB ;-PB -C 的大小为的体积.△ABC 中,由余弦定理得×2×4×cos 的中点,则+AC →),则AD →2=14(4+16+2×2×4×cos 120°)=3,所以AD = 3.(4分)因为AB 2+AD 2=4+3=7=BD 2,则AB ⊥AD .(5分)因为PA ⊥底面ABC ,则PA ⊥AD ,所以AD ⊥平面PAB ,从而AD ⊥PB .(6分)(2)解法一:因为AD ⊥平面PAB ,过点A 作AE ⊥PB ,垂足为E ,连结DE . 解法二:分别以直线AB ,AD y 轴,z 轴建立空间直角坐标系,如图.设PA =a ,则点B (2,0,0),D (0,3,0),P (0,0,a ).所以BD →=(-2,3,0),BP →=(-2,0,a ).(8分)设平面PBC 的法向量为m =(x ,y ,z ),则⎪⎨⎪⎧m ·BD →=0,m ·BP →=0,即⎩⎨⎧-2x +3y =0,-2x +az =0. 元;乙公司无底薪,40单以内(含40单)的部分送餐员每单抽成6元,超过40单的部分送餐员每单抽成7元.现从这两家公司各随机选取一名送餐员,分别记录其50天的送餐单数,得到如下频数分布表:工资为X元,则当n=38时,X=38×6=228;当n=39时,X=39×6=234;当n=40时,X=40×6=240;当n=41时,X=40×6+7=247;当n=42时,X=40×6+14=254.所以X的分布列为4x2+y2-10x+20=0相切.(1)求椭圆C的方程;(2)设斜率为k且不过原点的直线l与椭圆C 相交于A、B两点,O为坐标原点,直线OA,OB的斜率分别为k1,k2,若k1,k,k2成等比数列,推断|OA|2+|OB|2是否为定值?若是,求出此定值;若不是,说明理由.【解析】(1)因为抛物线y2=43x的焦点为(3,0),则c=3,所以a2-b2=3.(2分)2即km(x1+x2)+m2=0,所以-8k2m24k2+1+m2=0,即(1-4k2)m2=0.因为m≠0,则k2=14,即k=±12,从而x1+x 2=2m ,x 1x 2=2m 2-2.(10分)所以|OA |2+|OB |2=x 21+y 21+x 22+y 22=x 21+(kx 1+m )2+x 22+(kx 2+m )2 =(k 2+1)(x 21+x 22)+2km (x 1+x 2)+2m 2=(k 2+1)[(x 1+x 2)2-2x 1x 2]+2km (x 1+x 2)+2m 2.1))上单调递减,所以f (x )min =f (ln a )=e ln a -a (ln a -1)=a (2-ln a ).(4分)据题意,⎩⎨⎧ln a >1,a (2-ln a )<0,则ln a >2,即a >e 2,所以a 的取值范围是(e 2,+∞).(5分)解法二:当x ∈(1,+∞)时,由f (x )<0,得e x <a (x -1),即a >e x x -1.(1分) 设g (x )=e x (x >1),据题意,当x ∈(1,+(1⎩⎪⎨⎪⎧x 不妨设x 1<x 2,由(1)可知,a >e 2,且x 1<ln a<x 2,从而2ln a -x 2<ln a .因为f (x )在(-∞,ln a )上单调递减,所以只要证f (x 1)>f (2ln a -x 2),即证f (x 2)>f (2ln a -x 2).(9分)设h (x )=f (x )-f (2ln a -x ),则h ′(x )=f ′(x )+f ′(2ln a -x )=e x -2a +e 2ln a -x =e x +a 2e x -2a ≥2e x ·a 2ex -2a =0, 所以h (x )在R 上单调递增.因为x 2>ln a ,x 方程;(2)若曲线C 2的参数方程为⎩⎨⎧x =2cos α,y =sin α(α为参数),点P 在曲线C 1上,其极角为π4,点Q为曲线C2上的动点,求线段PQ的中点M到直线l的距离的最大值.【解析】(1)由ρ=4cos θ,得ρ2=4ρcos θ.将ρ2=x2+y2,x=ρcos θ代入,得曲线C1的直角坐标方程为x2+y2-4x=0.(3l所以点M到直线l的距离的最大值为10 5.(10分)23.(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=|x+a|+|x-2|,其中a为实常数.(1)若函数f(x)的最小值为3,求a的值;(2)若当x∈[1,2]时,不等式f(x)≤|x-4|恒成立,求a的取值范围.【解析】(1)因为f(x)=|x+a|+|x-2|≥|(x+a)-(x-2)|=|a+2|,(3分)当且仅当(x+a)(x-2)≤0时取等号,则f(x)min=|a+2|.令|a+2|=3,则a=1或a=-5.(5分)(2)当x∈[1,2]时,f(x)=|x+a|+2-x,|x -4|=4-x.由f(x)≤|x-4|,得|x+a|+2-x≤4-x,即|x +a|≤2,即―2≤x+a≤2,即―x-2≤a≤-x +2.所以(-x-2)max≤a≤(-x+2)min.(8分)因为函数y=-x-2和y=-x+2在[1,2]上都是减函数,则当x=1时,(-x-2)max=-3;当x=2时,(-x+2)min=0,所以a的取值范围是[-3,0].(10分)。
2019年普通高等学校招生全国统一考试(全国Ⅰ卷)理科数学一、选择题1.已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N等于()A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}答案 C解析∵N={x|-2<x<3},M={x|-4<x<2},∴M∩N={x|-2<x<2},故选C.2.设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则()A.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1 D.x2+(y+1)2=1答案 C解析∵z在复平面内对应的点为(x,y),∴z=x+y i(x,y∈R).∵|z-i|=1,∴|x+(y-1)i|=1,∴x2+(y-1)2=1.故选C.3.已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<bC.c<a<b D.b<c<a答案 B解析∵a=log20.2<0,b=20.2>1,c=0.20.3∈(0,1),∴a<c<b.故选B.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是()A.165 cm B.175 cm C.185 cm D.190 cm答案 B 解析若头顶至咽喉的长度为26 cm,则身高为26+26÷0.618+(26+26÷0.618)÷0.618≈178(cm),此人头顶至脖子下端的长度为26 cm,即头顶至咽喉的长度小于26 cm,所以其身高小于178 cm,同理其身高也大于105÷0.618≈170(cm),故其身高可能是175 cm,故选B.5.函数f(x)=在[-π,π]上的图象大致为()A. B.C. D.答案 D解析∵f(-x)==-=-f(x),∴f(x)为奇函数,排除A;∵f(π)==>0,∴排除C;∵f(1)=,且sin 1>cos 1,∴f(1)>1,∴排除B,故选D.6.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“——”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.答案 A解析由6个爻组成的重卦种数为26=64,在所有重卦中随机取一重卦,该重卦恰有3个阳爻的种数为==20.根据古典概型的概率计算公式得,所求概率P==.故选A.7.已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为()A. B. C. D.答案 B解析设a与b的夹角为α,∵(a-b)⊥b,∴(a-b)·b=0,∴a·b=b2,∴|a|·|b|cos α=|b|2,又|a|=2|b|,∴cos α=,∵α∈[0,π],∴α=,故选B.8.如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+答案 A解析A=,k=1,1≤2成立,执行循环体;A=,k=2,2≤2成立,执行循环体;A=,k=3,3≤2不成立,结束循环,输出A.故空白框中应填入A=.故选A.9.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()A.a n=2n-5 B.a n=3n-10C.S n=2n2-8n D.S n=n2-2n答案 A解析设等差数列{a n}的公差为d,∵∴解得∴a n=a1+(n-1)d=-3+2(n-1)=2n-5,S n=na1+d=n2-4n.