湖北鄂州数学(含答案) 2017年中考英语真题试卷
- 格式:doc
- 大小:348.50 KB
- 文档页数:11
鄂州市2017年初中毕业生学业考试数学试题学校:________考生姓名:________准考证号:注意事项:1本试题卷共6页,满分120分,考试时间120分钟。
2答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
3选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
4非选择题用05毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
5考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
6考生不准使用计算器。
一、选择题(每小题3分,共30分)1下列实数是无理数的是()A 23B 3错误!未找到引用源。
C0 D -错误!未找到引用源。
10101012鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁大桥长1100m ,宽27m鄂州有关部门公布了该桥新的设计方案,并计划投资人民币23亿元2015年开工,预计2017年完工请将23亿用科学记数法表示为()A23⨯108B023⨯109错误!未找到引用源。
C23⨯107错误!未找到引用源。
D 23⨯109错误!未找到引用源。
3下列运算正确的是()A5x -3x =2 B错误!未找到引用源。
(x -1)2= x2 -1C错误!未找到引用源。
(-2x2)3= -6x6D x6÷x2= x4错误!未找到引用源。
4如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()(第4题图) A B C D5对于不等式组1561,333(1)5 1.x x x x ⎧--⎪⎨⎪-<-⎩≤下列说法正确的是( )A 此不等式组的正整数解为1,2,3B 此不等式组的解集为-1<x ≤76C 此不等式组有5个整数解D 此不等式组无解6如图AB ∥CD ,E 为CD 上一点,射线EF 经过点A ,EC =EA , 若∠CAE =30°,则∠BAF=( ) A 30° B 40°C 50°D 60°7已知二次函数y = (x +m )2 - n 的图象如图所示,则一次函数y = mx + n 与反比例函数mn y x= 的图象可能是( )(第7题图) A B C D8小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min 到家,再过5min 小东到达学校小东始终以100m/min 的速度步行,小东和妈妈的距离y (单位:m )与小东打完电话后的步行时间t (单位:min )之间的函数关系如图所示,下列四种说法: (1)打电话时,小东和妈妈距离是1400m ; (2)小东与妈妈相遇后,妈妈回家速度是50m/min ; (3)小东打完电话后,经过27min 到达学校; (4)小东家离学校的距离为2900m 其中正确的个数是( ) A 1个B 2个(第6题图)(第8题图)C3个D4个9如图抛物线2y ax bx c=++错误!未找到引用源。
2017年湖北省鄂州市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)下列实数是无理数的是()A.B.C.0 D.﹣1.0101012.(3分)鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁,大桥长1100m,宽27m,鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元,2015年开工,预计2017年完工.请将2.3亿元用科学记数法表示为()A.2.3×108B.0.23×109C.23×107D.2.3×1093.(3分)下列运算正确的是()A.5x﹣3x=2 B.(x﹣1)2=x2﹣1 C.(﹣2x2)3=﹣6x6D.x6÷x2=x44.(3分)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.5.(3分)对于不等式组,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为﹣1<x≤C.此不等式组有5个整数解D.此不等式组无解6.(3分)如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30° B.40° C.50° D.60°7.(3分)已知二次函数y=(x+m)2﹣n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A. B.C.D.8.(3分)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:①打电话时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家速度为50m/min;③小东打完电话后,经过27min到达学校;④小东家离学校的距离为2900m.其中正确的个数是()A.1个B.2个C.3个D.4个9.(3分)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个B.2个C.3个D.4个10.(3分)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD 上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)分解因式:ab2﹣9a= .12.(3分)若y=+﹣6,则xy= .13.(3分)一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为.14.(3分)已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.15.(3分)如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=2,点D为AC与反比例函数y=的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为.16.(3分)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m 的取值范围是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(8分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.18.(8分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.19.(8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.20.(8分)关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.21.(9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.22.(9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证:=;(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若MA=6,sin∠AMF=,求AB的长.23.(10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(12分)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使S△ACP=S△ACD,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M 的坐标.2017年湖北省鄂州市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列实数是无理数的是()A.B.C.0 D.﹣1.010101【解答】解:,0,﹣1.0101是有理数,是无理数,故选:B.2.(3分)鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁,大桥长1100m,宽27m,鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元,2015年开工,预计2017年完工.请将2.3亿元用科学记数法表示为()A.2.3×108B.0.23×109C.23×107D.2.3×109【解答】解:将2.3亿用科学记数法表示为:2.3×108.故选:A.3.(3分)下列运算正确的是()A.5x﹣3x=2 B.(x﹣1)2=x2﹣1 C.(﹣2x2)3=﹣6x6D.x6÷x2=x4【解答】解:A、原式=2x,不符合题意;B、原式=x2﹣2x+1,不符合题意;C、原式=﹣8x6,不符合题意;D、原式=x4,符合题意,故选:D.4.(3分)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.【解答】解:该几何体的左视图是:.故选:D.5.(3分)对于不等式组,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为﹣1<x≤C.此不等式组有5个整数解D.此不等式组无解【解答】解:,解①得x≤,解②得x>﹣1,所以不等式组的解集为﹣1<x≤,所以不等式组的正整数解为1,2,3故选:A.6.(3分)如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30° B.40° C.50° D.60°【解答】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选:D.7.(3分)已知二次函数y=(x+m)2﹣n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A. B.C.D.【解答】解:观察二次函数图象可知:m>0,n<0,∴一次函数y=mx+n的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限.故选:C.8.(3分)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:①打电话时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家速度为50m/min;③小东打完电话后,经过27min到达学校;④小东家离学校的距离为2900m.其中正确的个数是()A.1个B.2个C.3个D.4个【解答】解:①当t=0时,y=1400,∴打电话时,小东和妈妈的距离为1400米,结论①正确;②2400÷(22﹣6)﹣100=50(m/min),∴小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;③∵t的最大值为27,∴小东打完电话后,经过27min到达学校,结论③正确;④2400+(27﹣22)×100=2900(m),∴小东家离学校的距离为2900m,结论④正确.综上所述,正确的结论有:①②③④.故选:D.9.(3分)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个B.2个C.3个D.4个【解答】解:据图象可知a>0,c<0,b>0,∴<0,故④错误;∵OB=OC,∴OB=﹣c,∴点B坐标为(﹣c,0),∴ac2﹣bc+c=0,∴ac﹣b+1=0,∴ac=b﹣1,故③正确;∵A(﹣2,0),B(﹣c,0),抛物线线y=ax2+bx+c与x轴交于A(﹣2,0)和B(﹣c,0)两点,∴2c=,∴2=,∴a=,故②正确;∵ac﹣b+1=0,∴b=ac+1,a=,∴b=c+1∴2b﹣c=2,故①正确;故选:C.10.(3分)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD 上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.【解答】解法一:作AF⊥CB交CB的延长线于F,在CF的延长线上取一点G,是的FG=DE.∵AD∥BC,∴∠BCD+∠ADC=180°,∴∠ADC=∠BCD=∠AFC=90°,∴四边形ADCF是矩形,∵∠CAD=45°,∴AD=CD,∴四边形ADCF是正方形,∴AF=AD,∠AFG=∠ADF=90°,∴△AFG≌△ADE,∴AG=AE,∠FAG=∠DAE,∴∠FAG+∠FAB=∠EAD+∠FAB=45°=∠BAE,∴△BAE≌△BAG,∴BE=BG=BF+GF=BF+DE,设BC=a,则AB=4+a,BF=4﹣a,在Rt△ABF中,42+(4﹣a)2=(4+a)2,解得a=1,∴BC=1,BF=3,设BE=b,则DE=b﹣3,CE=4﹣(b﹣3)=7﹣b.在Rt△BCE中,12+(7﹣b)2=b2,解得b=,∴BG=BE=,∴S△ABE=S△ABG=××4=.解法二:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB 于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥AF,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AH,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=2y2①,(5﹣y)2+y2=12+(4﹣z)2②由②得到25﹣10y+2y2=17﹣8z+z2③,①代入③可得z=④④代入①可得y=(负根已经舍弃),∴S△ABE=×5×=,故选:D.二、填空题(每小题3分,共18分)11.(3分)分解因式:ab2﹣9a= a(b+3)(b﹣3).【解答】解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).12.(3分)若y=+﹣6,则xy= ﹣3 .【解答】解:由题意可知:,解得:x=,∴y=0+0﹣6=﹣6,∴xy=﹣3,故答案为:﹣313.(3分)一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为 2 .【解答】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+2+2+3+3+c)=2,解得c=0,将这组数据按从小到大的顺序排列:0、1、2、2、3、3、3,位于最中间的一个数是2,所以中位数是2,故答案为:2.14.(3分)已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为8π.【解答】解:圆锥的主视图如右图所示,直径BC=8,AD=6,∴AC==2,∴圆锥的侧面积是:=8π,故答案为:8π.15.(3分)如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=2,点D为AC与反比例函数y=的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为﹣4或﹣8 .【解答】解:如图所示,过C作CE⊥AB于E,∵∠ABC=60°,BC=2,∴Rt△CBE中,CE=3,又∵AB=4,∴△ABC的面积=AB×CE=×4×3=6,连接BD,OD,∵直线BD将△ABC的面积分成1:2的两部分,∴点D将线段AC分成1:2的两部分,当AD:CD=1:2时,△ABD的面积=×△ABC的面积=2,∵AC∥OB,∴△DOA的面积=△ABD的面积=2,∴|k|=2,即k=±4,又∵k<0,∴k=﹣4;当AD:CD=2:1时,△ABD的面积=×△ABC的面积=4,∵AC∥OB,∴△DOA的面积=△ABD的面积=4,∴|k|=4,即k=±8,又∵k<0,∴k=﹣8,故答案为:﹣4或﹣8.16.(3分)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m 的取值范围是2≤m≤8 .【解答】解:设平移后的解析式为y=(x+1)2﹣m,将B点坐标代入,得4﹣m=2,解得m=2,将D点坐标代入,得9﹣m=1,解得m=8,y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m 的取值范围是2≤m≤8,故答案为:2≤m≤8.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(8分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.【解答】解:原式=(+)÷=•=•=,解不等式组得:﹣1≤x<,∴不等式组的整数解有﹣1、0、1、2,∵分式有意义时x≠±1、0,∴x=2,则原式=0.18.(8分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点F处,∴∠F=∠B,AB=AF,∴AF=CD,∠F=∠D,在△AEF与△CDE中,,∴△AFE≌△CDE;(2)∵AB=4,BC=8,∴CF=AD=8,AF=CD=AB=4,∵△AFE≌△CDE,∴AE=CE,EF=DE,∴DE2+CD2=CE2,即DE2+42=(8﹣DE)2,∴DE=3,∴EF=3,∴图中阴影部分的面积=S△ACF﹣S△AEF=×4×8﹣×4×3=10.19.