平面几何定理公理总结
- 格式:doc
- 大小:237.50 KB
- 文档页数:8
[欧氏几何有几条公理]《几何原本》5条公设,5条公理篇一: 《几何原本》5条公设,5条公理公设1由任意一点到另外任意一点可以画直线。
注释:人民版的表述法与原著有出入。
原著并没有说两点间连线是唯一的。
这也正是该公设的不足之处。
这个公设事实上给出了无刻度直尺的第1种用途,即作两点连线。
在涉及立体几何的三卷中,该公设中的“两点”可以是空间中的任意两点公设2一条有限直线可以继续延长注释:这个公设事实上给出了无刻度直尺的第二种用途,即延长有限直线。
在平面几何各卷中,有1个不明显的假定:如果一条直线被延长,它依旧会在原来的平面内。
立体几何的第1个命题,第11卷命题1,企图证明它,然而这个证明完全没有依据,是错误的。
在欧几里得的几何中不允许在直尺上作标记。
因为《原本》中没有公理对这种作法进行保证。
使用给直尺作标记的方法,三等分角难题可以迎刃而解。
公设3以任意点为心及任意的距离可以画圆。
注释:这个公设给出了圆规的用途。
已知定点、定长画圆。
这个公设不允许圆规的移动。
圆规的通常用法是将两脚张开1个指定宽度,将针尖放在1个指定地点,笔尖旋转一星期。
然而依据该公设画圆时,圆规一旦离开平面,就自动合上了。
也就是说,不可以用圆规来传递距离。
不过用这种圆规仍然能够起到传递距离的作用。
第1卷命题3讲述了作法。
所以用普通圆规能完成的作图,用欧几里得的圆规也能够完成。
公设4凡直角都彼此相等在直角的定义中,可以知道同1个垂足边的2个角是相等的,如∠ACD=∠BCD.这个公设是说,在1个垂足附近的角,如∠ACD,与在任何1个另外的垂足附近的角相等,如∠EGH.公设5同平面内一条直线和另外两条直线相交,若在某一侧的2个内角的和小于二直角的和,则这二直线经无限延长后在这一侧相交.注释:这是1个平面几何中的公设.在图中,如果∠ABE+∠BED 这个公设通常叫做”平行公设”,因为它能证明平行线的性质.这个公设在历史上是最有趣的1个.很久以来不少几何学家都曾努力用其它几条公设去证明该公设,这样一来就没有必要把它作为一条公设了.人们想用反证法去证明它.如果否定了第五公设,将会得出许多看似荒谬的结论,但这些结论并不与任何公设相抵触.对第五公设的研究,开创了”非欧几何”的新领域.今天我们已经知道,欧氏几何必须要有第五公设.欧几里得在第1卷命题29之前没有使用该公设,但第1卷的其余部分几乎都依赖于它.公理1等于同量的量彼此相等公理2等量加等量,其和仍相等公理3等量减等量,其差仍相等公理4彼此能够重合的物体是全等的公理5整体大于部分注释:对公理4有2种解释:1种是,任何东西与它自己相等.另1种是:如果1个东西能够移动并与另1个重合,那么它们相等.公理5可以被解释为”大于”的定义有一些量的性质,没有在公理中出现,却在《原本》中使用了。
立体几何公式定理大全、公理定理(一)平面基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理3:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理4:平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或互补。
(二)空间中两条直线的位置关系空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:过平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)就是异面直线所成的角。
范围为0 , 90两异面直线间距离: 公垂线段(有且只有一条) 2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面三)平行关系1.线面平行定义:直线和平面没有公共点判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
2.面面平行定义:空间两平面没有公共点判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
性质定理引理:两个平面互相平行则其中一个平面内的直线平行于另一个平面。
性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
(四)垂直关系1线面垂直定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
几何原本5大公理
几何学是一门关于空间和形状的数学学科。
在几何学中,五大公理是非常重要的概念。
它们被用来推导所有几何学的理论。
以下是几何原本五大公理的简短介绍以及它们的重要性。
一、东西两点之间只有一条直线
这个公理是几何学的基础。
它表明在一个平面上,任意两个不同的点之间有且仅有一条直线通过。
如果这个公理不成立,整个几何学的理论都将失效。