故选A.10.已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1答案 B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sin θ==.在等腰三角形ABF1中,cos 2θ==,因为cos 2θ=1-2sin2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.11.关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数;②f(x)在区间上单调递增;③f(x)在[-π,π]上有4个零点;④f(x)的最大值为2.其中所有正确结论的编号是()A.①②④ B.②④ C.①④ D.①③答案 C解析f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sin x|=f(x),∴f(x)为偶函数,故①正确;当<x<π时,f(x)=sin x+sin x=2sin x,∴f(x)在上单调递减,故②不正确;f(x)在[-π,π]上的图象如图所示,由图可知函数f(x)在[-π,π]上只有3个零点,故③不正确;∵y=sin|x|与y=|sin x|的最大值都为1且可以同时取到,∴f(x)可以取到最大值2,故④正确.综上,正确结论的编号是①④.故选C.12.已知三棱锥P-ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8π B.4π C.2π D.π答案 D解析因为点E,F分别为P A,AB的中点,所以EF∥PB,因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面P AC,所以PB⊥平面P AC,所以PB⊥P A,PB⊥PC,因为P A=PB=PC,△ABC为正三角形,所以P A⊥PC,即P A,PB,PC两两垂直,将三棱锥P-ABC放在正方体中如图所示.因为AB=2,所以该正方体的棱长为,所以该正方体的体对角线长为,所以三棱锥P-ABC的外接球的半径R=,所以球O的体积V=πR3=π3=π,故选D.二、填空题13.曲线y=3(x2+x)e x在点(0,0)处的切线方程为________.答案y=3x解析因为y′=3(2x+1)e x+3(x2+x)e x=3(x2+3x+1)e x,所以曲线在点(0,0)处的切线的斜率k=y′|x=0=3,所以所求的切线方程为y=3x.14.记S n为等比数列{a n}的前n项和.若a1=,=a6,则S5=________.答案解析设等比数列{a n}的公比为q,因为=a6,所以(a1q3)2=a1q5,所以a1q=1,又a1=,所以q=3,所以S5===.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是________.答案0.18解析记事件M为甲队以4∶1获胜,则甲队共比赛五场,且第五场甲队获胜,前四场甲队胜三场负一场,所以P(M)=0.6×(0.62×0.52×2+0.6×0.4×0.52×2)=0.18.16.已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若=,·=0,则C的离心率为________.答案 2解析因为F1B·F2B=0,所以F1B⊥F2B,如图.因为=,所以点A为F1B的中点,又点O为F1F2的中点,所以OA∥BF2,所以F1B⊥OA,所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因为直线OA,OB为双曲线C的两条渐近线,所以tan∠BOF2=,tan∠BF1O=.因为tan∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以c2-a2=3a2,即2a=c,所以双曲线的离心率e==2.三、解答题17.△ABC的内角A,B,C的对边分别为a,b,c,设(sin B-sin C)2=sin2A-sin B sin C.(1)求A;(2)若a+b=2c,求sin C.解(1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc,由余弦定理得cos A==,因为0°<A<180°,所以A=60°. (2)由(1)知B=120°-C,由题设及正弦定理得sin A+sin(120°-C)=2sin C,即+cos C+sin C=2sinC,可得cos(C+60°)=-.由于0°<C<120°,所以sin(C+60°)=,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=.18.如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.(1)证明连接B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=B1C.又因为N为A1D的中点,所以ND=A1D.由题设知A1B1∥DC且A1B1=DC,可得B1C∥A1D且B1C=A1D,故ME∥ND且ME=ND,因此四边形MNDE 为平行四边形,MN∥ED.又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.(2)解由已知可得DE⊥DA,以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D-xyz,则A(2,0,0),A1(2,0,4),M(1,,2),N(1,0,2),=(0,0,-4),=(-1,,-2),=(-1,0,-2),=(0,-,0).设m=(x,y,z)为平面A1MA的一个法向量,则所以可得m=(,1,0).设n=(p,q,r)为平面A1MN的一个法向量,则所以可取n=(2,0,-1).于是cos〈m,n〉===,所以二面角A-MA1-N的正弦值为.19.已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.解设直线l:y=x+t,A(x1,y1),B(x2,y2).(1)由题设得F,故|AF|+|BF|=x1+x2+,由题设可得x1+x2=.由可得9x2+12(t-1)x+4t2=0,令Δ>0,得t<,则x1+x2=-.从而-=,得t=-.所以l的方程为y=x-.(2)由=3可得y1=-3y2,由可得y2-2y+2t=0,所以y1+y2=2,从而-3y2+y2=2,故y2=-1,y1=3,代入C的方程得x1=3,x2=,即A(3,3),B,故|AB|=. 20.已知函数f(x)=sin x-ln(1+x),f′(x)为f(x)的导数,证明:(1)f′(x)的区间上存在唯一极大值点;(2)f(x)有且仅有2个零点.证明(1)设g(x)=f′(x),则g(x)=cos x-,g′(x)=-sin x+.当x∈时,g′(x)单调递减,而g′(0)>0,g′<0,可得g′(x)在有唯一零点,设为α.则当x∈(-1,α)时,g′(x)>0;当x∈时,g′(x)<0.所以g(x)在(-1,α)上单调递增,在上单调递减,故g(x)在上存在唯一极大值点,即f′(x)在上存在唯一极大值点.(2)f(x)的定义域为(-1,+∞).①当x∈(-1,0]时,由(1)知,f′(x)在(-1,0)上单调递增.而f′(0)=0,所以当x∈(-1,0)时,f′(x)<0,故f(x)在(-1,0)上单调递减.又f(0)=0,从而x=0是f(x)在(-1,0]上的唯一零点;②当x∈时,由(1)知,f′(x)在(0,α)上单调递增,在上单调递减,而f′(0)=0,f′<0,所以存在β∈,使得f′(β)=0,且当x∈(0,β)时,f′(x)>0;当x∈时,f′(x)<0.故f(x)在(0,β)上单调递增,在上单调递减.又f(0)=0,f=1-ln>0,所以当x∈时,f(x)>0.从而,f(x)在上没有零点;③当x∈时,f′(x)<0,所以f(x)在上单调递减.而f>0,f(π)<0,所以f(x)在上有唯一零点;④当x∈(π,+∞)时,ln(x+1)>1,所以f(x)<0,从而f(x)在(π,+∞)上没有零点.综上,f(x)有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(ⅰ)证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;(ⅱ)求p4,并根据p4的值解释这种试验方案的合理性.(1)解X的所有可能取值为-1,0,1.P(X=-1)=(1-α)β,P(X=0)=αβ+(1-α)(1-β),P(X=1)=α(1-β).