函数定义域值域图像
- 格式:doc
- 大小:101.00 KB
- 文档页数:2
函数图像知识点总结基本初等函数的图像:一次函数:图像是直线,根据斜率k的正负,函数可能单调递增或递减。
二次函数:图像是抛物线,其开口方向由a决定,与x轴的交点由判别式b^2-4ac决定,对称轴两边函数的单调性不同。
反比例函数:图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。
指数函数:当底数不同时,其图像会有所变换。
对数函数:底数不同时,图像也会发生变换。
对勾函数:对于函数y=x+k/x,当k>0时,是对勾函数,可以通过均值定理找到其最值。
函数图像的基本性质:定义域和值域:函数的定义域是指函数所能接收的自变量的集合,值域是指函数所能取到的因变量的集合。
函数图像应当包含在定义域和值域的笛卡尔积上。
单调性:如果函数在定义域内递增,那么函数图像应当从左向右逐渐上升;如果函数在定义域内递减,那么函数图像应当从左向右逐渐下降。
奇偶性:如果函数是偶函数,那么函数图像在原点处具有对称性;如果函数是奇函数,那么函数图像在原点处具有中心对称性。
周期性:如果函数具有周期性,那么函数图像在一段区间内会重复出现,并且重复的间隔是固定的。
极值:函数在定义域内的最大值和最小值分别称为函数的最大值和最小值,对应的自变量称为函数的极大值和极小值。
函数图像在极值处存在驻点,即切线斜率为零。
函数图像在数学中的应用:函数图像可以直观地表示函数的性质与特征,例如单调性、极值点、零点等。
通过观察函数图像,我们可以更好地理解函数的表现特征和性质。
函数图像不仅在数学中有应用,还涉及其他相关领域,如经济学、生物学、人文社科等。
函数图像可以帮助解释实验现象,描述物理现象的变化规律,并帮助人们理解和解释实验结果。
这些知识点对于理解和分析函数图像非常重要,通过熟练掌握和应用这些知识点,可以更好地理解函数的性质,解决实际问题。
函数图像的基本特征与应用函数图像是数学中的重要内容之一,函数通常是指一个变量集合与另一个变量集合之间的映射关系。
在我们日常生活中,很多经济、科学和技术问题都可以用函数来描述。
通过观察函数图像的形态,我们可以发现很多特征,了解函数的性质,对于问题的解决有极大的帮助。
本文将介绍函数图像的基本特征与应用。
一、函数的基本特征函数图像的基本特征有:定义域、值域、单调性、奇偶性、周期性和渐近线等。
1. 定义域和值域函数的定义域和值域是该函数的两个基本元素。
其中,定义域是指函数所能取到的所有自变量的取值范围,值域是指函数在定义域内所能取到的所有因变量的取值范围。
在函数图像中,定义域通常是横轴上的一段区间,值域通常是纵轴上的一段区间。
2. 单调性函数的单调性是指当定义域内的自变量增大时,函数值是单调递增还是单调递减。
如果函数单调递增,其图像将呈现出从左向右逐渐上升的曲线形态,如果函数单调递减,则图像将呈现出从左向右逐渐下降的曲线形态。
3. 奇偶性函数的奇偶性是指,当自变量变为相反数时,函数值是否改变。
如果函数在变化后值不变,则称函数为偶函数,反之为奇函数。
偶函数的图像通常呈现出轴对称的形状,奇函数的图像通常呈现出中心对称的形状。
4. 周期性函数的周期性是指,如果存在一个正数T,使得对于所有自变量x,都有f(x+T) = f(x),那么函数就具有周期T。
周期函数的图像通常呈现出一段重复出现的形态,可以用周期推断函数的性质。
5. 渐近线当函数的定义域趋于无穷时,函数图像可能会趋于一条直线,这个直线称为函数的渐近线。
函数的渐近线可以判断函数的增长趋势和极限值。
二、函数图像的应用函数图像的应用非常广泛,既可以用于科学和工程领域中的建模,也可以用于纯数学研究。
以下是几个常见的应用。
1. 数值计算我们可以用函数图像的形态来计算函数在某些特定点的值。
当自变量x取某一具体值时,函数图像的纵坐标即是函数的值。
同时,我们还可以用函数图像的单调性、奇偶性等特征来进行加速计算,这对于数据密集的计算任务有很大的优化效果。