二、有限直线可以无限延伸
这个公理表明一条直线可以从两个点开始无限延伸下去。
这个公理非常重要,因为它使得我们能够定义直线的长度和角度等概念。
三、任意角都能够被分成两个角
这个公理表明,对于任意一个角,我们都可以找到一条直线把它分成两个角相等的部分。
这个公理是几何学中构造图形的基础。
四、所有直角都相等
这个公理表明任何一个直角都等于另一个直角。
这个公理是建立几何
学中三角形和多边形的基础。
五、平行的直线永远不会相交
这个公理表明,如果有两条直线在一个平面内,且它们的一端点不重合,那么这两条直线要么在这个点的一侧相交,要么在这个点的另一
侧永不相交。
这个公理是几何学中研究平行线和角度等概念的重要基础。
总的来说,几何原本五大公理为几何学的发展提供了非常重要的基础。
这些公理被用来推导几何学的许多理论和定理。
同时,这些公理也为
几何学提供了一些重要的概念和定义。
对于几何学的研究来说,这些
公理是至关重要的。
专题3:空间图形的基本关系与公理(解析版)一公理1 公理2 公理3图形语言文字语言如果一条直线上的两点在一个平面内,那么这条直线在此平面内.过不在一条直线上的三点,有且只有一个平面.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言,,A lB llA Bααα∈∈⎫⇒⊂⎬∈∈⎭,,,,A B CA B Cα⇒不共线确定平面,lP PP lαβαβ=⎧∈∈⇒⎨∈⎩作用判断线在面内确定一个平面证明多点共线推论1 经过一条直线和这条直线外的一点,有且只有一个平面;推论2 经过两条相交直线,有且只有一个平面;推论3 经过两条平行直线,有且只有一个平面.二.直线与直线的位置关系直线:相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;直线:不同在任何一个平面内,没有公共点。
(既不平行,也不相交)三.直线与平面的位置关系有三种情况:在平面内——有无数个公共点.符号 aα相交——有且只有一个公共点符号 a∩α= A平行——没有公共点符号 a∥α说明:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示对应练习一、单选题1.如图所示的是平行四边形ABCD所在的平面,有下列表示方法:①平面ABCD;②平面BD;③平面AD;④平面ABC;⑤AC;⑥平面α.其中不正确的是()A.④⑤B.③④⑤C.②③④⑤D.③⑤【答案】D【分析】根据平面的表示方法判断.【详解】③中AD不为对角线,故错误;⑤中漏掉“平面”两字,故错误.故选:D.2.下列叙述错误的是()A.若p∈α∩β,且α∩β=l,则p∈l.B.若直线a∩b=A,则直线a与b能确定一个平面.C.三点A,B,C确定一个平面.D.若A∈l,B∈l且A∈α,B∈α则l α.【答案】C【分析】由空间线面位置关系,结合公理即推论,逐个验证即可.【详解】选项A,点P在是两平面的公共点,当然在交线上,故正确;选项B,由公理的推论可知,两相交直线确定一个平面,故正确;选项C,只有不共线的三点才能确定一个平面,故错误;选项D,由公理1,直线上有两点在一个平面内,则整条直线都在平面内.故选:C3.在空间中,下列结论正确的是()A.三角形确定一个平面B.四边形确定一个平面C.一个点和一条直线确定一个平面D.两条直线确定一个平面【答案】A【分析】根据确定平面的公理及其推论对选项逐个判断即可得出结果.【详解】三角形有且仅有3个不在同一条直线上的顶点,故其可以确定一个平面,即A正确;当四边形为空间四边形时不能确定一个平面,故B错误;当点在直线上时,一个点和一条直线不能确定一个平面,故C错误;当两条直线异面时,不能确定一个平面,即D错误;故选:A.【点睛】本题主要考查平面的基本定理及其推论,解题时要认真审题,仔细解答,属于基础题.4.下列命题中正确的是( )A .若直线l 上有无数个点不在平面α内,则//l αB .如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行C .若两条直线都与第三条直线垂直,则这两条直线互相平行D .垂直于同一个平面的两条直线互相平行 【答案】D 【分析】利用空间中直线与直线、直线与平面的位置关系进行判断. 【详解】解:选项A: 若直线l 上有无数个点不在平面α内,则//l α或相交,故A 错误;选项B: 如果两条平行直线中的一条与一个平面平行,那么另一条可能与这个平面平行,也可包含于这个平面,故B 错误;选项C: 若两条直线都与第三条直线垂直,则这两条直线相交、平行或异面,故C 错误; 选项D: 垂直于同一个平面的两条直线互相平行, 故D 正确, 故选:D 【点睛】本题考查空间中直线与直线、直线与平面的位置关系的判断,解题时要认真审题,注意空间思维能力的培养.5.已知直线l 和不重合的两个平面α,β,且l α⊂,有下面四个命题:①若//l β,则//αβ;②若//αβ,则//l β;③若l β⊥,则αβ⊥;④若αβ⊥,则l β⊥ 其中真命题的序号是( ) A .