所以X的分布列为(2)(ⅰ)证明由(1)得a=0.4,b=0.5,c=0.1.因此p i=0.4p i-1+0.5p i+0.1p i+1,故0.1(p i+1-p i)=0.4(p i-p i-1),即p i+1-p i=4(p i-p i-1).又因为p1-p0=p1≠0,所以{p i+1-p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列.(ⅱ)解由(ⅰ)可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8-p7)+(p7-p6)+…+(p1-p0)=p1.由于p8=1,故p1=,所以p4=(p4-p3)+(p3-p2)+(p2-p1)+(p1-p0)=p1=.p4表示题干中的实验方案最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线C的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2ρcos θ+ρsin θ+11=0.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.解(1)因为-1<≤1,且x2+2=2+=1,所以C的直角坐标方程为x2+=1(x≠-1).l的直角坐标方程为2x+y+11=0.(2)由(1)可设C的参数方程为 (α为参数,-π<α<π).C上的点到l的距离为=. 当α=-时,4cos+11取得最小值7,故C上的点到l距离的最小值为.23.[选修4-5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)++≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.证明(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,且abc=1,故有a2+b2+c2≥ab+bc+ca==++.所以++≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3=3(a+b)(b+c)(a+c)≥3×(2)×(2)×(2)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.祝福语祝你考试成功!。
绝密★启用前2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.作答时,务必将答案写在答题卡上。
写在本试卷及草稿纸上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B =A. (-∞,1)B. (-2,1)C. (-3,-1)D. (3,+∞)【答案】A 【解析】 【分析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.【详解】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A .【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.2.设z =-3+2i ,则在复平面内z 对应的点位于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C 【解析】 【分析】本题考查复数的共轭复数和复数在复平面内的对应点位置,渗透了直观想象和数学运算素养.采取定义法,利用数形结合思想解题.【详解】由32,z i =-+得32,z i =--则32,z i =--对应点(-3,-2)位于第三象限.故选C .【点睛】本题考点为共轭复数,为基础题目,难度偏易.忽视共轭复数的定义致错,复数与共轭复数间的关系为实部同而虚部异,它的实部和虚部分别对应复平面上点的横纵坐标.3.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A. -3 B. -2 C. 2 D. 3【答案】C 【解析】 【分析】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.【详解】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.4.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日2L 点的轨道运行.2L 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,2L 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:121223()()M M M R r R r r R +=++.设r Rα=,由于α的值很小,因此在近似计算中34532333(1)ααααα++≈+,则r 的近似值为A.B.C.D.【答案】D 【解析】 【分析】本题在正确理解题意的基础上,将有关式子代入给定公式,建立α的方程,解方程、近似计算.题目所处位置应是“解答题”,但由于题干较长,易使考生“望而生畏”,注重了阅读理解、数学式子的变形及运算求解能力的考查. 【详解】由rRα=,得r R α= 因为121223()()M M M R r R r r R +=++,所以12122222(1)(1)M M M R R R ααα+=++,即543232221133[(1)]3(1)(1)M M αααααααα++=+-=≈++,解得3α=所以3.r R α==【点睛】由于本题题干较长,所以,易错点之一就是能否静心读题,正确理解题意;易错点之二是复杂式子的变形出错.5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是A. 中位数B. 平均数C. 方差D. 极差【答案】A 【解析】 【分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案. 【详解】设9位评委评分按从小到大排列为123489x x x x x x <<<<<.则①原始中位数为5x ,去掉最低分1x ,最高分9x ,后剩余2348x x x x <<<,中位数仍为5x ,∴A 正确. ②原始平均数1234891()9x x x x x x x =<<<<<,后来平均数234817x x x x x '=<<<()平均数受极端值影响较大,∴x 与x '不一定相同,B 不正确③()()()22221119q S x x x x x x ⎡⎤=-+-++-⎢⎥⎣⎦ ()()()222223817s x x x x x x ⎡⎤'=-'+-'++-'⎢⎥⎣⎦由②易知,C 不正确.④原极差91=x -x ,后来极差82=x -x 显然极差变小,D 不正确. 【点睛】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.6.若a >b ,则 A. ln(a −b )>0B. 3a <3bC. a 3−b 3>0D. │a │>│b │【答案】C 【解析】 【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3xy =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.7.设α,β为两个平面,则α∥β的充要条件是 A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. α,β平行于同一条直线 D. α,β垂直于同一平面 【答案】B 【解析】 【分析】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.【详解】由面面平行的判定定理知:α内两条相交直线都与β平行是//αβ的充分条件,由面面平行性质定理知,若//αβ,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是//αβ的必要条件,故选B .【点睛】面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,//a b a b αβ⊂⊂,则//αβ”此类的错误.8.若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p =A. 2B. 3C. 4D. 8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D .【详解】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.9.