(8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为144°;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有 1 人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.【解答】解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;“经常参加”的人数为:40×40%=16人,喜欢足的学生人数为:16﹣6﹣4﹣3﹣2=1人;补全统计图如图所示:故答案为:144°,1;(2)全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数约为:1200×=180人;(3)设A代表“乒乓球”、B代表“篮球”、C代表“足球”、D代表“羽毛球”,画树状图如下:共有12种等可能的结果数,其中选中的两个项目恰好是“乒乓球”、“篮球”的情况占2种,所以选中“乒乓球”、“篮球”这两个项目的概率是=.20.(8分)关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.【解答】解:(1)∵方程有两个不相等的实数根,∴△=[﹣(2k﹣1)]2﹣4(k2﹣2k+3)=4k﹣11>0,解得:k>;(2)存在,∵x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,∴将|x1|﹣|x2|=两边平方可得x12﹣2x1x2+x22=5,即(x1+x2)2﹣4x1x2=5,代入得:(2k﹣1)2﹣4(k2﹣2k+3)=5,解得:4k﹣11=5,解得:k=4.21.(9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.【解答】解:(1)如图,设DE=x,∵AB=DF=2,∴EF=DE﹣DF=x﹣2,∵∠EAF=30°,∴AF===(x﹣2),又∵CD===x,BC===2,∴BD=BC+CD=2+x由AF=BD可得(x﹣2)=2+x,解得:x=6,∴树DE的高度为6米;(2)延长NM交DB延长线于点P,则AM=BP=3,由(1)知CD=x=×6=2,BC=2,∴PD=BP+BC+CD=3+2+2=3+4,∵∠NDP=45°,且MP=AB=2,∴NP=PD=3+4,∴NM=NP﹣MP=3+4﹣2=1+4,∴食堂MN的高度为1+4米.22.(9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证:=;(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若MA=6,sin∠AMF=,求AB的长.【解答】(1)证明:连接OA、OE交BC于T.∵AM是切线,∴∠OAM=90°,∴∠PAD+∠OAE=90°,∵PA=PD,∴∠PAD=∠PDA=∠EDT,∵OA=OE,∴∠OAE=∠OEA,∴∠EDT+∠OEA=90°,∴∠DTE=90°,∴OE⊥BC,∴=.(2)∵ED、EA的长是一元二次方程x2﹣5x+5=0的两根,∴ED•EA=5,∵=,∴∠BAE=∠EBD,∵∠BED=∠AEB,∴△BED∽△AEB,∴=,∴BE2=DE•EA=5,∴BE=.(3)作AH⊥OM于H.在Rt△AMO中,∵AM=6,sin∠M==,设OA=m,OM=3m,∴9m2﹣m2=72,∴m=3,∴OA=3,OM=9,易知∠OAH=∠M,∴sin∠OAH==,∴OH=1,AH=2.BH=2,∴AB===2.23.(10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【解答】解:(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,因为x为偶数,所以当销售单价定为80﹣6=74元或80﹣8=72时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.24.(12分)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=.(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使S△ACP=S△ACD,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M 的坐标.【解答】解:(1)∵抛物线的对称轴是直线x=1,点A(3,0),∴根据抛物线的对称性知点B的坐标为(﹣1,0),OA=3,将A(3,0),B(﹣1,0)代入抛物线解析式中得:,解得:,∴抛物线解析式为y=﹣x2+2x+3;当x=1时,y=4,∴顶点D(1,4).(2)当=0时,∴点C的坐标为(0,3),∴AC==3,CD==,AD==2,∴AC2+CD2=AD2,∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径,∵点E在轴C点的上方,且CE=.∴E(0,)∴AE==DE==,∴DE2+AD2=AE2,∴△AED为直角三角形,∠ADE=90°.∴AD⊥DE,又∵AD为△ACD外接圆的直径,∴DE是△ACD外接圆的切线;(3)设直线AC的解析式为y=kx+b,根据题意得:,解得:,∴直线AC的解析式为y=﹣x+3,∵A(3,0),D(1,4),∴线段AD的中点N的坐标为(2,2),过点N作NP∥AC,交抛物线于点P,设直线NP的解析式为y=﹣x+c,则﹣2+c=2,解得:c=4,∴直线NP的解析式为y=﹣x+4,由y=﹣x+4,y=﹣x2+2x+3联立得:﹣x2+2x+3=﹣x+4,解得:x=或x=,∴y=,或y=∴P(,)或(,);(4)分三种情况:①M恰好为原点,满足△CMB∽△ACD,M(0,0);②M在x轴正半轴上,△MCB∽△ACD,此时M(9,0);③M在y轴负半轴上,△CBM∽△ACD,此时M(0,﹣);综上所述,点M的坐标为(0,0)或(9,0)或(0,﹣).。
第1 页共9 页湖北省鄂州市2017年中考英语试卷学校:考生姓名:准考证号:注意事项:1.本试题卷共.本试题卷共88页,满分页,满分120120120分,考试时间分,考试时间120120分钟。
分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
3.选择题每小题选出答案后,选择题每小题选出答案后,用用2B 铅笔把答题卡上对应题目的答案标号涂黑。
铅笔把答题卡上对应题目的答案标号涂黑。
如需改如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
第一部分听力测试Ⅰ.听力测试(共三节,听力测试(共三节,202020小题,满分小题,满分小题,满分252525分)分)第一节:听描述或对话第一节:听描述或对话,,选图画。
听下面2段描述和3段对话。
听完以后,从A 、B 、C 三幅图画中选出正确的一幅。
每段描述和对话读一遍。
(共5小题,每题1分,计5分)1.2.3.4.5.第二节:听对话,选答案。
听下面4段对话。
根据所提的问题,从A 、B 、C 三个选项中选出最佳答案。
每段对话读两遍。
(共10小题,每题1分,计10分)听第六段材料,完成第6、7小题。
6. What are the speakers talking about? A. A match. B. A movie.C. A TV show.7. Why didn’t Mary watch the match?7. Why didn’t Mary watch the match?A. It started too late at night.B. She had to do her homework.C. She doesn’t like basketball matches.C. She doesn’t like basketball matches.听第七段材料,完成第8至10小题。
2017年省市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)以下实数是无理数的是()A.B.C.0 D.﹣1.0101012.(3分)市凤凰大桥,坐落于鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁,大桥长1100m,宽27m,有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元,2015年开工,预计2017年完工.请将2.3亿元用科学记数法表示为()A.2.3×108B.0.23×109C.23×107D.2.3×1093.(3分)以下运算正确的是()A.5x﹣3x=2 B.(x﹣1)2=x2﹣1 C.(﹣2x2)3=﹣6x6 D.x6÷x2=x44.(3分)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.5.(3分)对于不等式组,以下说确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为﹣1<x≤C.此不等式组有5个整数解D.此不等式组无解6.(3分)如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°7.(3分)已知二次函数y=(x+m)2﹣n的图象如下图,则一次函数y=mx+n与反比例函数y=的图象可能是()A. B.C.D.8.(3分)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打,妈妈接到后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完后的步行时间t(单位:min)之间的函数关系如下图,以下四种说法:①打时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家速度为50m/min;③小东打完后,经过27min到达学校;④小东家离学校的距离为2900m.其中正确的个数是()A.1个 B.2个 C.3个 D.4个9.(3分)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,以下结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个 B.2个 C.3个 D.4个10.(3分)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)分解因式:ab2﹣9a=.12.(3分)若y=+﹣6,则xy=.13.(3分)一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为.14.(3分)已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.15.(3分)如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=2,点D为AC与反比例函数y=的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为.16.(3分)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值围是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(8分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.18.(8分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD 于E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.19.(8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答以下问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.20.(8分)关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)数k的取值围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.21.(9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.22.(9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O 的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证:=;(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若MA=6,sin∠AMF=,求AB的长.23.(10分)某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(12分)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C 点的上方,且CE=.(1)求抛物线的解析式与顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使S△ACP =S△ACD,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.2017年省市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)以下实数是无理数的是()A.B.C.0 D.﹣1.010101[解答]解:,0,﹣1.0101是有理数,是无理数,应选:B.2.(3分)市凤凰大桥,坐落于鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁,大桥长1100m,宽27m,有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元,2015年开工,预计2017年完工.请将2.3亿元用科学记数法表示为()A.2.3×108B.0.23×109C.23×107D.2.3×109[解答]解:将2.3亿用科学记数法表示为:2.3×108.应选:A.3.(3分)以下运算正确的是()A.5x﹣3x=2 B.(x﹣1)2=x2﹣1 C.(﹣2x2)3=﹣6x6 D.x6÷x2=x4[解答]解:A、原式=2x,不符合题意;B、原式=x2﹣2x+1,不符合题意;C、原式=﹣8x6,不符合题意;D、原式=x4,符合题意,应选:D.4.(3分)如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A.B.C.D.[解答]解:该几何体的左视图是:.应选:D.5.(3分)对于不等式组,以下说确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为﹣1<x≤C.此不等式组有5个整数解D.此不等式组无解[解答]解:,解①得x≤,解②得x>﹣1,所以不等式组的解集为﹣1<x≤,所以不等式组的正整数解为1,2,3应选:A.6.(3分)如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30°B.40°C.50°D.60°[解答]解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.应选:D.7.(3分)已知二次函数y=(x+m)2﹣n的图象如下图,则一次函数y=mx+n与反比例函数y=的图象可能是()A. B.C.D.[解答]解:观察二次函数图象可知:m>0,n<0,∴一次函数y=mx+n的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限.应选:C.8.(3分)小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打,妈妈接到后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完后的步行时间t(单位:min)之间的函数关系如下图,以下四种说法:①打时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家速度为50m/min;③小东打完后,经过27min到达学校;④小东家离学校的距离为2900m.其中正确的个数是()A.1个 B.2个 C.3个 D.4个[解答]解:①当t=0时,y=1400,∴打时,小东和妈妈的距离为1400米,结论①正确;②2400÷(22﹣6)﹣100=50(m/min),∴小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;③∵t的最大值为27,∴小东打完后,经过27min到达学校,结论③正确;④2400+(27﹣22)×100=2900(m),∴小东家离学校的距离为2900m,结论④正确.综上所述,正确的结论有:①②③④.应选:D.9.(3分)如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,以下结论:①2b﹣c=2;②a=;③ac=b﹣1;④>0其中正确的个数有()A.1个 B.2个 C.3个 D.4个[解答]解:据图象可知a>0,c<0,b>0,∴<0,故④错误;∵OB=OC,∴OB=﹣c,∴点B坐标为(﹣c,0),∴ac2﹣bc+c=0,∴ac﹣b+1=0,∴ac=b﹣1,故③正确;∵A(﹣2,0),B(﹣c,0),抛物线线y=ax2+bx+c与x轴交于A(﹣2,0)和B (﹣c,0)两点,∴2c=,∴2=,∴a=,故②正确;∵ac﹣b+1=0,∴b=ac+1,a=,∴b=c+1∴2b﹣c=2,故①正确;应选:C.10.