①② B .②③ C .②③④ D .①④【答案】B 【分析】对于①,由//l β可得α与β可平行,可相交;对于②,若//αβ,则由面面平行的性质定理可判断;对于③,由线面垂直的判定定理可判断;对于④,当αβ⊥时,l 可能在β内,可能与β平行,可能相交 【详解】解:对于①,由//l β可得α与β可平行,可相交,故错误; 对于②,若//αβ,则由面面平行的性质定理可得//l β,故正确; 对于③,若l β⊥,则由线面垂直的判定定理可得αβ⊥,故正确;对于④,当αβ⊥时,l 可能在β内,可能与β平行,可能相交,所以不一定有l β⊥,故错误, 故选:B 【点睛】此题考查线线、线面、面面关系的判断,属于基础题6.四个顶点不在同一平面上的四边形ABCD 中,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 上的点,如果直线EF ,GH 交于点P ,那么( )A .点P 一定在直线AC 上B .点P 一定在直线BD 上C .点P 一定在平面ABC 外D .点P 一定在平面BCD 内 【答案】A 【分析】由两个面的交点在两个面的交线上,知P 在两面的交线上,由AC 是两平面的交线,知点P 必在直线AC 上. 【详解】解:∵EF 在面ABC 内,而GH 在面ADC 内, 且EF 和GH 能相交于点P , ∴P 在面ABC 和面ADC 的交线上, ∵AC 是两平面的交线, 所以点P 必在直线AC 上. 故选:A .【点睛】本题考查平面的基本性质及其推论,是基础题.解题时要认真审题,仔细解答. 7.平面α平面l β=,点A α∈,点B β∈,且B l ∉,点C α∈,又ACl R =,过A 、B 、C 三点确定的平面为γ,则βγ⋂是( )A .直线CRB .直线BRC .直线ABD .直线BC【答案】B 【分析】确定平面β、γ的公共点,利用公理可得出平面β与γ的交线. 【详解】 如下图所示:由题意可知,AC γ⊂,AC l R =,则R γ∈,又平面α平面l β=,则l α⊂,l β⊂,AC l R =,R β∴∈,B β∈,B γ∈,因此,βγ⋂=直线BR .故选:B. 【点睛】本题考查两平面交线的确定,关键是确定两平面的公共点,属于基础题.8.设l ,m 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A .若l m ⊥,m α⊂,则l α⊥ B .若//l α,m α⊂,则//l m C .若//αβ,m β⊄,//m α,则//m β D .若//l α,//m α,则//l m【答案】C 【分析】由线面垂直的判定定理可判断A ,由线面平行的性质定理可判断B ,由面面平行的性质定理可判断C ,由线面平行的性质定理可判断D. 【详解】解:对于A ,由线面垂直的判定定理可知当直线l 垂直平面α内的两条相交直线时,l α⊥才成立,所以A 不正确;对于B ,若//l α,m α⊂,则//l m 或l ,m 异面,所以B 不正确; 对于C ,由面面平行的性质定理可知是正确的,对于D ,若//l α,//m α,则l ,m 有可能相交、平行或异面,所以D 不正确, 故选:C 【点睛】此题考查了线线、线面和面面的位置关系,考查平行和垂直的判定和性质,考查空间想象能力和推理能力,属于基础题.9. 下列命题中,正确的是 ( )A .经过正方体任意两条面对角线,有且只有一个平面B .经过正方体任意两条体对角线,有且只有一个平面C .经过正方体任意两条棱,有且只有一个平面D .经过正方体任意一条体对角线与任意一条面对角线,有且只有一个平面 【答案】B 【解析】因为正方体的四条体对角线相交于同一点(正方体的中心),因此经过正方体任意两条体对角线,有且只有一个平面,故选B .点睛:确定平面方法: 过不在一条直线上的三点,有且只有一个平面;经过一条直线和这条直线外一点有且只有一个平面;经过两条相交直线有且只有一个平面;经过两条平行直线有且只有一个平面.10.设α,β表示平面,l 表示直线,A ,B ,C 表示三个不同的点,给出下列命题:①若∈A l ,A α∈,B l ∈,B α∈,则l α⊂;②若A α∈,A β∈,B α∈,B β∈,则AB αβ=;③若l α⊄,∈A l ,则A α;④若,,A B C α∈,,,A B C β∈,则α与β重合.其中,正确的有( ) A .1个 B .2个C .3个D .4个【答案】B 【分析】根据平面的基本性质及推论进行判断. 【详解】若∈A l ,A α∈,B l ∈,B α∈,根据公里1,得l α⊂,①正确;若A α∈,A β∈,B α∈,B β∈,则直线AB 既在平面α内,又在平面β内, 所以AB αβ=,②正确;若l α⊄,则直线l 可能与平面α相交于点A ,所以∈A l 时, A α∈,③不正确; 若,,A B C α∈,,,A B C β∈,当,,A B C 共线时,α与β可能不重合,④不正确; 故选:B. 