下列函数中,以2π为周期且在区间(4π,2π)单调递增的是 A. f (x )=│cos 2x │ B. f (x )=│sin 2x │ C. f (x )=cos│x │ D. f (x )= sin│x │【答案】A 【解析】 【分析】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.【详解】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos2y x =图象,由图象知,其周期为2π,在区间单调递增,A 正确;作出sin 2y x =的图象,由图象知,其周期为2π,在区间单调递减,排除B ,故选A .【点睛】利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数;10.已知a ∈(0,π2),2sin2α=cos2α+1,则sinα=A.15B.5C. D.【答案】B 【解析】 【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin α∴=B .【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉.11.设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为 A.B. C. 2 D.【答案】A 【解析】 【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率. 【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.12.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A. 9,4⎛⎤-∞ ⎥⎝⎦B. 7,3⎛⎤-∞ ⎥⎝⎦ C. 5,2⎛⎤-∞ ⎥⎝⎦ D. 8,3⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98. 【解析】 【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题.【详解】由题意得,经停该高铁站的列车正点数约为100.97200.98100.9939.2⨯+⨯+⨯=,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.20.9840=. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.14.已知()f x 是奇函数,且当0x <时,()e axf x =-.若(ln 2)8f =,则a =__________.【答案】-3【解析】 【分析】本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案. 【详解】因为()f x 是奇函数,且当0x <时,()ax f x e -=-.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e --=-,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3π. 【点睛】本题主要考查函数奇偶性,对数的计算.15.V ABC 的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则V ABC 的面积为__________.【答案】【解析】 【分析】本题首先应用余弦定理,建立关于c 的方程,应用,a c 的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查. 【详解】由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=, 即212c =解得c c ==-所以2a c ==11sin 222ABC S ac B ∆==⨯= 【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】 (1). 共26个面. (2). 1. 【解析】 【分析】第一问可按题目数出来,第二问需在正方体中简单还原出物体位置,利用对称性,平面几何解决. 【详解】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则A B B E x ==,延长BC 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE ∆为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==.【点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.三、解答题:共70分。
2019学年超级全能生9月联考一、选择题:每小题4分,共40分1. 已知全集U R =,集合{}2|40A x x =-≥,集合{}|22x B x =≥,则()U A B =I ð( ) A .[)2+∞,B .∅C .[)1,2D .()1,22. 已知复数2i1iz -=+(i 为虚数单位),则复数z 的模长等于( ) ABCD3. 若实数,x y 满足约束条件2032402340x y x y x y ++≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为( )A .2-B .12C .4-D .84. 在同一直角坐标系中,函数2y ax bx =+,()01x b y a a a 且-=>≠的图像可能是( )5. 已知直线,m l ,平面,αβ满足l α⊥,m β⊂,则“l m ∥” 是“αβ⊥”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6. A .()E ξ增大,()D ξ增大 B .()E ξ减小,()D ξ减小C .()E ξ增大,()D ξ先增大后减小 D .()E ξ增大,()D ξ先减小后增大7. 已知双曲线2221(0)y x b b-=>右焦点为F ,左顶点为A ,右支上存在点B 满足BF AF ⊥,记直线AB与渐近线在第一象限内的交点为M ,且2AM MB =u u u u r u u u r,则双曲线的渐近线方程为( )A .2y x =±B .12y x =±C .43y x =±D . 34y x =±8. 已知函数()(ln 1)(2)(1,2)i f x x x m i =---=,e 是自然对数的底数,存在m ∈R ( ) A .当1i =时,()f x 零点个数可能有3个 B .当1i =时,()f x 零点个数可能有4个 C .当2i =时,()f x 零点个数可能有3个 D .当2i =时,()f x 零点个数可能有4个DC B A9. 三棱柱111ABC A B C -中,1AA ⊥平面ABC ,动点M 在线段1CA 上滑动(包含端点),记BM 与11B A 所成角为α,BM 与平面ABC 所成线面角为β,二面角M BC A --为γ,则( ) A .,βαβγ≥≤ B .,βαβγ≤≤C .,βαβγ≤≥D .,βαβγ≥≥10. 已知函数()()11,212,22x x f x f x x ⎧--≤⎪=⎨-->⎪⎩,若函数()()g x x f x a =⋅-的零点个数恰为2个,则( )A .2837a <<或1a =-B .2837a <<C .7382a <<或1a =-D .7382a <<二、填空题:单空题4分,多空题6分,共36分11. 《九章算术》是中国古代的数学专著,是《算术十书》中最重要的一种,成于公元一世纪左右.书中对一些特殊的柱体和锥体有特定的命名.例如,将长方体切割成两个一模一样的三角柱体,称之为“堑堵”.若某一个“堑堵”的三视图如图所示,则该柱体的外接球表面积是 .12. 已知()()()2012111nn n x a a x a x a x =+++++++L (*n ∈N )对任意x ∈R 恒成立,则0a = ;若450a a +=,则n = .13. 已知单位向量1e ,2e 夹角为60︒,122+=e e ;12λ+e e (λ∈R )的最小值为 .14. 在ABC △中,D 为AC 中点,若46AB =,2BC =,5BD =,则cos ABC ∠= ;sin C = .15. 将1,2,3,4,5,6,7,8八个数字组成没有重复数字的八位数,要求7与8相邻,且任意相邻两个数字奇偶不同,这样的八位数的个数是 .16. 设()0,3F -是椭圆22221(0)y x a b a b+=>>的一个焦点,点()0,2A ,若椭圆上存在点P 满足9PA PF +=,则椭圆离心率的取值范围是 .17. 