(3分)如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.[解答]解法一:作AF⊥CB交CB的延长线于F,在CF的延长线上取一点G,是的FG=DE.∵AD∥BC,∴∠BCD+∠ADC=180°,∴∠ADC=∠BCD=∠AFC=90°,∴四边形ADCF是矩形,∵∠CAD=45°,∴AD=CD,∴四边形ADCF是正方形,∴AF=AD,∠AFG=∠ADF=90°,∴△AFG≌△ADE,∴AG=AE,∠FAG=∠DAE,∴∠FAG+∠FAB=∠EAD+∠FAB=45°=∠BAE,∴△BAE≌△BAG,∴BE=BG=BF+GF=BF+DE,设BC=a,则AB=4+a,BF=4﹣a,在Rt△ABF中,42+(4﹣a)2=(4+a)2,解得a=1,∴BC=1,BF=3,设BE=b,则DE=b﹣3,CE=4﹣(b﹣3)=7﹣b.在Rt△BCE中,12+(7﹣b)2=b2,解得b=,∴BG=BE=,∴S△ABE =S△ABG=××4=.解法二:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB 于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥AF,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AH,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=2y2①,(5﹣y)2+y2=12+(4﹣z)2②由②得到25﹣10y+2y2=17﹣8z+z2③,①代入③可得z=④④代入①可得y=(负根已经舍弃),∴S=×5×=,△ABE应选:D.二、填空题(每小题3分,共18分)11.(3分)分解因式:ab2﹣9a=a(b+3)(b﹣3).[解答]解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).12.(3分)若y=+﹣6,则xy=﹣3.[解答]解:由题意可知:,解得:x=,∴y=0+0﹣6=﹣6,∴xy=﹣3,故答案为:﹣313.(3分)一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为2.[解答]解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+2+2+3+3+c)=2,解得c=0,将这组数据按从小到大的顺序排列:0、1、2、2、3、3、3,位于最中间的一个数是2,所以中位数是2,故答案为:2.14.(3分)已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为8π.[解答]解:圆锥的主视图如右图所示,直径BC=8,AD=6,∴AC==2,∴圆锥的侧面积是:=8π,故答案为:8π.15.(3分)如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=2,点D为AC与反比例函数y=的图象的交点.若直线BD将△ABC的面积分成1:2的两部分,则k的值为﹣4或﹣8.[解答]解:如下图,过C作CE⊥AB于E,∵∠ABC=60°,BC=2,∴Rt△CBE中,CE=3,又∵AB=4,∴△ABC的面积=AB×CE=×4×3=6,连接BD,OD,∵直线BD将△ABC的面积分成1:2的两部分,∴点D将线段AC分成1:2的两部分,当AD:CD=1:2时,△ABD的面积=×△ABC的面积=2,∵AC∥OB,∴△DOA的面积=△ABD的面积=2,∴|k|=2,即k=±4,又∵k<0,∴k=﹣4;当AD:CD=2:1时,△ABD的面积=×△ABC的面积=4,∵AC∥OB,∴△DOA的面积=△ABD的面积=4,∴|k|=4,即k=±8,又∵k<0,∴k=﹣8,故答案为:﹣4或﹣8.16.(3分)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值围是2≤m≤8.[解答]解:设平移后的解析式为y=(x+1)2﹣m,将B点坐标代入,得4﹣m=2,解得m=2,将D点坐标代入,得9﹣m=1,解得m=8,y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值围是2≤m≤8,故答案为:2≤m≤8.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(8分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.[解答]解:原式=(+)÷=•=•=,解不等式组得:﹣1≤x<,∴不等式组的整数解有﹣1、0、1、2,∵分式有意义时x≠±1、0,∴x=2,则原式=0.18.(8分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD 于E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.[解答]解:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点F处,∴∠F=∠B,AB=AF,∴AF=CD,∠F=∠D,在△AEF与△CDE中,,∴△AFE≌△CDE;(2)∵AB=4,BC=8,∴CF=AD=8,AF=CD=AB=4,∵△AFE≌△CDE,∴AE=CE,EF=DE,∴DE2+CD2=CE2,即DE2+42=(8﹣DE)2,∴DE=3,∴EF=3,∴图中阴影部分的面积=S△ACF ﹣S△AEF=×4×8﹣×4×3=10.19.(8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答以下问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为144°;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有1人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.[解答]解:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;“经常参加”的人数为:40×40%=16人,喜欢足的学生人数为:16﹣6﹣4﹣3﹣2=1人;补全统计图如下图:故答案为:144°,1;(2)全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数约为:1200×=180人;(3)设A代表“乒乓球”、B代表“篮球”、C代表“足球”、D代表“羽毛球”,画树状图如下:共有12种等可能的结果数,其中选中的两个项目恰好是“乒乓球”、“篮球”的情况占2种,所以选中“乒乓球”、“篮球”这两个项目的概率是=.20.(8分)关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)数k的取值围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.[解答]解:(1)∵方程有两个不相等的实数根,∴△=[﹣(2k﹣1)]2﹣4(k2﹣2k+3)=4k﹣11>0,解得:k>;(2)存在,∵x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,∴将|x1|﹣|x2|=两边平方可得x12﹣2x1x2+x22=5,即(x1+x2)2﹣4x1x2=5,代入得:(2k﹣1)2﹣4(k2﹣2k+3)=5,解得:4k﹣11=5,解得:k=4.21.(9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.[解答]解:(1)如图,设DE=x,∵AB=DF=2,∴EF=DE﹣DF=x﹣2,∵∠EAF=30°,∴AF===(x﹣2),又∵CD===x,BC===2,∴BD=BC+CD=2+x由AF=BD可得(x﹣2)=2+x,解得:x=6,∴树DE的高度为6米;(2)延长NM交DB延长线于点P,则AM=BP=3,由(1)知CD=x=×6=2,BC=2,∴PD=BP+BC+CD=3+2+2=3+4,∵∠NDP=45°,且MP=AB=2,∴NP=PD=3+4,∴NM=NP﹣MP=3+4﹣2=1+4,∴食堂MN的高度为1+4米.22.(9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O 的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证:=;(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若MA=6,sin∠AMF=,求AB的长.[解答](1)证明:连接OA、OE交BC于T.∵AM是切线,∴∠OAM=90°,∴∠PAD+∠OAE=90°,∵PA=PD,∴∠PAD=∠PDA=∠EDT,∵OA=OE,∴∠OAE=∠OEA,∴∠EDT+∠OEA=90°,∴∠DTE=90°,∴OE⊥BC,∴=.(2)∵ED、EA的长是一元二次方程x2﹣5x+5=0的两根,∴ED•EA=5,∵=,∴∠BAE=∠EBD,∵∠BED=∠AEB,∴△BED∽△AEB,∴=,∴BE2=DE•EA=5,∴BE=.(3)作AH⊥OM于H.在Rt△AMO中,∵AM=6,sin∠M==,设OA=m,OM=3m,∴9m2﹣m2=72,∴m=3,∴OA=3,OM=9,易知∠OAH=∠M,∴sin∠OAH==,∴OH=1,AH=2.BH=2,∴AB===2.23.(10分)某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?[解答]解:(1)依题意有:y=10x+160;(2)依题意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,因为x为偶数,所以当销售单价定为80﹣6=74元或80﹣8=72时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.24.(12分)已知,抛物线y=ax2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C 点的上方,且CE=.(1)求抛物线的解析式与顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使S△ACP =S△ACD,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.[解答]解:(1)∵抛物线的对称轴是直线x=1,点A(3,0),∴根据抛物线的对称性知点B的坐标为(﹣1,0),OA=3,将A(3,0),B(﹣1,0)代入抛物线解析式中得:,解得:,∴抛物线解析式为y=﹣x2+2x+3;当x=1时,y=4,∴顶点D(1,4).(2)当=0时,∴点C的坐标为(0,3),∴AC==3,CD==,AD==2,∴AC2+CD2=AD2,∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径,∵点E在轴C点的上方,且CE=.∴E(0,)∴AE==DE==,∴DE2+AD2=AE2,∴△AED为直角三角形,∠ADE=90°.∴AD⊥DE,又∵AD为△ACD外接圆的直径,∴DE是△ACD外接圆的切线;(3)设直线AC的解析式为y=kx+b,根据题意得:,解得:,∴直线AC的解析式为y=﹣x+3,∵A(3,0),D(1,4),∴线段AD的中点N的坐标为(2,2),过点N作NP∥AC,交抛物线于点P,设直线NP的解析式为y=﹣x+c,则﹣2+c=2,解得:c=4,∴直线NP的解析式为y=﹣x+4,由y=﹣x+4,y=﹣x2+2x+3联立得:﹣x2+2x+3=﹣x+4,解得:x=或x=,∴y=,或y=∴P(,)或(,);(4)分三种情况:①M恰好为原点,满足△CMB∽△ACD,M(0,0);②M在x轴正半轴上,△MCB∽△ACD,此时M(9,0);③M在y轴负半轴上,△CBM∽△ACD,此时M(0,﹣);综上所述,点M的坐标为(0,0)或(9,0)或(0,﹣).。
2017年中考英语试卷学校:考生姓名:准考证号:注意事项:分,考试时间1208页,满分1.本试题卷共分钟。
120co^m][www.*zz@&step.~.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证2 号条形码粘贴在答题卡上的指定位置。
如需改选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
.3 动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试4.非选择题用0.5 题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
听力测试第一部分 25分)听力测试(共三节,20小题,满分Ⅰ.三C、B、选图画。
听下面2段描述和3段对话。
听完以后,从A,第一节:听描述或对话分)分,计51幅图画中选出正确的一幅。
每段描述和对话读一遍。
(共5小题,每题 #]版网&*出来源中国教育1.2.3.4.网出版教*^育中%&国版网育出来源:%中国教5.三个选项中选出C、AB、第二节:听对话,选答案。
听下面4段对话。
根据所提的问题,从 10分)小题,每题最佳答案。
每段对话读两遍。
(共101分,计 7小题。
、听第六段材料,完成第66. What are the speakers talking about?C. A TV show.B. A movie. A. A match.7. Why didn't Mary watch the match?A. It started too late at night.B. She had to do her homework.C. She doesn't like basketball matches.听第七段材料,完成第8至10小题。
中国%^教&@育出版网8. When did Ann go to her hometown?C. Last month. A. Yesterday. B. Last week.9. How was Ann's trip?C. Unpleasant. A. Exciting. B. Wonderful.pened to Ann's hometown?10. What has hapB. The water there has become A. People have polluted the river there.clean.C. People have planted many flowers and trees there.小题。
2017年湖北省鄂州市中考数学试题及答案鄂州市2017年初中毕业生学业考试数学试题学校:________________ 准考证号:注意事项:1.本试题卷共6页,满分120分,考试时间120分钟。
2.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
4.非选择题用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
6.考生不准使用计算器。