常见函数定义域和值域1. 线性函数 f(x) = mx + b定义域: 实数集 R值域: 实数集 R2. 二次函数f(x) = ax^2 + bx + c (a ≠ 0)定义域: 实数集 R值域: 当 a > 0 时, 值域为 [c - b^2 / (4a), +∞)当 a < 0 时, 值域为 (-∞, c - b^2 / (4a)]3. 平方根函数f(x) = √x定义域: [0, +∞)值域: [0, +∞)4. 绝对值函数 f(x) = |x|定义域: 实数集 R值域: [0, +∞)5. 分数函数 f(x) = 1 / x定义域: 实数集 R 除去 0值域: 实数集 R 除去 06. 指数函数f(x) = a^x (a > 0, a ≠ 1)定义域: 实数集 R值域: 当 a > 1 时, 值域为(0, +∞)当 0 < a < 1 时, 值域为(0, +∞)7. 对数函数f(x) = log_a(x) (a > 0, a ≠ 1)定义域: (0, +∞)值域: 实数集 R8. 三角函数正弦函数 f(x) = sin(x)定义域: 实数集 R值域: [-1, 1]余弦函数 f(x) = cos(x)定义域: 实数集 R值域: [-1, 1]正切函数 f(x) = tan(x)定义域: 实数集 R 除去(2n + 1)π/2, n 为整数值域: 实数集 R以上是一些常见函数的定义域和值域的介绍。
需要注意的是,一些函数的定义域和值域可能会受到其他条件的限制,因此在实际应用中需要进一步分析。
数学中的函数定义域与值域一、函数定义域的概念1.函数定义域是指函数中自变量可以取的所有可能值的集合。
2.函数定义域通常用区间表示,如实数集R、有理数集Q、整数集Z等。
3.函数定义域可以是无限的,如f(x) = x^2的定义域为实数集R。
4.函数定义域可以是有限的,如f(x) = sin(x)的定义域为[-1, 1]。
二、函数值域的概念1.函数值域是指函数中因变量可以取的所有可能值的集合。
2.函数值域通常用区间表示,如实数集R、有理数集Q、整数集Z等。
3.函数值域可以是无限的,如f(x) = x^2的值域为非负实数集[0, +∞)。
4.函数值域可以是有限的,如f(x) = sin(x)的值域为[-1, 1]。
三、函数定义域与值域的关系1.函数的定义域与值域不一定相同,它们可以是不同的集合。
2.函数的定义域是函数值域的子集,即函数的所有自变量取值都在值域中。
3.函数的值域可以小于、等于或大于定义域,这取决于函数的特性。
四、确定函数定义域的方法1.对于多项式函数,定义域通常为实数集R。
2.对于三角函数,定义域通常为实数集R。
3.对于指数函数和对数函数,定义域通常为正实数集(0, +∞)。
4.对于分式函数,定义域为除数不为零的所有实数。
5.对于绝对值函数,定义域为所有实数。
五、确定函数值域的方法1.对于多项式函数,值域通常为实数集R。
2.对于三角函数,值域通常为闭区间[-1, 1]。
3.对于指数函数,值域为正实数集(0, +∞)。
4.对于对数函数,值域为实数集R。
5.对于分式函数,值域为非零实数集。
6.对于绝对值函数,值域为非负实数集[0, +∞)。
六、函数定义域与值域的应用1.函数的定义域与值域是研究函数性质的基础,如单调性、奇偶性、周期性等。
2.函数的定义域与值域可以帮助我们理解和解决实际问题,如最值问题、方程问题等。
3.函数的定义域与值域可以用来判断函数的合理性和有效性。
4.函数定义域是指函数中自变量可以取的所有可能值的集合,函数值域是指函数中因变量可以取的所有可能值的集合。
函数定义域、值域求法总结一.求函数的定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。
定义域的求法1、直接定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)(解:①∵x-2=0,即x=2时,分式21-x 无意义, 而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义,∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒ 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37-或 x>37- ∴定义域为:}37|{-≠x x 2 定义域的逆向问题例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 (定义域的逆向问题) 解:∵定义域是R,∴恒成立,012≥+-a ax ax∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于练习:322log+-=mx x y 定义域是一切实数,则m 的取值范围;3 复合函数定义域的求法例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。