已知数列{}n a ,满足()21n n n a k a a +=-.若112a =,1k =,则1n n a a +⎧⎫⎨⎬⎩⎭的最小值是 ;若12a =,且存在常数0M >,使得任意n a M ≤,则k 的取值范围是 .三、解答题:5小题,共74分18. 已知函数()1cos cos 34f x x x π⎛⎫=+⋅- ⎪⎝⎭.(1)求3f π⎛⎫⎪⎝⎭的值和()f x 的单调递增区间;(2)函数()f x θ+是奇函数(0,2πθ⎡⎤∈⎢⎥⎣⎦),求函数()2y f x θ=+⎡⎤⎣⎦的值域.19. 已知棱台111ABC A B C -,平面11AAC C ⊥平面111A B C ,111=60B AC ∠︒,111=90A B C ∠︒,11AA AC CC ===112AC,,D E 分别是BC 和11A C 的中点.(1)证明:11DE B C ⊥;(2)求DE 与平面11BCC B 所成角的余弦值.20. 已知等比数列{}n a 的公比1q >,且4a 为23a a ,的等比中项,31a +为24a a ,的等差中项.(1)求q 的值; (2)设()()*11nn n b a n N +=+-∈,数列1nb ⎧⎫⎨⎬⎩⎭的前n 项和为n S,求证:53n S <.21. 如图,已知抛物线C :()220x py p =>,过抛物线上点B 作切线l :24y x =-交y 轴于点A .(1)求抛物线方程和切点B 的坐标; (2)过点A 作抛物线的割线,在第一象限内的交点记为D E 、,设F 为y 轴上一点,满足FD FE =,M 为DE 中点,求DEFAMFS S △△的取值范围.22. 已知函数()ln 12x f x a x⎫=+⎪⎭.(1)当1a =时,求()f x 的单调区间; (2)设()()12g x f x x =-,若()g x 在()1+∞,上有极值点0x ,求证:()01g x <.。
2019届浙江省“超能全能生”高三上学期9月联考数学试题(A 卷)1.已知集合{}2A x x =>,{}3B x x =≥,则()B A =R I ð( ) A .()2,3B .(]2,3C .(),2-∞D .[)3,+∞ 2.双曲线22143x y -=的右焦点到渐近线的距离为( )A .1B C .2D3.二项式6x⎛+ ⎝的展开式中的常数项为( )A .6B .12C .15D .204.某几何体的三视图如图所示,则该几何体的体积为( )A .72B .113C .236D .4765.在1,2,3,4,5,6这六个数字所组成的允许有重复数字的三位数中,各个数位上的数字之和为9的三位数共有( ) A .16个 B .18个C .24个D .25个6.函数()ln 11x x y x++-=图象可能是( )A .B .C .D .7.已知()()20f x ax bx c a =++≠,其中b a c =+,若对任意的实数b ,c 都有不等式()()222f b cf bc ≥+成立,则方程()0f x =的根的可能性为( )A .有一个实数根B .两个不相等的实数根C .至少一个负实数根D .没有正实数根8.已知a r ,b r ,e r 是平面向量,e r 是单位向量,若1a e ⋅=r r,2b e ⋅=r r ,3a b ⋅=r r ,则a b +r r 的最小值是( ) A .3BCD .69.如图,矩形ABCD 中,3AD =,4AB =,E ,F 分别为AD ,AB 中点,M 为线段BC 上的一个动点,现将DEC V ,AEF V ,分别沿EC ,EF 折起,使A ,D 重合于点P .设PM 与平面BCEF 所成角为α,二面角P EF C --的平面角为β,二面角P EC F --的平面角为γ,则( )A .αβγ<<B .a γβ<<C .βγα<<D .αγβ<<10.已知数列{}n a 满足12a =,()*1112n n n a a n N a +⎛⎫=+∈ ⎪⎝⎭,设11n n na b a -=+,则100b =( ) A .1983- B .9823-C .9923-D .10023-11.复数3134z i =-(i 是虚数单位)的实部为________,z =________.12.在ABC V 中,a ,b ,c 分别为A ,B ,C 所对的边,若ABC S =V 3b =,tan C =则c =________,sin 2sin AC=________. 13.法国数学家拉格朗日于1778年在其著作《解析函数论》中提出一个定理:如果函数()y f x =满足如下条件:(1)在闭区间[],a b 上是连续不断的; (2)在区间(),a b 上都有导数.则在区间(),a b 上至少存在一个数ξ,使得()()()()f b f a f b a ξ'-=-,其中ξ称为拉格朗日中值.则()xg x e =在区间[]0,1上的拉格朗日中值ξ=________.14.若实数x ,y 满足0030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,则1yx +的最大值为________,若方程20x y a ++=有解,则实数a 的取值范围为________. 15.随机变量X 的分布列为其中a ,b ,c ,d 成等差数列()a b <,则()3P X ==________,()D X 的取值范围为________.16.已知实数x ,y 满足221x y xy ++=,则x y -的最大值是________.17.已知圆()()22:112C x y -+-=,椭圆22:12x y Γ+=,过原点O 的射线l 分别与圆C 、椭圆Γ交于M ,N 两点,点M 不同于点O ,则OM ON ⋅的最大值是________. 18.已知函数2()sin cos 22f x x x x x ⎛⎫=-+ ⎪ ⎪⎝⎭,x ∈R .(Ⅰ)求函数()fx 的最小正周期及单调递增区间; (Ⅱ)若α为锐角且7129f πα⎛⎫+=- ⎪⎝⎭,β满足()3cos 5αβ-=,求sin β. 19.如图,在四棱锥A BCDE -中,ABC V 是边长为4的正三角形,//BE CD 且2BE CD =,CD =2AE =,BE AD ⊥,M 为AB 中点.(Ⅰ)证明://CM 平面ADE ;(Ⅱ)求直线CA 与平面BCDE 所成角的正弦值.20.已知数列{}n a 的前n 项和为()1n n S na n n =--且23a =.数列{}n b 为非负的等比数列,且满足134a b =,27416b b b =. (Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)若数列{}n b 的前n 项和为n C ,求数列{}n nC 的前n 项和n T .21.已知椭圆2212x y m+=的一个焦点为()0,1F -,曲线C 上任意一点到F 的距离等于该点到直线3y =-的距离. (Ⅰ)求m 及曲线C 的方程;(Ⅱ)若直线l 与椭圆只有一个交点P ,与曲线C 交于,A B 两点,求FAP FBP AFS S BF-V V 的值. 22.已知函数()l 1n x f x b x=+-. (Ⅰ)若在曲线()y f x =上的一点P 的切线方程为x 轴,求此时b 的值; (Ⅱ)若()f x ax ≥恒成立,求2+a b 的取值范围.参考答案1.A 【解析】 【分析】首先求出{}3R B x x =<ð,之后求交集得到结果. 【详解】由{}3R B x x =<ð,所以()2,3R B A =I ð, 故选:A . 【点睛】本题考查的是有关集合的问题,涉及到的知识点有集合的运算,属于基础题目. 2.B 【解析】 【分析】根据双曲线的方程求得右焦点的坐标和渐近线方程,结合点到直线的距离公式,即可求解. 【详解】由题意,双曲线22143x y -=,可得24a =,23b =,则c ==)F,又由双曲线的标准方程可得双曲线的焦点在x 轴上,可得其渐近线方程为b y x x a =±=20y ±=, 所以右焦点F20y +=的距离为d ==右焦点F20y -=的距离为d ==.故选:B . 【点睛】本题主要考查了双曲线的标准方程及简单的几何性质,以及点到直线的距离公式的应用,着重考查了推理与计算能力,属于基础题. 3.C【解析】 【分析】求得二项展开式的通项36216rrr T C x-+=,令3602r -=,求得4r =,代入即可求解.【详解】由二项式6x⎛+ ⎝,则二项展开式的通项3662166rr r r r r T C x C x--+==, 令3602r -=,解得4r =, 所以6x⎛+ ⎝的展开式中的常数项为4615C =.故选:C . 【点睛】本题主要考查了二项展开式的指定项的求解,其中解答中熟记二项展开式的通项,准确计算是解答的关键,着重考查了运算与求解能力. 