一、选择题(每小题3分,共30分)1.下列实数是无理数的是()A. 2B. 3C.03D.-1.0101012.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁. 大桥长1100m,宽27m. 鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元. A.2.3⨯108B.0.23⨯109 C.23⨯107D.2.3⨯1093.下列运算正确的是()数学试题第 2 页(共30页)数学试题第 3 页 (共 30 页)A . 5x -3x =2 B. (x -1)2 = x 2 -1 C . (-2x 2)3 = -6x 6 D. x 6÷x 2 = x 44.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )(第4题图) A. B.C. D. 5.对于不等式组1561,333(1)5 1.x x x x ⎧--⎪⎨⎪-<-⎩≤下列说法正确的是( )A . 此不等式组的正整数解为1,2,3B . 此不等式组的解集为-1<x ≤76C . 此不等式组有5个整数解 D. 此不等式组无解6.如图AB ∥CD ,E 为CD 上一点,射线EF经过点A ,EC =EA ,若∠CAE =30°,则∠BAF =( )A. 30°B. 40°C. 50°D. 60°7.已知二次函数y = (x+m)2 - n的图象如图所示,则一次函数y =mx + n与反比例函数mnyx的图象可能是()(第7题图) A. B.C. D.8.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校.小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电(第6数学试题第 4 页(共30页)话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:(1)打电话时,小东和妈妈距离是1400m;(2)小东与妈妈相遇后,妈妈回家速度是50m/min;(3)小东打完电话后,经过27min到达学校;(4)小东家离学校的距离为2900m.其中正确的个数是()A.1个B.2个C.3个D.4个(第8数学试题第 5 页(共30页)9.如图抛物线2y ax bx c=++的图象交x轴于A (2,0)和点B,交y轴负半轴于点C,且OB =OC.下列结论:①22b c-=;②12a=;③1 acb=-;④0a bc+>.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB =BC+AD,∠DAC =45°,E为CD上一点,且∠BAE =45°,若CD =4,则△ABE的面积为()A. 127B.247C. 487 D.507(第9题图)(第10题图)(第15题图)数学试题第 6 页(共30页)数学试题第 7 页 (共 30 页)二、填空题(每小题3分,共18分) 11.分解因式:ab 2 -9a = . 12.若11622y x x =-- 则xy = .13.一个样本为1,3,2,2,a ,b ,c .已知这个样本的众数为3,平均数为2,则这组数据的中位数为 .148,则圆锥的侧面积为 .15.如图,AC ⊥x 轴于点A ,点B 在y 轴的正半轴上,∠ABC =60°,AB =4,BC =23,点D 为AC 与反比例函数k y x =的图象的交点,若直线BD 将△ABC 的面积分成1:2的两部分,则k 的值为 . 16.已知正方形ABCD 中A (1,1)、B (1,2)、C (2,2)、D (2,1),有一抛物线2(1)y x =+ 向下平移m 个单位(m > 0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是 .数学试题第 8 页 (共 30 页)三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)先化简,再求值:233(1)11x x xx x x ---+÷++ 其中x 的值从不等式组23,241x x -⎧⎨-<⎩≤ 的整数解中选取.18.(本题满分8分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E.(1)求证:△AFE ≌ △CDE ;(2)若AB =4,BC =8,求图中阴影部分的面积.第18题图)19.(本题满分8分)某兴趣小组为了了解本校经常参加课外体育锻炼的学生 最喜欢的一种项学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:课外体育锻炼情况扇形统计图(第19题图)根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为;“经常参加课外体育锻炼的学生最喜数学试题第9 页(共30页)欢的一种项目”中,喜欢足球的人数有人,并补全条形统计图;(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.数学试题第10 页(共30页)20.(本题满分8分)关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2 ,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.21.(本题满分9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.数学试题第11 页(共30页)数学试题第 12 页 (共 30 页)第21题图)22.(本题满分9分)如图,已知BF 是⊙O 的直径,A 为 ⊙O 上(异于B 、F )一点. ⊙O 的切线MA 与FB 的延长线交于点M ;P 为AM 上一点,PB 的延长线交⊙O 于点C ,D 为BC 上一点且PA =PD ,AD 的延长线交⊙O 于点E . (1)求证:BE =CE;(2)若ED 、EA 的长是一元二次方程x 2-5x +5=0的两根,求BE 的长;(3)若MA =62,1sin 3AMF ∠= , 求AB 的长.第22题图)数学试题第13 页(共30页)23.(本题满分10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(本题满分12分)已知,抛物线23=++(a<y ax bx0 )与x轴交于A(3,0)、B两点,与y轴交于点C. 抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE =1.2数学试题第14 页(共30页)(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使12ACP ACDS S∆∆=,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.数学试题第15 页(共30页)(第24题图)数学试题第16 页(共30页)鄂州市2017年初中毕业生学业考试数学试题答案及评分标准一、选择题(每小题3分,共30分)1.B2. A3. D4. D5. A6. D7.C 8.D 9. C 10. D二、填空题(每小题3分,共18分)11.12.13. 214. 15.16. 2≤≤8三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)解:原式=或………………………………… 3分解不等式①得-1 ………………………………… 4分数学试题第17 页(共30页)解不等式②得………………………………… 5分不等式组的解集为又∵∴当时,原式=………………………………… 8分18.(本题满分8分)(1)证明:由翻折性质知:AF =AB, ∠F =∠B =90°,∵四边形ABCD为矩形∴AB =CD∠B =∠D=90°∴AF =CD∠F =∠D=90°在△AFE 和△CDE∠F =∠B∠F =∠BAF =CD数学试题第18 页(共30页)∴△AFE ≌△CDE (AAS)………………………………… 4分(2)解:∵△AFE ≌△CDE∴AE =CE设AE =CE =,则DE =在Rt△CDE 中,即解得∴AE =5∴………………………………… 8分19.(本题满分8分)(1)144° 1 补全条形统计图略 (3)分(2)1200………………………………… 5分(3)数学试题第19 页(共30页)P=………………………………… 8分20.(本题满分8分)解:(1)依题意有△=解不等式得………………………………… 3分(2)方程两边同时平方得,由一元二次方程根与系数的关系知:∵∴∴数学试题第20 页(共30页)∴即………………………………… 6分∴∵∴满足题设条件 . …………………………………8分21.(本题满分9分)解:(1)设CD =, 在Rt△CDE中,ED =CD,∴ED =又∵FD =AB =2. ∴EF =ED-FD =在Rt△AFE中,AF =EF,而∴AF =在Rt△ABC中,BC =AB,而∠BAC =90°-∠ACB =60°数学试题第21 页(共30页)∴BC =又AF =BC +CD,∴∴∴树高6米. …………………………………5分(2)延长NM交直线BD于点G,∵∠NDG=45°∴NG =GD =MA +BC +CD∴MN =3+………………………………… 8分∴食堂高度为()米. (9)分22.(本题满分9分)数学试题第22 页(共30页)(1)证明:连结OA、OE,∵OA =OE∴∠OAE =∠OEA∵MA是⊙O的切线∴∠MAO =∠MAD +∠OAD =90°∵PA =PD∴∠PAD =∠PDA∵∠EDC =∠ADB∴∠EDC +∠AEO =90°∴OE⊥BCBE∴⌒CE……………………………………………=⌒…………… 3分(2)由(1)知∠CBE =∠BAE∵∠BED =∠AE B ∴△EBD ∽△EAB ∴∴∵ED、EA的长是一元二次方程的两根∴∴……………………………数学试题第23 页(共30页)…………………………… 6分(3)在Rt△AMF中AO=MO∴MO =3AO∵∴AO=3过点B作BN∥MA交OA于点N,则∠NBO=∠M∵MA⊥OA∴BN⊥OA∴ON =OB =3∴NB =,AN=2∴AB =………………………………………………………… 9分(此题证△AMB∽△FMA,用AB表示AF,在Rt △ABF中用勾股定理求AB亦可)23.(本题满分10分)解:(1)……………………………数学试题第24 页(共30页)…………………………… 2分)(2∴当或时,有最大值为5280.此时销售单价为80-6=74或80-8=72.………………………………………………………… 5分即当销售单价为72元或74元时,每周销售利润最大,最大为5280元.………………………………………………………… 6分有(3)依题意数学试题第25 页(共30页)设进货成本为P元,则有P=50,∵500>0,一次函数P 随的增大而增大,∴当时,P有最小值为10000 …………………………………9分即该个体商户至少要准备10000元进货成本. ……………………………10分24.(本题满分12分)(1)∵抛物线的对称轴是直线 =1,点A (3,0)根据抛物线的对称性知点B的坐标为(-1,0)将(3,0)(-1,0)带入抛物线解析式中得∴即为所求. …………………………………2分当 =1时,数学试题第26 页(共30页)∴顶点D (1,4). ………………………………… 3分(2)当 =0时,∴点C的坐标为(0,3)∴∴∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径∵点E 在轴C点的上方,且CE = .∴E(0,)∴∴∴△AED为直角三角形,∠ADE =90°.∴AD⊥DE又∵AD为△ACD外接圆的直径∴DE是△ACD外接圆的切线 (6)数学试题第27 页(共30页)分(此问中用相似证∠ADE =90°亦可)(3)解法一:先求直线AC 的解析式,再求CD的中点坐标N (,),过点N作NP∥AC,可求直线NP的解析式为,联立,解得解法二:P作PM ⊥轴交AC于点F,交轴于点M,设M ()则先求直线AC 的解析式,数学试题第28 页(共30页)F (),P ()∴∴∴∴∴……………………… 9分(4)………………………………… 12分数学试题第29 页(共30页)数学试题第30 页(共30页)。
鄂州市2017年初中毕业生学业考试数学试题一、选择题(每小题3分,共30分)1.下列实数是无理数的是()A. 23B. 3C.0 D.-1.0101012.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁. 大桥长1100m,宽27m. 鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元. 2015年开工,预计2017年完工.请将2.3亿用科学记数法表示为()A.2.3⨯108B.0.23⨯109C.23⨯107D.2.3⨯1093.下列运算正确的是()A. 5x -3x =2B. (x -1)2= x2 -1C. (-2x2)3= -6x6D. x6÷x2= x44.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()(第4题图) A. B. C. D.5.对于不等式组1561,333(1)5 1.x xx x⎧--⎪⎨⎪-<-⎩≤下列说法正确的是()A. 此不等式组的正整数解为1,2,3B. 此不等式组的解集为-1<x≤7 6C. 此不等式组有5个整数解D. 此不等式组无解6.如图AB∥CD,E为CD上一点,射线EF经过点A,EC=EA,若∠CAE =30°,则∠BAF =( )A. 30°B. 40°C. 50°D. 60°(第6题图)7.已知二次函数y = (x+m)2 - n的图象如图所示,则一次函数y =mx + n与反比例函数mnyx=的图象可能是()(第7题图) A. B. C. D.8.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校.小东始终以100m/min 的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:(1)打电话时,小东和妈妈距离是1400m;(2)小东与妈妈相遇后,妈妈回家速度是50m/min;(3)小东打完电话后,经过27min到达学校;(4)小东家离学校的距离为2900m.其中正确的个数是()A.1个B.2个C.3个D.4个9.如图抛物线2y ax bx c=++的图象交x轴于A (2,0)和点B,交y轴负半轴于点C,且OB =OC.下列结论:①22b c-=;②12a=;③1ac b=-;④0a bc+>.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB =BC+AD,∠DAC =45°,E为CD上一点,且∠BAE =45°,若CD =4,则△ABE的面积为()A. 127B.247C.487D.507(第8题图)(第9题图)(第10题图)(第15题图)二、填空题(每小题3分,共18分)11.分解因式:ab2 -9a = .12.若11622y x x=-+--则xy = .13.一个样本为1,3,2,2,a,b,c .已知这个样本的众数为3,平均数为2,则这组数据的中位数为.14.已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.15.如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=23,点D为AC与反比例函数kyx=的图象的交点,若直线BD将△ABC的面积分成1:2的两部分,则k的值为.16.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线2(1)y x=+向下平移m个单位(m> 0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)先化简,再求值:233(1)11x x x xx x---+÷++其中x的值从不等式组23,241xx-⎧⎨-<⎩≤的整数解中选取.18.(本题满分8分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E. (1)求证:△AFE ≌ △CDE ;(2)若AB =4,BC =8,求图中阴影部分的面积.(第18题图)19.(本题满分8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:(第19题图)根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为 ;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有 人,并补全条形统计图;(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列课外体育锻炼情况扇形统计图经常参加课外体育锻炼的学生 最喜欢的一种项目条形统计图表或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率. 20.(本题满分8分)关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根. (1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2 ,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.21.(本题满分9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.22.(本题满分9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点. ⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且P A =PD,AD的延长线交⊙O于点E.(1)求证:BE= CE;(2)若ED、EA的长是一元二次方程x2-5x+5=0的两根,求BE的长;(3)若MA =62,1sin3AMF∠=, 求AB的长.23.(本题满分10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(本题满分12分)已知,抛物线23y ax bx=++(a< 0 )与x轴交于A(3,0)、B两点,与y轴交于点C. 抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE =1 2 .(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使12ACP ACDS S∆∆=,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.(第24题图)鄂州市2017年初中毕业生学业考试数学试题答案及评分标准一、选择题(每小题3分,共30分)1.B2. A3. D4. D5. A6. D7. C8. D9. C 10. D二、填空题(每小题3分,共18分)11. 12. 13. 214. 15. 16. 2≤≤8三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)解:原式= 或………………………………… 3分解不等式①得-1 ………………………………… 4分解不等式②得………………………………… 5分不等式组的解集为又∵∴当时,原式= ………………………………… 8分18.