4.C 【解析】 【分析】作出几何体的直观图,可知该几何体为一个长、宽、高分别为2、2、1的长方体切去一个底面为以1为直角边的等腰直角三角形,高为1的三棱锥所得,然后利用柱体和锥体的体积公式可求得几何体的体积. 【详解】几何体的直观图如下图所示:由直观图可知,该几何体为一个长、宽、高分别为2、2、1的长方体1111ABCD A B C D -切去一个底面为以1为直角边的等腰直角三角形,高为1的三棱锥1A A EF -所得, 所以该几何体的体积111111123221111326ABCD A B C D A A EF V V V --=-=⨯⨯-⨯⨯⨯⨯=, 故选:C . 【点睛】由三视图还原空间几何体的直观图时应遵循“长对正,高平齐,宽相等”的基本原则,即正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出几何体直观图的步骤和思考方法:(1)首先看俯视图,根据俯视图确定几何体的底面;(2)观察正视图和侧视图确定几何体的侧面;(3)画出整体,然后再根据三视图进行验证. 5.D 【解析】 【分析】可分为三类情况:(1)三位数各个数位没有重复数字;(2)若三位数各个数位有且仅有两个重复数字;(3)若三位数各个数位有三个重复数字,结合排列组合,即可求解. 【详解】根据题意,可分为三类情况:(1)若三位数各个数位没有重复数字,则组合数字只能是1,2,6和1,3,5和2,3,4,则所组成的三位数共有333A 个;(2)若三位数各个数位有且仅有两个重复数字,则组合数字只能是2,2,5和1,4,4,则所组成的三位数有132C ⨯个;(3)若三位数各个数位有三个重复数字,则组成额三位数只有333,由分类计数原理,满足题意的三位数共有313332125A C ++=个.故选:D . 【方法归纳】本题主要考查了分类加法计数原理,以及解决排列组合的综合应用,其中解答中正确理解题意,解题过程中首先要分清“先分类还是先分步”“是排列还是组合”,合理分类求解是解答的关键,着重考查了分析问题和解答问题的能力.6.A 【解析】 【分析】利用函数的图象和性质及绝对值不等式的性质逐一判断,排除不正确的选项,得到结果. 【详解】 设()()ln 11x x f x x++-=,由()()()()ln 11ln 11x x x x f x f x xx-++---++-===---,所以题中函数是奇函数,其图象关于原点对称,故排除B ,D ; 又由绝对值不等式112x x ++-≥,所以当0x >时,函数值为正,当0x <时,函数值为负,故排除C , 故选:A . 【点睛】该题考查的是有关函数图象的识别问题,在解题的过程中,注意从函数的定义域、单调性、特殊点、函数值的符号几个方面入手,属于简单题目. 7.C 【解析】 【分析】函数为二次函数,结合判别式()()222440b ac a c ac a c ∆==+-=-≥-,得到()0f x =至少有一个根,之后根据函数值的大小关系,以及函数的单调性,分情况讨论得到根的情况. 【详解】因为()()222440b ac a c ac a c ∆==+-=-≥-, 所以()0f x =至少有一个根①,因为对任意的实数b ,c 都有不等式()()222f b c f bc ≥+成立,222bc bc +≥恒成立,所以()()20f x ax bx c a =++≠在区间,2b a ⎛⎫-+∞ ⎪⎝⎭上单调递增,所以0a >. 若0b =,由b a c =+得c a =-,此时()20f x ax a =-=有一个负根和一个正根;若0b >,则02bx a=-<, 结合①可知()0f x =至少有一个负根; 若0b <,由0a >,b a c =+,得0c <, 则()0f x =有一个负根和一个正根, 故选:C . 【点睛】本题考查函数的图象与性质、一元二次方程根的分布特征,属于较难题目. 8.B 【解析】 【分析】根据e r 是单位向量及1a e ⋅=r r,2b e ⋅=r r ,可设()1,0e =r ,()1,a x =r ,()2,b y =r ,由3a b ⋅=r r 可得到1xy =,求出2a b +r r并结合基本不等式即可求出最小值.【详解】令()1,0e =r ,因为1a e ⋅=r r,则可设()1,a x =r ,同理可设()2,b y =r ,所以(3,)a b x y +=+r r ,由3a b ⋅=r r,得1xy=,所以()22229929413x y x xy y xy a b =++=+++≥++=r r ,当且仅当1x y ==或-1时,等号成立,所以a b +r r故选:B . 【点睛】本题考查平面向量的数量积运算,向量的坐标运算,同时考查基本不等式,属于中档题. 9.D 【解析】 【分析】过P 作PH ⊥平面BCEF ,作出三个二面角P BC F --,二面角P EF C --的平面角,二面角P EC F --的平面角,通过原平面图形计算可得这三个角的大小关系.从而得出结论. 【详解】在AFE △翻折过程中,A 点在底面的投影在过点A 且垂直EF 的直线上(设垂足为I ),同理在DEC V 翻折过程中,D 点在底面的投影在过点D 且垂直EC 的直线上(设垂足为K ),设点P 在底面的投影为点H ,过点H 向BC 作垂线HJ (垂足为J ),把PEC V ,PEF V 摊平到原来的平面图形,如下右图,H 就是AI 和DK 延长线的交点,由已知可得32AE DE ==,2AF =,4DC =,则52EF ==,3262552AE AF AI EF ⨯⨯===,同理可得DK =,AI DK <,则在左图中知易得HI HK <,由二面角的定义知tan tan PH PHHI HKβγ=>=,所以βγ>, 又在右图中,以DC ,DA 为,x y 轴建立平面直角坐标系,3032408EC k -==--,则83DKk =,直线DH 方程为83y x =,同理直线AH 的方程为433y x =-+,由83433y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩得342x y ⎧=⎪⎨⎪=⎩,即3(,2)4H ,∴313444HJ =-=,∴HK HJ <,所以二面角P BC F --的平面角小于二面角РEC F --的平面角,显然α不大于二面角P BC F --的平面角,∴αγ<,综上可知αγβ<<,故选:D【点睛】本题考查空间角(线面角和二面角).立体几何是高中数学中的重要内容,也是高考考查的热点.这类问题的设置一般有线面位置关系的证明与角度、距离的计算等.解答第一类问题时一般要借助线面平行与垂直的判定定理;解答第二类问题时可建立空间直角坐标系,利用空间向量的坐标形式及数量积公式进行求解. 10.C 【解析】 【分析】由已知n a 的递推关系代入n b 得出21n n b b +=,取常用对数后得数列{lg }n b 是等比数列,从而可求得通项公式n b . 【详解】由11n n n a b a -=+得()()222112211111211112n n n n n n n n n na a a ab b a a a a ++++---====++++,两边取对数可得1lg 2lg n n b b +=,因此数列{}lg n b 是以1lg b 为首项,2q =为公比的等比数列,而1111113a b a -==+,因此1211111lg lg 22lg lg333n n n n b ---⎛⎫=⨯== ⎪⎝⎭,则1213n n b -⎛⎫= ⎪⎝⎭,因此可得9921003b -=,故选:C . 【点睛】本题考查数列的递推公式,等比数列的判定和通项公式.构造新数列{lg }n b 是解题关键,通过构造新数列,转化为求等比数列的通项公式. 11.325 15【解析】 【分析】由复数定义及复数除法运算,化简复数,即可求得其实部;根据复数模的定义,即可求得z . 【详解】根据复数定义及复数除法运算可得3113434z i i==-+ ()()343434ii i -=+-342525i =-, 所以复数z 的实部为325,由复数模的定义可知15z ==. 故答案为:325;15. 【点睛】本题考查复数的概念、复数模的求法,属于基础题. 12.3 2827【解析】 【分析】利用三角函数的基本关系和tan C =sin ,cos C C 的值,由三角形的面积公式,列出方程求得a 的值,再结合余弦定理,求得3c =和7cos 9A =,最后利用正弦定理,即可求解. 【详解】在ABC ∆中,因为tan C =sin co s CC=,又由22sin cos 1C C +=,可得sin C =,1cos 3C =,又因为12sin ABC ab S C ∆==3b =,即1332a ⨯=⨯2a =, 由余弦定理,可得2222212cos 2322393c a b ab C =+-=+-⨯⨯⨯=,可得3c =, 又由222cos 729b c a A bc +-==,所以sin 22sin 222728cos cos sin sin 3927A A a A A C C c ⨯=⋅=⋅=⨯=. 故答案为:3,2827.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题. 13.()ln 1e - 【解析】 【分析】先求得导函数,结合拉格朗日中值的定义,可得1e e ξ=-,进而求得ξ的值即可. 【详解】()x g x e =,则()x g x e '=,所以()g e ξξ'=,由拉格朗日中值的定义可知,()()()10110g g g e ξ-'==--,即1e e ξ=-, 所以()ln 1e ξ=-. 故答案为: ()ln 1e -. 【点睛】本题考查函数与导数的简单应用,新定义的理解和应用,属于基础题. 14.3 902a -≤≤ 【解析】 【分析】作出可行域,由1yx +的几何意义可得最大值,作直线:20l x y +=,平移直线l 求出2z x y =+的取值范围可得a 的范围.【详解】作出题中不等式组所表示的平面区域如图中阴影部分所示OAB V 内部(包含边界), 1yx +可理解为点(),x y 与点P ()1,0-连线的斜率, 由图可知当点(),x y 为()0,3B 时,1yx +取得最大值3;作直线:20l x y +=,平移直线l , 当l 过点33,22A ⎛⎫⎪⎝⎭时z 取得最大值92,当l 经过原点时z 取得最小值0,若方程20x y a ++=有解,则直线20x y a ++=与可行域有交点,902a ≤-≤,所以902a -≤≤. 故答案为:3;902a -≤≤.【点睛】本题考查线性规划.对于线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),“≤”取下方,“≥”取上方,并明确可行域对应的是封闭区域还是开放区域,边界是实线还是虚线,其次如果目标函数是非线性的,则确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、点到直线的距离等,最后结合图形确定目标函数最值的取法、值域范围,如果目标函数是线性的,则作出目标函数对应的直线,平移该直线可得最优解. 15.12 20,59⎛⎫⎪⎝⎭【解析】 【分析】根据的等差中项的性质得到a d b c +=+,根据概率和为1得到1a b c d +++=,即可求出12a d +=,即可得出()3P X =的值; 根据a ,b ,c ,d 均大于0,又a b <,则设公差0t >, 根据1232a d a t +=+=,和12302a t =->,可得106t <<,结合()10E X t =的取值范围,根据公式()()()25D X E X =-,即可求出()D X 的取值范围.【详解】解:因为a ,b ,c ,d 成等差数列,所以a d b c +=+,又1a b c d +++=,所以12a d +=. 所以()()()13332P X P X P X a d ===+=-=+=, 由题意a ,b ,c ,d 均大于0,又a b <,则设公差0t >, 由1232a d a t +=+=,所以12302a t =->,所以106t <<, 因为()533100,3E X a b c d t ⎛⎫=--++=∈ ⎪⎝⎭, 所以()()()()()()()()()22223113D X a E X b E X c E X d E X =--+--+-+-=()()()()()()222095,59a d b c E X E X ⎛⎫+++-=-∈ ⎪⎝⎭,故()D X 的取值范围为20,59⎛⎫⎪⎝⎭.故答案为:(1) 12;(2) 20,59⎛⎫⎪⎝⎭【点睛】本题考查离散型随机变量的期望与方差、等差数列的性质,属于中档题. 16.2 【解析】 【分析】由重要不等式知()24x y xy --≤,再由题意得()()2231314x y xy x y ≤-=-+-,解出不等式即可求出答案. 【详解】解:由221x y xy =++得()213x y xy -=-,又由重要不等式知()24x y xy --≤(当且仅当x y =-时取等号),∴()()2231314x y xy x y ≤-=-+-,化简得()24x y -≤,得22x y -≤-≤, ∴x y -的最大值为2, 故答案为:2. 【点睛】本题主要考查重要不等式的应用,考查一元二次不等式的解法,属于基础题.17.【解析】 【分析】设射线l 的方程为y kx =,再联立直线与椭圆和圆的方程,再结合弦长公式可得OM ON ⋅关于k 的解析式OM ON ⋅=,在换元令1t k =+结合二次函数的最值问题求解OM ON ⋅的最大值即可.【详解】设射线l 的方程为y kx =,联立2222y kx x y =⎧⎨+=⎩得N x =, 联立()()22,112y kx x y =⎧⎪⎨-+-=⎪⎩,得2221M k x k +=+,所以M N OM ON ⋅==令1t k =+,则()2222221224332312112223321k t t t t tt k +-+⎛⎫==-+=-+ ⎪⎝⎭+,所以()22121321k k +≥+,即≤当32t =,即12k =时取等号,所以OMON ⋅的最大值为故答案为:【点睛】本题考查椭圆和圆的方程,方程思想、二次函数的最值的求法,需要根据题意设射线的方程,联立圆与椭圆的方程结合弦长公式求出所求量关于斜率k 的表达式,进而换元利用二次函数的性质求解最值.属于难题.18.(Ⅰ)T π=,5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z∈. (Ⅱ)415【解析】【分析】(Ⅰ)把2()sin cos 22f x x x x x ⎛⎫=-+ ⎪ ⎪⎝⎭使用降幂公式、逆用二倍角公式以及两角和的正弦公式化成只有正弦函数,然后代入正弦函数的周期公式和递增区间即可求其周期和增区间. (Ⅱ)化简7129f πα⎛⎫+=- ⎪⎝⎭,求出7cos 29α=-,进一步求出α的正弦及余弦,令()βααβ=--,利用两角差的正弦公式代入计算即可. 【详解】解:(Ⅰ)()22sin cos cos 22f x x x x x =-+1sin 222x x =+ sin 23x π⎛⎫=+ ⎪⎝⎭.所以()f x 的最小正周期T π=, 令222232k x k πππππ-≤+≤+,k Z ∈,解得51212x k k ππππ-+≤≤,k Z ∈, 所以函数()f x 的单调递增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. (Ⅱ)由(Ⅰ)得7sin 2cos 21229f ππααα⎛⎫⎛⎫+=+==- ⎪ ⎪⎝⎭⎝⎭,227cos 22cos112sin 9ααα=-=-=-因为α为锐角,所以1cos 3α=,sin 3α=, 又因为()3cos 5αβ-=, 所以()4sin 5αβ-=±,所以()()()4sin sin sin cos cos sin 15βααβααβααβ=--=⋅--⋅-=⎡⎤⎣⎦. 【点睛】本题考查正弦型三角函数的性质、三角函数的诱导公式以及三角恒等变换公式,中档题.19.【解析】 【分析】(Ⅰ)取AE 的中点F ,连接MF 、FD ,只需证明四边形MFDC 为平行四边形,因为点M为AB 的中点,所以////MF BE DC ,且12MF BE =,则易证. (Ⅱ)先证明BE ⊥平面AD E ,作AH DE ⊥于H ,再证明AH ⊥平面CDEB ,所以ACH ∠为直线CA 与平面BCDE 所成的角,利用1122ADE S AE DF AH DE =⋅⋅=⋅⋅V ,求出AH ,则直线CA 与平面BCDE 所成角的正弦值可求. 【详解】 (Ⅰ)证明:取AE 的中点F ,连接MF ,FD , 因为点M 为AB 的中点, 所以//MF BE ,且12MF BE =, 又因为//BE CD 且2BE CD =, 所以//MF CD ,MF CD =,所以四边形MFDC 为平行四边形,所以//MC FD , 又因为FD ⊂平面ADE ,MC ⊄平面ADE , 所以//CM 平面ADE .(Ⅱ)解:因为4AB =,2BE CD ==2AE =, 所以222BE AE AB +=,所以AE BE ⊥, 又BE AD ⊥,AD AE A ⋂=, 所以BE ⊥平面AD E , 又BE ⊂平面CDEB , 所以平面ADE ⊥平面CDEB ,作AH DE ⊥于H ,因为平面ADE I 平面CDEB DE =, 所以AH ⊥平面CDEB ,连接CH ,所以ACH ∠为直线CA 与平面BCDE 所成的角.