(本题满分8分)(1)证明:由翻折性质知:AF =AB, ∠F =∠B =90°,∵四边形ABCD为矩形∴AB =CD∠B =∠D=90°∴AF =CD∠F =∠D=90°在△AFE 和△CDE∠F =∠B∠F =∠BAF =CD∴△AFE ≌△CDE (AAS)………………………………… 4分(2)解:∵△AFE ≌△CDE∴AE =CE设AE =CE =,则DE = 在Rt△CDE中,即解得∴AE =5∴………………………………… 8分19.(本题满分8分)(1)144° 1 补全条形统计图略………………………………… 3分(2)1200 ………………………………… 5分(3)P= ………………………………… 8分20.(本题满分8分)解:(1)依题意有△=解不等式得………………………………… 3分(2)方程两边同时平方得,由一元二次方程根与系数的关系知:∵∴∴∴即………………………………… 6分∴∵∴满足题设条件 . ………………………………… 8分21.(本题满分9分)解:(1)设CD =, 在Rt△CDE中,ED =CD,∴ED=又∵FD =AB =2. ∴EF =ED-FD =在Rt△AFE中,AF =EF,而∴AF =在Rt△ABC中,BC =AB,而∠BAC =90°-∠ACB =60°∴BC =又AF =BC +CD,∴∴∴DE =. …………………………………4分∴树高6米. …………………………………5分(2)延长NM交直线BD于点G,∵∠NDG=45°∴NG =GD =MA +BC +CD∴MN =3+ ………………………………… 8分∴食堂高度为()米. ………………………………… 9分22.(本题满分9分)(1)证明:连结OA、OE,∵OA =OE∴∠OAE =∠OEA∵MA是⊙O的切线∴∠MAO =∠MAD +∠OAD =90°∵PA =PD∴∠PAD =∠PDA∵∠EDC =∠ADB∴∠EDC +∠AEO =90°∴OE⊥BC∴⌒BE=⌒CE………………………………………………………… 3分(2)由(1)知∠CBE =∠BAE∵∠BED =∠AE B ∴△EBD ∽△EAB∴∴∵ED、EA的长是一元二次方程的两根∴∴………………………………………………………… 6分(3)在Rt△AMF中AO=MO∴MO =3AO∵∴AO=3过点B作BN∥MA交OA于点N,则∠NBO=∠M∵MA⊥OA∴BN⊥OA∴ON =OB=3 ∴NB=,AN=2∴AB= ………………………………………………………… 9分(此题证△AMB∽△FMA,用AB表示AF,在Rt△ABF中用勾股定理求AB亦可)23.(本题满分10分)解:(1)………………………………………………………… 2分(2)∵-10<0且为偶数∴当或时,有最大值为5280.此时销售单价为80-6=74或80-8=72.………………………………………………………… 5分即当销售单价为72元或74元时,每周销售利润最大,最大为5280元.………………………………………………………… 6分(3)依题意有解得由二次函数图象知.设进货成本为P元,则有P=50,∵500>0,一次函数P随的增大而增大,∴当时,P有最小值为10000 ………………………………… 9分即该个体商户至少要准备10000元进货成本. ……………………………10分24.(本题满分12分)(1)∵抛物线的对称轴是直线 =1,点A(3,0)根据抛物线的对称性知点B的坐标为(-1,0)将(3,0)(-1,0)带入抛物线解析式中得∴即为所求. ………………………………… 2分当 =1时,∴顶点D(1,4). ………………………………… 3分(2)当 =0时,∴点C的坐标为(0,3)∴∴∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径∵点E在轴C点的上方,且CE = .∴E(0,)∴∴∴△AED为直角三角形,∠ADE =90°.∴AD⊥DE又∵AD为△ACD外接圆的直径∴DE是△ACD外接圆的切线………………………………… 6分(此问中用相似证∠ADE =90°亦可)(3)解法一:先求直线AC 的解析式,再求CD 的中点坐标N (,),过点N 作NP ∥AC ,可求直线NP 的解析式为,联立,解得解法二:过直线AC 上方抛物线的点P 作PM ⊥轴交AC 于点F ,交轴于点M ,设M ()则先求直线AC 的解析式,F (),P ()∴ ∴ ∴ ∴∴ ……………………… 9分(4)………………………………… 12分随州市2017年初中毕业升学考试数学试题第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2-的绝对值是( ) A .2B .2-C .12D .12-2.下列运算正确的是( ) A .336a a a +=B .222()a b a b -=-C .326()a a -= D .1226a a a ÷=3.如图是某几何体的三视图,这个几何体是( )A.圆锥B.长方体C.圆柱D.三棱柱4.一组数据2,3,5,4,4的中位数和平均数分别是()A.4和3.5 B.4和3.6 C.5和3.5 D.5和3.65.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行∠=∠的第一步是以点O为圆心,以任意长为半径画弧①,分别6.如图,用尺规作图作AOC AOB交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A .以点F 为圆心,OE 长为半径画弧B .以点F 为圆心,EF 长为半径画弧C .以点E 为圆心,OE 长为半径画弧D .以点E 为圆心,EF 长为半径画弧7.小明到商店购买“五四青年节”活动奖品,购买20支铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( )A .203011010585x y x y +=⎧⎨+=⎩B .201011030585x y x y +=⎧⎨+=⎩C .205110301085x y x y +=⎧⎨+=⎩D .520110103085x y x y +=⎧⎨+=⎩8.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数()n 和芍药的数量规律,那么当11n =时,芍药的数量为( )A .84株B .88株C .92株D .121株9.对于二次函数223y x mx =--,下列结论错误的是( ) A .它的图象与x 轴有两个交点 B .方程223x mx -=的两根之积为3- C .它的图象的对称轴在y 轴的右侧D .x m <时,y 随x 的增大而减小10.如图,在矩形ABCD 中,AB BC <,E 为CD 边的中点.将ADE ∆绕点E 顺时针旋转180︒,点D 的对应点为C ,点A 的对应点为F ,过点E 作ME AF ⊥交BC 于点M ,连接AM 、BD 交于点N .现有下列结论:①AM AD MC =+;②AM DE BM =+;③2D E A D C M =⋅;④点N为ABM ∆的外心.其中正确结论的个数为( )A .1个B .2个C .3个D .4个第Ⅱ卷(共90分)二、填空题(每题3分,满分18分,将答案填在答题纸上)11.根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为 .12.“抛掷一枚质地均匀的硬币,正面向上”是 事件(从“必然”、“随机”、“不可能”中选一个).13.如图,已知AB 是O 的弦,半径OC 垂直AB ,点D 是O 上一点,且点D 与点C 位于弦AB两侧,连接AD 、CD 、OB ,若70BOC ∠=︒,则ADC ∠= 度.14.在ABC ∆中,6AB =,5AC =,点D 在边AB 上,且2AD =,点E 在边AC 上,当AE = 时,以A 、D 、E 为顶点的三角形与ABC ∆相似.15.如图,AOB ∠的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点(3,0)N 是OB 上的一定点,点M 是ON 的中点,30AOB ∠=︒,要使PM PN +最小,则点P 点的坐标为 .16.在一条笔直的公路上有A 、B 、C 三地,C 地位于A 、B 两地之间.甲车从A 地沿这条公路匀速驶向C 地,乙车从B 地沿这条公路匀速驶向A 地.在甲车出发至甲车到达C 地的过程中,甲、乙两车各自与C 地的距离y (km )与甲车行驶时间()t h 之间的函数关系如图所示.下列结论:①甲车出发2h 时,两车相遇;②乙车出发1.5h 时,两车相距170km ;③乙车出发527h 时,两车相遇;④甲车到达C 地时,两车相距40km .其中正确的是 (填写所有正确结论的序号).三、解答题 (本大题共9题,共72.解答应写出文字说明、证明过程或演算步骤.)17.计算:2021()(2017)(3)|2|3π---+---. 18.解分式方程:2311xx x x +=--. 19.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x =的图象于点B ,32AB =.(1)求反比例函数的解析式;(2)若11(,)P x y 、22(,)Q x y 是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.20.风电已成为我国继煤电、水电之后的第三大电源.风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A 处测得塔杆顶端C 的仰角是55︒,沿HA 方向水平前进43米到达山底G 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、H 在同一直线上)的仰角是45︒.已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG 为10米,BG HG ⊥,CH AH ⊥,求塔杆CH 的高.(参考数据:tan 55 1.4︒≈,tan 350.7︒≈,sin 550.8︒≈,sin 350.6︒≈)21.某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x 表示成绩,单位:分).A 组:7580x ≤<;B 组:8085x ≤<;C 组:8590x ≤<;D 组:9095x ≤<;E 组:95100x ≤<,并绘制如图两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有 名,请补全频率分布直方图;(2)扇形统计图中,C 组对应的圆心角是多少度?E 组人数占参赛选手的百分比是多少? (3)学校准备组成8人的代表队参加市级决赛,E 组6名选手直接进入代表队,现要从D 组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.22.如图,在Rt ABC ∆中,90C ∠=︒,AC BC =,点O 在AB 上,经过点A 的O 与BC 相切于点D ,交AB 于点E .(1)求证:AD 评分BAC ∠;(2)若1CD =,求图中阴影部分的面积(结果保留π).23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (115x ≤<)之间的函数关系式,并求出第几天时销售利润最大?(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?24.如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF 经过点C ,连接DE 交AF 于点M ,观察发现:点M 是DE 的中点. 下面是两位学生有代表性的证明思路: 思路1:不需作辅助线,直接证三角形全等; 思路2:不证三角形全等,连接BD 交AF 于点H .、 ……请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的条件下,当135ABE ∠=︒时,延长AD 、EF 交于点N ,求AMNE的值;(3)在(2)的条件下,若AF k AB =(k 为大于2的常数),直接用含k 的代数式表示AMMF的值.25.在平面直角坐标系中,我们定义直线y ax a =-为抛物线2y ax bx c =++(a 、b 、c 为常数,0a ≠)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线223432333y x x =--+与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将ACM ∆以AM 所在直线为对称轴翻折,点C 的对称点为N ,若AMN ∆为该抛物线的“梦想三角形”,求点N 的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.。
湖北省鄂州市2017年中考数学真题试题一、选择题(每小题3分,共30分)1.下列实数是无理数的是( )A .23BC .0D .﹣1.010101【答案】B .【解析】试题解析:,0,﹣1.0101故选B .考点:无理数2.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥,大桥长1100m ,宽27m ,鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元,2015年开工,预计2017年完工.请将2.3亿元用科学记数法表示为( )A .2.3×108B .0.23×109C .23×107D .2.3×109【答案】考点:科学记数法----表示较大的数.3.下列运算正确的是( )A .5x ﹣3x=2B .(x ﹣1)2=x 2﹣1C .(﹣2x 2)3=﹣6x 6D .x 6÷x 2=x 4【答案】D.【解析】试题解析:A 、原式=2x ,不符合题意;B 、原式=x 2﹣2x+1,不符合题意;C 、原式=﹣8x 6,不符合题意;D 、原式=x 4,符合题意,故选D考点:整式的计算.4.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()A .B .C .D .【答案】D.考点:几何体的三视图.5.对于不等式组1561333(1)51x xx<x⎧-≤--⎪⎨⎪-⎩,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为﹣1<x≤7 6C.此不等式组有5个整数解D.此不等式组无解【答案】A.【解析】试题解析:1561333(1)51x xx①<x②⎧--≤-⎪⎨⎪-⎩,解①得x≤72,解②得x>﹣1,所以不等式组的解集为﹣1<x≤72,所以不等式组的整数解为1,2,3故选A.考点:一元一次不等式组的整数解6.如图,AB∥CD,E为CD上一点,射线EF经过点A,EC=EA.若∠CAE=30°,则∠BAF=()A.30° B.40° C.50° D.60°【答案】D.考点:平行线的性质7.已知二次函数y=(x+m)2﹣n的图象如图所示,则一次函数y=mx+n与反比例函数y=mnx的图象可能是()A. B.C.D.【答案】C.考点:二次函数图象与系数的关系、一次函数图象与系数的关系以及反比例函数的图象8.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,图中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:①打电话时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家的速度为50m/min;③小东打完电话后,经过27min到达学校;④小东家离学校的距离为2900m.其中正确的个数是()A.1个B.2个 C.3个D.4个【答案】考点:一次函数的应用9.如图抛物线y=ax2+bx+c的图象交x轴于A(﹣2,0)和点B,交y轴负半轴于点C,且OB=OC,下列结论:①2b﹣c=2;②a=12;③ac=b﹣1;④a bc>0其中正确的个数有()A.1个B.2个C.3个D.4个【答案】C.∵A(﹣2,0),B(﹣c,0),抛物线线y=ax2+bx+c与x轴交于A(﹣2,0)和B(﹣c,0)两点,∴2c=ca,∴2=1a,∴a=12,故②正确;∵ac﹣b+1=0,∴b=ac+1,a=12,∴b=12c+1∴2b﹣c=2,故①正确;故选C.考点:二次函数图象与系数的关系10.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.127B.247C.487D.507【答案】D.∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥BG,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AB,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=y2①,(5﹣y)2+y2=12+(4﹣z)2②由①②可得y=207,∴S△ABE=12×5×207=507,故选D.考点:直角梯形的性质、全等三角形的判定和性质、角平分线的性质定理、勾股定理、二元二次方程组二、填空题(每小题3分,共18分)11.分解因式:ab2﹣9a= .【答案】a(b+3)(b﹣3).【解析】试题解析:原式=a(b2﹣9)=a(b+3)(b﹣3).考点:因式分解.12.若y=+xy= .【答案】3.∴xy=﹣3.考点:二次根式有意义的条件.13.一个样本为1,3,2,2,a ,b ,c ,已知这个样本的众数为3,平均数为2,则这组数据的中位数为 .【答案】考点:中位数;众数;平均数.14.已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为 .