因为BE ⊥平面ADE ,所以BE DE ⊥,在直角梯形BCDE 中,作CG BE ⊥于G ,则四边形CDEG 为矩形,CD EG ==则BG =GC DE ===因为BE AD ⊥,所以CD AD ⊥,在直角三角形ACD 中,AD =又DF MC == 在ADE V 中,1122ADE S AE DF AH DE =⋅⋅=⋅⋅V所以2AH ⨯=所以AH =所以sin 13A A H AC CH ==∠,所以直线CA 与平面BCDE 所成角的正弦值为13. 【点睛】本题考查线面平行的判定以及线面角的计算,同时考查空间想象能力、运算求解能力以及逻辑推理能力,中档题. 20.(Ⅰ)21n a n =-.12n n b -=.(Ⅱ)()()111222n n n n T n ++=-+-【解析】 【分析】(Ⅰ)由已知2222S a =-,及212S a a =+,23a =,可求得11a =,利用2n ≥,1=n n n a S S --,化简可得12n n a a --=,即可证得数列{}n a 为等差数列,根据公式即可求得{}n a 的通项公式,由数列{}n b 为非负的等比数列,根据已知求得34b =,2q =,根据等比数列的通项公式即可得解.(Ⅱ)由(Ⅰ)得122112n n n C -==--,即可知2nn nC n n =⋅-,设212222n A n =⨯+⨯++⨯L ,()1122n n B n +=+++=L ,利用错位相减法即可求得A ,根据分组求和即可得解. 【详解】解:(Ⅰ)当2n =时,2222S a =-, 又因为212S a a =+,23a =,所以11a =,()1n n S na n n =--,则当2n ≥时,()()()11112n n S n a n n --=----, 两式相减并化简得12n n a a --=,所以数列{}n a 是首项为1,公差为2的等差数列, 所以21n a n =-.因为134a b =,所以34b =,因为2745b b b b =,0n b >,27416b b b =,所以516b =, 所以2534b q b ==,又0q >,所以2q =, 所以3132n n n b b q--==. (Ⅱ)由(Ⅰ)得122112nn n C -==--,所以2nn nC n n =⋅-,设212222n A n =⨯+⨯++⨯L , 所以231212222n A n +=⨯+⨯++⨯L , 两式相减得()1122n A n +=-+,设()1122n n B n +=+++=L ,所以()()111222n n n n T A B n ++=-=-+-. 【点睛】本题考查根据n a 与n S 的关系证明数列为等差数列,考查等比数列的通项公式和求和公式、等差数列的通项公式、错位相减法、分组求和法,属于基础题. 21.(Ⅰ)3m =,曲线C 的方程为()242x y =+;(Ⅱ)0.【解析】 【分析】解:(Ⅰ)由题意得21m -=,则3m =,设(),M x y 为曲线C 上任意一点,由题意得()()22213x y y ++=+,化简即可;(Ⅱ)设直线l 的方程为y kx b =+,()11,A x y ,()22,B x y ,(),P P P x y ,联立直线与椭圆方程并消元,可求得2223b k =+,且(),P P P x y ,联立直线与曲线C 的方程消元,可得221222212242268123y y b k b b y y b k b⎧+=+=+-⎨=-=-⎩, 而13AF y =+,23BF y =+,根据三角形面积公式,将数据代入到FAP FBP AFAP AF S S BF BP BF-=-V V 即可求出结论. 【详解】 解:(Ⅰ)由()0,1F-知该椭圆的焦点在y 轴上,∴21m -=,解得3m =, 设(),M x y 为曲线C 上任意一点,由题意得()()22213x y y ++=+,化简得()242x y =+,∴3m =,曲线C 的方程为()242x y =+;(Ⅱ)设直线l 的方程为y kx b =+,()11,A x y ,()22,B x y ,(),P P P x y ,由22326y kx b x y =+⎧⎨+=⎩,得()222324260k x kbx b +++-=, ∴22482472k b ∆=-+, ∵直线l 与椭圆只有一个交点P , ∴0∆=,∴2223b k =+, 且22232P kb k x k b -==-+,3P P y kx b b=+=,① 由()242y kx b x y =+⎧⎨=+⎩,得()22222480y b k y b k -++-=, ∴221222212242268123y y b k b b y y b k b ⎧+=+=+-⎨=-=-⎩,② 由曲线C 的定义知13AF y =+,23BF y =+, 设点F 到直线l 的距离为d ,∴1212FAP FBPd AP AF AFS S BF BF d BP ⋅-=-⋅V V AP AF BP BF =-112233P P y y y y y y -+=--+()()()()()()122122333P P P y y y y y y y y y -+--+=-+,将①②代入分子()()()()122133P P y y y y y y -+--+=()()1212236P Py y y y y y -+-++()()22332123322660b b b b b ⎛⎫=--+-+-+⨯= ⎪⎝⎭,∴0FAP FBP AFS S BF-=V V . 【点睛】本题主要考查椭圆和抛物线的几何性质,直线与椭圆的位置关系,直线与抛物线的位置关系,考查计算能力,考查转化与化归思想,属于难题. 22.(Ⅰ)1b =;(Ⅱ)(],42ln 2-∞-. 【解析】 【分析】(Ⅰ)设切点P 的坐标为()(),t f t ,根据题意得出()()00f t f t ⎧=⎪⎨='⎪⎩,可求得实数b 的值;(Ⅱ)构造函数()()g x f x ax =-,求得()221ax x g x x-+-'=,然后分0a =、0a <和0a >三种情况讨论,利用导数分析函数()y g x =的单调性,根据题意得出()min 0g x ≥,可得出a 与b 所满足的不等关系,通过构造函数,利用导数可求2+a b 的取值范围.【详解】(Ⅰ)设切点P 的坐标为()(),t f t ,()n 1l b x f x x=+-Q ,()211f x x x -'=,由题意可得()()21101ln 0f t t tf t t b t ⎧=-=⎪⎪⎨'⎪=+-=⎪⎩,解得11t b =⎧⎨=⎩,因此,1b =;(Ⅱ)设()1ln g b x x ax x =+--,则()222111ax x g x a x x x-+-'=--=, ①当0a =时,()21x g x x -'=, 当()0,1x ∈时,()0g x '<;当()1,x ∈+∞时,()0g x '>. 所以()y g x =在()0,1上单调递减,在()1,+∞上单调递增,所以()()min 11g x g b ==-,令()min 0g x ≥得1b ≤,所以22a b +≤;②当0a <时,易知210ax x -+-=有两个根1x 、2x ,且有12221211x x a x x --==, 不妨令12x x <,又1210x x a=<,所以10x <,20x >,由题意舍去1x , 所以当()20,x x ∈时,()0g x '<;当()2,x x ∈+∞时,()0g x '>, 所以()y g x =在()20,x 上单调递减,在()2,x +∞上单调递增, 所以()()22222min 22221112l 0ln n 1ln 1g x g x a x x b x b x b x x x x ⎛⎫==+--=+---=+--≥ ⎪⎝⎭, 得222ln 1b x x ≤+-,所以222221422ln 2x a b x x x -+≤++-, 又22210ax x -+-=,所以22210x a x -=<,得201x <<, 令()()2ln 142201x h x x x x x -=++-<<,则()23252x x x h x -+'=,令()0h x '=,解得12x =或2x =(舍), 所以()y h x =在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,12⎛⎫⎪⎝⎭上单调递减,则()max 142ln 22h x h ⎛⎫==-⎪⎝⎭,所以242ln 2a b +≤-; ③当0a >时,若22a b +>,取12ab m e +-=,则1m >, 所以()11111022a f m am b am b a m m m⎛⎫-=+-+--=-+-< ⎪⎝⎭,不符合题意. 综上所述,2+a b 的取值范围为(],42ln 2-∞-. 【点睛】本题考查利用函数的切线方程求参数,同时也考查了利用函数不等式恒成立求参数的取值范围,构造新函数是解答的关键,考查分析问题和解决问题的能力,属于难题.。