【答案】.【解析】试题解析:圆锥的主视图如图所示,直径BC=8,AD=6,∴==∴圆锥的侧面积是:182π⨯⨯=. 考点:圆锥的计算.15.如图,AC ⊥x 轴于点A ,点B 在y 轴的正半轴上,∠ABC=60°,AB=4,D 为AC 与反比例函数y=k x的图象的交点.若直线BD 将△ABC 的面积分成1:2的两部分,则k 的值为 .【答案】﹣4或﹣8.∵AC∥OB,∴△DOA的面积=△ABD的面积=2,∴12|k|=2,即k=±4,又∵k<0,∴k=﹣4;当AD :CD=2:1时,△ABD 的面积=23×△ABC 的面积=4, ∵AC ∥OB ,∴△DOA 的面积=△ABD 的面积=4, ∴12|k|=4,即k=±8, 又∵k <0,∴k=﹣8,考点:反比例函数与一次函数交点问题;反比例函数系数k 的几何意义的运用16.已知正方形ABCD 中A (1,1)、B (1,2)、C (2,2)、D (2,1),有一抛物线y=(x+1)2向下平移m 个单位(m >0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是 .【答案】2≤m≤8考点:二次函数图象与几何变换三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.先化简,再求值:233(1)11x x x x x x ---+÷++,其中x 的值从不等式组23214x x ⎧-≤⎨-<⎩的整数解中选取.【答案】0【解析】试题解析:先根据分式的混合运算顺序和法则化简原式,再求出不等式组的整数解,由分式有意义得出符考点:分式的化简求值;解一元一次不等式组.18.如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.【答案】(1)证明见解析;(2)10.【解析】试题解析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=12×4×8﹣12×4×3=10.考点:翻折变换﹣折叠的性质,全等三角形的判定和性质,矩形的性质,勾股定理,三角形面积的计算19.某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有人,补全条形统计图.(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.【答案】(1)144°,1;(2)180人;(3)(2)全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数约为:1200×640=180人;(3)设A代表“乒乓球”、B代表“篮球”、C代表“足球”、D代表“羽毛球”,画树状图如下:共有12种等可能的结果数,其中选中的两个项目恰好是“乒乓球”、“篮球”的情况占2种,所以选中“乒乓球”、“篮球”这两个项目的概率是21=126.考点:列表法与树状图法20.关于x的方程x2﹣(2k﹣1)x+k2﹣2k+3=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得|x1|﹣|x2的k值;若不存在,说明理由.【答案】(1)k>114;(2)存在,k=4.解得:k>114;(2)存在,∵x1+x2=2k﹣1,x1x2=k2﹣2k+3=(k﹣1)2+2>0,∴将|x1|﹣|x2x12﹣2x1x2+x22=5,即(x1+x2)2﹣4x1x2=5,代入得:(2k﹣1)2﹣4(k2﹣2k+3)=5,解得:4k﹣11=5,解得:k=4.考点:根与系数的关系;根的判别式21.小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D 三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.【答案】(1)6米;(2)CD=tan DE DCE =∠x 、BC=tan AB ACB =∠AF=BD 可得关于x 的方程,解之可得;(2)延长NM 交DB 延长线于点P ,知AM=BP=3,由(1)得CD=3,根据NP=PD 且AB=MP 可得答案.试题解析:(1)如图,设DE=x ,(2)延长NM交DB延长线于点P,则AM=BP=3,由(1)知CD=∴∵∠NDP=45°,且MP=AB=2,∴∴NM=NP﹣∴食堂MN的高度为考点:直角三角形的应用22.如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点,⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且PA=PD,AD的延长线交⊙O于点E.(1)求证: BE CE;(2)若ED、EA的长是一元二次方程x2﹣5x+5=0的两根,求BE的长;(3)若sin∠AMF=13,求AB的长.【答案】(1)证明见解析;(2(3).∴∠OAE=∠OEA,∴∠EDT+∠OEA=90°,∴∠DTE=90°,∴OE⊥BC,∴ BE CE=.(2)∵ED、EA的长是一元二次方程x2﹣5x+5=0的两根,∴ED•EA=5,∵ BE CE=,∴∠BAE=∠EBD,∵∠BED=∠AEB,∴△BED∽△AEB,∴BE DE AE EB=,∴BE2=DE•EA=5,∴(3)作AH⊥OM于H.在Rt△AMO中,∵sin∠M=1=3OAOM,设OA=m,OM=3m,∴9m2﹣m2=72,∴m=3,∴OA=3,OM=9,易知∠OAH=∠M,∴tan∠OAD=13 OHAH=,∴OH=1,BH=2,∴==考点:切线的性质、解直角三角形、勾股定理、相似三角形的判定和性质、锐角三角函数23.鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【答案】(1) y=10x+160;(2) 销售单价定为73元时,每周销售利润最大,最大利润是5290元;(3) 10000元.(3)依题意有:﹣10(x ﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.考点:二次函数的应用;一元二次方程的应用24.已知,抛物线y=ax 2+bx+3(a <0)与x 轴交于A (3,0)、B 两点,与y 轴交于点C ,抛物线的对称轴是直线x=1,D 为抛物线的顶点,点E 在y 轴C 点的上方,且CE=12. (1)求抛物线的解析式及顶点D 的坐标; (2)求证:直线DE 是△ACD 外接圆的切线;(3)在直线AC 上方的抛物线上找一点P ,使S △ACP =12S △ACD ,求点P 的坐标; (4)在坐标轴上找一点M ,使以点B 、C 、M 为顶点的三角形与△ACD 相似,直接写出点M 的坐标.【答案】(1)抛物线解析式为y=﹣x 2+2x+3;顶点D (1,4).(2)证明见解析;(3)P (2,2));(4)点M 的坐标为(0,0)或(9,0)或(0,﹣13).(2)当=0时,∴点C的坐标为(0,3),∴∴AC2+CD2=AD2,∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径,∵点E在轴C点的上方,且CE=12.∴E(0,72)∴22,∴DE2+AD2=AE2,∴△AED为直角三角形,∠ADE=90°.∴AD⊥DE,又∵AD为△ACD外接圆的直径,∴DE是△ACD外接圆的切线;(4)分三种情况:①M恰好为原点,满足△CMB∽△ACD,M(0,0);②M在x轴正半轴上,△MCB∽△ACD,此时M(9,0);③M在y轴负半轴上,△CBM∽△ACD,此时M(0,﹣13);综上所述,点M的坐标为(0,0)或(9,0)或(0,﹣13).考点:二次函数综合题。
2017届初中毕业升学考试(湖北鄂州卷)英语一、单选题1. —The dishes in this restaurant must be very expensive.—Don’t worry. You can enjoy yourself. It’s my _______.A timeB treatC taskD taste2. (2017·湖北鄂州·22)—How old is your son?—________. We had a special party for his ________ birthday yesterday.A Nine;nineB Ninth;nineC Nine;the ninthD Nine;ninth3. (2017湖北省鄂州市中考)—The town of Huarong _________ a lot in the past five years. —That’s true. It’s becomin g more and more beautiful.A changedB has changedC had changedD is changing4. —He didn’t go to school late yesterday, did he?—_________, though it rained hard yesterday.A No, he didn’tB Yes, he didn’tC Yes, he didD No, he did5. —I had a pleasant trip last week.—_________.A Oh, that’s very kind of youB It’s a pleasureC CongratulationsD I’m glad to hear that6. (2017湖北省鄂州市中考)—If you do that, you will _________ with an egg on your face. —But I won’t regret it.A take upB end upC keep upD catch up7. (2017·湖北鄂州·27)—Jack hasn't taken his piano lessons for a long time.—He is considering ________ his piano course and spending more time on his study.A to dropB to throwC droppingD throwing8. (2017·湖北鄂州·28)—What would you like to drink,tea or coffee?—________ is OK,but I prefer coffee ________ milk.A Either;toB Either;withC Neither;toD Neither;with9. —The tall man with glasses over there looks like our math teacher.—It _________ be him. He has gone abroad.A may notB mustn’tC can’tD needn’t10. (2017湖北省鄂州市中考)—What an interesting story she told us!—Yes, and her voice sounded ________.A sweetB smallC clearlyD sadly11. (2017湖北省鄂州市中考)—I’ll be away for a long time.—Don’t worry. She can look after your pet ________.A careful enoughB enough carefulC carefully enoughD enough carefully12. (2017湖北省鄂州市中考)—What do you often do ________ classes to relax yourselves? —We often do some running or listen to music.A inB throughC betweenD among13. —Time will ________ whether I made the right choice or not.—I believe you can succeed.A seeB sayC knowD tell14. —Do you know _________?—Yes, she is very kind and outgoing.A what’s his mother likeB what his mother likesC what his mother islike D how his mother is like15. 一Please tell me something about Yang Liwei.一He is a great astronaut of all the Chinese are proudA thatB whoseC whoD whom二、完型填空16. One evening, I went out for a walk on the path (小路) near my house with my husband. On my finger was a very special ring with a diamond (钻石) that my grandmother gave me for my 23rd birthday. At the end of the path, when I looked down at it again and found the diamond was ______. I started back along the path hurriedly ______ the tiny stone. In my heart, I knew it seemed impossible for me to find it. The path was very long and ______ with leaves. As I searched the ground, crying and upset, I met an old lady. “What’s the matter, love ?” She asked kindly. I______about the missing diamond and showed her my ring. She said, “That’s going to be hard to find. Tell me what, love, I walk along this path every day, I’ll keep my eyes ______ for it.” I thanked her, ______ nothing, but still told her that we sometimes walked our dog along the path if she might find something.A few days later, my husband and I met the old lady on the path. “Guess what?” She said, “I found your diamond!” To our ______, she’d found the tiny stone an d was willing to hand it back to me. “It was lucky that I found it.” When we ______ her with some money for her help, she ______politely. I was deeply moved. She could have easily kept the diamond, or sold it, for it’s worth several thousand dollars, but she didn’t.Every time I look at my ring and ______ myself that there’re kind and beautiful hearts in the world. I’ll spend the rest of my life trying to do something like that.(1)A changingB shiningC burningD missing(2)A looking forB staring atC running afterD taking away(3)A fedB filledC coveredD taken(4)A explainedB askedC caredD learned(5)A openedB closedC closeD open(6)A gettingB expectingC wonderingD telling(7)A attentionB sadnessC surprisedD surprise(8)A gaveB offeredC providedD showed(9)A refusedB receivedC acceptedD confused(10)A askB remindC warnD promise三、阅读单选17. Wonderful Events(1)Who can NOT go to the horse race?A A single person.B A couple.C Children.D The sweet heart.(2)People can see the photo show at_______.A Grandview MallB City Art MuseumC RacetrackD Country Club(3)What can you do if you only have time between 5 p.m.and 6 p.m on Saturday?A Go shopping.B Go to see the photo show.C Go to the dance with your sweet heart.D Go to watch the horse race.(4)How much will Mr. and Mrs. Smith pay if they want to go to the dance party?A 15 dollars.B 25 dollars.C 20%-40% off.D For free.(5)Where can you see the above advertisements?A In a book.B In a magazine.C In a newspaper.D On TV.18. One of my best friends went abroad to enjoy her holidays, so the job of looking after her dog Missy has been given to me. A few months ago, Missy came to my friend’s house. She looked terrible. She has been abused for a long time.When we first visited my friend and Missy, my friend had to gently pull her over on a lead (牵绳) to get her to come to us. She wanted to come but afraid to do so—the poor, beautiful thing. Clearly Missy came to the right home. My friend has given birth to a baby of his own and shows the love of a mother. This is just what Missy needs. Thanks to the love of my friend, she has changed into a new dog step by step. Sadly, she is still afraid of strange humans. I hate to imagine what the dog must have gone through.Now, Missy trusts me completely, so I can touch her berry(肚皮).While standing, she will jump up so gently to be closer to me, putting her paws(爪子)on my legs as she looks at me with those beautiful eyes.Missy is really brave. She has the courage to try again, to open her hearts, and to know that not everyone is the same kind of people as before. Keep it in mind that tomorrow is another day.(1)The underlined word “abused” in the first paragraph means__________.A 保护B 喂养C 虐待D 挨饿(2)The writer felt _________ when she first saw Missy.A proud and relaxedB sorry and caringC afraid and angryD sad and disappointed(3)The writer thought it was good for Missy to stay with her friend __________.A because her friend could offer the love of a mother to MissyB because her friend had more free time to take care of MissyC because her friend stayed long at home and felt quite lonelyD because her friend helped Missy to accept different people(4)The fourth paragraph mainly tells us _________.A the writer has learned the skills to communicate with MissyB the writer has made Missy understand and follow her ordersC the writer has succeeded in winning the trust of MissyD the writer has come to realize that Missy is a beautiful dog(5)According to the passage, what is the writer’s suggestion?A No future in the past.B Every dog has its day.C All efforts will pay off.D Never too late to mend.四、信息匹配19. In 1901, Karl Landsteiner, an Austrian scientist, discovered that there are four types of blood. These four blood types were named A, B, AB and O. People have one of these four types. Blood type O is the most common around the world. Blood type A is the second most common, and type AB is the least common. If people with type A blood aregiven type B blood, or people with type B blood are given type A blood, they will probably die.In 1927, a Japanese doctor, Furukawa Takeji, carried out research and came up with the idea that people with different blood types also had different personalities. He said that people with type A blood are usually calm and serious; people with type B blood are curious, cheerful and outgoing; people with type O blood are generous and ________; while those with type AB blood are often caring, orginal and careful.More recently, a doctor in the United States wrote a book that links blood types and what people eat. For example, his book suggests people with type O blood should eat more meat and less bread. A diet for people with type A blood includes more vegetables. His book, Eat Right for Your Type, has been a hit with people who want to loseweight. However, Dr. Peter D' Adamo believes that eating food that matches a person's blood type can do more than help them lose weight. He thinks it will make the person healthier in other ways, too.(1).In 1901, Karl Landsteiner discovered that________.A there are four types of personality.B blood type A is the mostcommon. C blood is divided into four types. D one person can give his blood to another.(2)According to the text, people with blood________ are active and outgoing.A type A.B type B.C type A.D type O.(3)What does the underlined word " ________" mean in Chinese?________A 外向的.B 值得交朋友的.C 大方的.D 值得信任的.(4)________ are interested in Eat Right for Your Type.A People who are too heavy.B Austrian people.C People with type O blood.D People who are worried about their blood.(5)What's the best title for this passage?________A What blood does in our bodies?.B Why blood type cannot bemixed?. C Important parts of our blood. D Three men who studied blood.五、多任务混合问题20.Bamboo is one of nature's (自然) most surprising plants. Many people call this plant a tree, but it is a kind of grass.Like other kinds of grass, a bamboo plant may be cut very low to the ground, but it will grow back very quickly. A Japanese scientist reported one bamboo plant which grew 1.5 metres (4 feet) in 24 hours! Bamboo grows almost everywhere in the world except Europe. There are more than 1, 000 kinds of bamboo.Not all bamboo looks the same. Some bamboo plants are very thin. They may only growto be a few centimeters (厘米) wide while others may grow to more than 30 centimetres (1 foot) across. This plant also comes in different colors, from yellow to black to green.Bamboo has been used to make many things such as hats and kitchen tools. Because it is strong, bamboo is also used to build buildings.Many Asian countries have used bamboo for hundreds of years. They often use bamboo for buildings and supporting (支撑) new buildings and bridges while they are being built. In Africa, poor farmers are taught how to find water using bamboo. These African countries need cheap way to find water because they have no money, and their crops often die from no rain and no water. Bamboo pipes (管子) help poor farmers bring water to their thirsty fields without spending a lot of money.(1)How is bamboo like grass?A It grows quickly.B It's wood.C it is easy to cut.D It is very thin.(2)Though you can see bamboo everywhere, it doesn't grow ______.A in ChinaB in EuropeC on mountainsD in Africa(3)Why is bamboo used by African poor farmers? Because ______.A it is cheapB it has different coloursC it is strongD it has been used by Asians(4)Bamboo pipes can ______.A make moneyB be treesC grow quicklyD carry water(5)In Asia, bamboo has been used for ______.A a short timeB many thousands of yearsC many hundreds of yearsD about 100 years六、用所给单词的正确形式填空21. (1)John’s family came back to the USA last ________ (九月).(2)Those ________ (德国人) wanted to have fish for dinner.(3)The doctor did what he could ________ (save) the patient’s life.(4)________ (luck), the man hurt badly in the accident.(5)Sandy’s grandparents ________ (marry) for 50 years.(6)If you want to make yourself ________ (understand), you’d better speak clearly and slowly.(7)—Tom has invented a tree-planting machine.—I think no one is ________ (create) than him. He’s a boy full of strange ideas.(8)Teenagers should ________ (encourage) to solve their problems by themselves. (9)—Where did you find Miss Gao just now?—In the office, she ________ (talk) with other teachers at that time.七、填写适当的句子补全对话22. (It's Friday afternoon.After school,Sun Mei meets Hu Fang on the way home.)Sun Mei:Hello,Hu Fang!Hu Fang:Hello,Sun Mei!Sun Mei:Tomorrow is Saturday and the weather is fine.I want to climb the Ge Hill.(75)________?Hu Fang:Sure,I'd love to.Oh,I hear there's a strawberry garden near it.We can do some picking in the garden after climbing.Sun Mei:(76)________!I like eating fresh strawberries.We canalso take beautiful photos there.Hu Fang:Great!(77)________?Sun Mei:Let's meet at 8 o'clock in the morning at the gate of Yanglan Primary School.Hu Fang:It's a deal!See you tomorrow.Sun Mei:See you.八、材料作文23. 为响应我市"创建国家卫生城市"的号召,6月3日,5000多名市民以绿色出行的方式参与了"生态鄂州﹣﹣环洋澜湖健步走"活动.请以"共建绿色城市"为主题,根据以下文字提示,并适当发表自己的观点,写一篇英语短文.要求:1.80﹣100词(开头的首句已给出,不计算在总词数内).2.文中不能出现自己的姓名和所在学校的名称及其它相关信息,否则不予评分.参考词汇:吐痰spit 垃圾箱dustbin 交通拥堵traffic jams 环境environmentAs a middle school student of Ezhou,it's our duty to help build a green city.________.2017届初中毕业升学考试(湖北鄂州卷)英语答案1. B2. D3. B4. C5. D6. B7. C8. B9. C10. A11. C12. C13. D14. C15. D16. DACADBDCAB17. CBABC18. CBACA19. CBDAD20. ABADC21. (1)September (2)Germans(3)to save(4)Unluckily(5)have been married (6)understood(7)more creative(8)be encouraged(9)was talking22. Would you like to go with me,Good idea,When and where shall we meet23. Let's build a green city togetherAs a middle school student of Ezhou,it's our duty to help build a green city.We can avoid the traffic jams and reduce the air pollution by riding bikes or walking.【高分句型一】We mustn't throw rubbish or spit anywhere.In this way,we can keep our city clean and tidy so that we can live a comfortable life.And we'd better plant more trees to protect the environment and make our city beautiful.(避免污染的具体方法)In my daily life,I can pick up rubbish and put it into the dustbin wherever I go.【高分句型二】I can also save the energy by turning off the lights when leaving the room.(自己在生活中的实际行动)In a word,everyone can play a part in building our city.。
湖北省鄂州市2017年中考英语试卷学校:考生姓名:准考证号:注意事项:分,考试时间1208页,满分1.本试题卷共分钟。
120co^m][www.*zz@&step.~.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证2 号条形码粘贴在答题卡上的指定位置。
如需改选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
3.动,用橡皮擦干净后,再选涂其他答案标号。
答在试题卷上无效。
毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试4.非选择题用0.5 题卷上无效。
5.考生必须保持答题卡的整洁。
考试结束后,请将本试题卷和答题卡一并上交。
听力测试第一部分分)25听力测试(共三节,20小题,满分Ⅰ.三C、B、选图画。
听下面2段描述和3段对话。
听完以后,从A第一节:听描述或对话, 分)分,计5幅图画中选出正确的一幅。
每段描述和对话读一遍。
(共5小题,每题1 #]版网&*出来源中国教育1.2.3.4.网出版*^育教中%&国版网出中来源:%国教育5.三个选项中选出CB、、第二节:听对话,选答案。
听下面4段对话。
根据所提的问题,从A 分)1分,计10小题,每题(共最佳答案。
每段对话读两遍。
10 小题。
7、6听第六段材料,完成第6. What are the speakers talking about?A. A match.B. A movie.C. A TV show.7. Why didn't Mary watch the match?A. It started too late at night.B. She had to do her homework.C. She doesn't like basketball matches.听第七段材料,完成第8至10小题。
中国%^教&@育出版网8. When did Ann go to her hometown?C. Last month. A. Yesterday. B. Last week.9. How was Ann's trip?C. Unpleasant. B. Wonderful. A. Exciting.has happened to Ann's hometown?10. WhatB. The water there has become A. People have polluted the river there.clean.C. People have planted many flowers and trees there.听第八段材料,完成第11、12小题。
鄂州市2017年初中毕业生学业考试数学试题一、选择题(每小题3分,共30分)1.下列实数是无理数的是()A. 23B. 3C.0 D.-1.0101012.鄂州市凤凰大桥,坐落于鄂州鄂城区洋澜湖上,是洋澜湖上在建的第5座桥梁. 大桥长1100m,宽27m. 鄂州有关部门公布了该桥新的设计方案,并计划投资人民币2.3亿元. 2015年开工,预计2017年完工.请将2.3亿用科学记数法表示为()A.2.3⨯108B.0.23⨯109C.23⨯107D.2.3⨯1093.下列运算正确的是()A. 5x -3x =2B. (x -1)2= x2 -1C. (-2x2)3= -6x6D. x6÷x2= x44.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是()(第4题图) A. B. C. D.5.对于不等式组1561,333(1)5 1.x xx x⎧--⎪⎨⎪-<-⎩≤下列说法正确的是()A. 此不等式组的正整数解为1,2,3B. 此不等式组的解集为-1<x≤7 6C. 此不等式组有5个整数解D. 此不等式组无解6.如图AB∥CD,E为CD上一点,射线EF经过点A,EC=EA,若∠CAE =30°,则∠BAF =( )A. 30°B. 40°C. 50°D. 60°(第6题图)7.已知二次函数y = (x+m)2 - n的图象如图所示,则一次函数y =mx + n与反比例函数mnyx=的图象可能是()(第7题图) A. B. C. D.8.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校.小东始终以100m/min 的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:(1)打电话时,小东和妈妈距离是1400m;(2)小东与妈妈相遇后,妈妈回家速度是50m/min;(3)小东打完电话后,经过27min到达学校;(4)小东家离学校的距离为2900m.其中正确的个数是()A.1个B.2个C.3个D.4个9.如图抛物线2y ax bx c=++的图象交x轴于A (2,0)和点B,交y轴负半轴于点C,且OB =OC.下列结论:①22b c-=;②12a=;③1ac b=-;④0a bc+>.其中正确的个数有()A.1个B.2个C.3个D.4个10.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB =BC+AD,∠DAC =45°,E为CD上一点,且∠BAE =45°,若CD =4,则△ABE的面积为()A. 127B.247C.487D.507(第8题图)(第9题图)(第10题图)(第15题图)二、填空题(每小题3分,共18分)11.分解因式:ab2 -9a = .12.若11622y x x=-+--则xy = .13.一个样本为1,3,2,2,a,b,c .已知这个样本的众数为3,平均数为2,则这组数据的中位数为.14.已知圆锥的高为6,底面圆的直径为8,则圆锥的侧面积为.15.如图,AC⊥x轴于点A,点B在y轴的正半轴上,∠ABC=60°,AB=4,BC=23,点D为AC与反比例函数kyx=的图象的交点,若直线BD将△ABC的面积分成1:2的两部分,则k的值为.16.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线2(1)y x=+向下平移m个单位(m> 0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是.三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)先化简,再求值:233(1)11x x x xx x---+÷++其中x的值从不等式组23,241xx-⎧⎨-<⎩≤的整数解中选取.18.(本题满分8分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E.(1)求证:△AFE ≌ △CDE ;(2)若AB =4,BC =8,求图中阴影部分的面积.(第18题图)19.(本题满分8分)某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:(第19题图)根据以上信息解答下列问题:(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为 ;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有 人,并补全条形统计图;(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列课外体育锻炼情况扇形统计图 经常参加课外体育锻炼的学生最喜欢的一种项目条形统计图表或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率. 20.(本题满分8分)关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根. (1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2 ,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.21.(本题满分9分)小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M 处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.22.(本题满分9分)如图,已知BF是⊙O的直径,A为⊙O上(异于B、F)一点. ⊙O的切线MA与FB的延长线交于点M;P为AM上一点,PB的延长线交⊙O于点C,D为BC上一点且P A =PD,AD的延长线交⊙O于点E.(1)求证:BE= CE;(2)若ED、EA的长是一元二次方程x2-5x+5=0的两根,求BE的长;(3)若MA =62,1sin3AMF∠=, 求AB的长.23.(本题满分10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?24.(本题满分12分)已知,抛物线23y ax bx=++(a< 0 )与x轴交于A(3,0)、B两点,与y轴交于点C. 抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE =1 2 .(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是△ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使12ACP ACDS S∆∆=,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.(第24题图)鄂州市2017年初中毕业生学业考试数学试题答案及评分标准一、选择题(每小题3分,共30分)1.B2. A3. D4. D5. A6. D7. C8. D9. C 10. D二、填空题(每小题3分,共18分)11. 12. 13. 214. 15. 16. 2≤≤8三、解答题(17-20题每题8分,21-22题每题9分,23题10分,24题12分,共72分)17.(本题满分8分)解:原式= 或………………………………… 3分解不等式①得-1 ………………………………… 4分解不等式②得………………………………… 5分不等式组的解集为又∵∴当时,原式= ………………………………… 8分18.(本题满分8分)(1)证明:由翻折性质知:AF =AB, ∠F =∠B =90°,∵四边形ABCD为矩形∴AB =CD∠B =∠D=90°∴AF =CD∠F =∠D=90°在△AFE 和△CDE∠F =∠B∠F =∠BAF =CD∴△AFE ≌△CDE (AAS)………………………………… 4分(2)解:∵△AFE ≌△CDE∴AE =CE设AE =CE =,则DE = 在Rt△CDE中,即解得∴AE =5∴………………………………… 8分19.(本题满分8分)(1)144° 1 补全条形统计图略………………………………… 3分(2)1200 ………………………………… 5分(3)P= ………………………………… 8分20.(本题满分8分)解:(1)依题意有△=解不等式得………………………………… 3分(2)方程两边同时平方得,由一元二次方程根与系数的关系知:∵∴∴∴即………………………………… 6分∴∵∴满足题设条件 . ………………………………… 8分21.(本题满分9分)解:(1)设CD =, 在Rt△CDE中,ED =CD,∴ED=又∵FD =AB =2. ∴EF =ED-FD =在Rt△AFE中,AF =EF,而∴AF =在Rt△ABC中,BC =AB,而∠BAC =90°-∠ACB =60°∴BC =又AF =BC +CD,∴∴∴DE =. …………………………………4分∴树高6米. …………………………………5分(2)延长NM交直线BD于点G,∵∠NDG=45°∴NG =GD =MA +BC +CD∴MN =3+ ………………………………… 8分∴食堂高度为()米. ………………………………… 9分22.(本题满分9分)(1)证明:连结OA、OE,∵OA =OE∴∠OAE =∠OEA∵MA是⊙O的切线∴∠MAO =∠MAD +∠OAD =90°∵PA =PD∴∠PAD =∠PDA∵∠EDC =∠ADB∴∠EDC +∠AEO =90°∴OE⊥BC∴⌒BE=⌒CE………………………………………………………… 3分(2)由(1)知∠CBE =∠BAE∵∠BED =∠AE B ∴△EBD ∽△EAB∴∴∵ED、EA的长是一元二次方程的两根∴∴………………………………………………………… 6分(3)在Rt△AMF中AO=MO∴MO =3AO∵∴AO=3过点B作BN∥MA交OA于点N,则∠NBO=∠M∵MA⊥OA∴BN⊥OA∴ON =OB=3 ∴NB=,AN=2∴AB= ………………………………………………………… 9分(此题证△AMB∽△FMA,用AB表示AF,在Rt△ABF中用勾股定理求AB亦可)23.(本题满分10分)解:(1)………………………………………………………… 2分(2)∵-10<0且为偶数∴当或时,有最大值为5280.此时销售单价为80-6=74或80-8=72.………………………………………………………… 5分从现在开始,不留余力地努力吧,最差的结果,也不过是大器晚成即当销售单价为72元或74元时,每周销售利润最大,最大为5280元.………………………………………………………… 6分(3)依题意有解得由二次函数图象知.设进货成本为P元,则有P=50,∵500>0,一次函数P随的增大而增大,∴当时,P有最小值为10000 ………………………………… 9分即该个体商户至少要准备10000元进货成本. ……………………………10分24.(本题满分12分)(1)∵抛物线的对称轴是直线 =1,点A(3,0)根据抛物线的对称性知点B的坐标为(-1,0)将(3,0)(-1,0)带入抛物线解析式中得∴即为所求. ………………………………… 2分当 =1时,∴顶点D(1,4). ………………………………… 3分(2)当 =0时,∴点C的坐标为(0,3)∴∴∴△ACD为直角三角形,∠ACD=90°.∴AD为△ACD外接圆的直径∵点E在轴C点的上方,且CE = .∴E(0,)∴∴∴△AED为直角三角形,∠ADE =90°.∴AD⊥DE又∵AD为△ACD外接圆的直径∴DE是△ACD外接圆的切线………………………………… 6分(此问中用相似证∠ADE =90°亦可)当你的才华还撑不起你的野心时,那你就应该静下心来学习。