【点睛】本题主要考查平面的性质,明确平面的基本性质及推论是求解的关键,侧重考查直观想象的核心素养.11.平面α的一条斜线AP 交平面α于P 点,过定点A 的直线l 与AP 垂直,且交平面α于M 点,则M 点的轨迹是( ).A .一条直线B .一个圆C .两条平行直线D .两个同心圆【答案】A 【分析】由过定点A 的直线l 与AP 垂直可知,直线l 绕点A 旋转形成一个平面,由此可知两平面的交线即为所求.【详解】解:如图,设直线l与l'是其中两条任意的直线,⊥,则这两条相交直线确定一个平面β,且斜线APβ由过平面外一点有且只有一个平面与已知直线垂直可知,过定点定点A且与AP垂直的直线都在平面β内,∴M点都在平面α与平面β的交线上,故选:A.【点睛】本题主要考查空间中点、线、面的位置关系,考查空间想象能力,属于基础题.12.和直线l都平行的直线,a b的位置关系是()A.相交B.异面C.平行D.平行、相交或异面【答案】C【分析】直接利用平行公理,即可得到答案.【详解】由平行公理,可知平行与同一直线的两直线是平行的,所以和直线l都平行的直线,a b的位置关系是平行,故选C.【点睛】本题考查两直线的位置关系的判断,考查空间中线线、线面、面面间的位置关系,考查运算求解能力,考查数形结合思想,是中档题.二、填空题13.如图,已知正方体1111ABCD A B C D -的棱长为a ,则异面直线1BC 与AC 所成的角为_____.【答案】60︒ 【解析】11//BC AD ∴ 异面直线1BC 与AC 所成的角为0160CAD ∠=14.已知l ,m 是两条不同的直线,α,β是两个不同的平面,给出下列四个论断:①//l m ,②//αβ,③m α⊥,④l β⊥.以其中的两个论断作为命题的条件,l α⊥作为命题的结论,写出一个真命题:______.【答案】若//l m ,m α⊥,则l α⊥ 【分析】若//l m ,m α⊥,则l α⊥,运用线面垂直的性质和判定定理,即可得到结论. 【详解】解:l ,m 是两条不同的直线,α,β是两个不同的平面, 可得若//l m ,m α⊥,则l α⊥, 理由:在α内取两条相交直线a ,b , 由m α⊥可得m a ⊥.m b ⊥, 又//l m ,可得l a ⊥.l b ⊥,而a ,b 为α内的两条相交直线,可得l α⊥. 故答案为:若//l m ,m α⊥,则l α⊥ 【点睛】此题考查线面垂直的判定定理和性质定理的应用,考查推理能力,属于基础题15.如图,在正方体1111ABCD A B C D -中,E ,F 依次是11A D 和11B C 的中点,则异面直线AE 与CF 所成角的余弦值为__.【答案】35【分析】连AE 、BF 、EF ,利用平行四边形可得//BF AE ,可得BFC ∠是异面直线AE 与CF 所成角(或所成角的补角),然后用余弦定理可得结果. 【详解】在正方体1111ABCD A B C D -中,连AE 、BF 、EF ,E ,F 依次是11A D 和11B C 的中点,所以11//A E B F 且11A E B F =,所以四边形11A B FE 为平行四边形, 所以11//EF A B 且11EF A B =,又11//A B AB 且11A B AB =, 所以//EF AB 且EF AB =,所以四边形ABFE 为平行四边形,//BF AE ∴,BFC ∴∠是异面直线AE 与CF 所成角(或所成角的补角), 设正方体1111ABCD A B C D -的棱长为2,则415BF CF ==+3cos5BFC∴∠==.∴异面直线AE与CF所成角的余弦值为35.故答案为:35.【点睛】本题考查了求异面直线所成的角,考查了余弦定理,属于基础题.16.在长方体1111ABCD A B C D-中,11AA AD==,2AB=,则直线AC与1A D所成的角的大小等于__________.【答案】arccos10【分析】连接11,B A B C,可得直线AC与1A D所成的角为1B CA∠,利用余弦定理求1cos B CA∠即可.【详解】解:如图,连接11,B A B C,由长方体的结构特点可知11//B C A D,则直线AC与1A D所成的角为1B CA∠(或其补角),因为11B A BC AC======,在1B CA中,2221111cos210BC AC ABB CABC AC+-∠===⋅,1arccos10B CA∴∠=.故答案为:arccos10.【点睛】本题考查异面直线所成的角,关键是要通过平移找到异面直线所成的角的平面角,是基础题.三、解答题17.如图,在正方体1111ABCD A B C D -中,E ,F ,1E ,1F 分别为棱AD ,AB ,11B C ,11C D 的中点.求证:111EA F E CF ∠=∠.【答案】见解析 【分析】根据空间中两个角的两边平行时,角的关系可知两个角相等或互补. 结合空间中平行线的传递性及当两个角的方向相同时,即可证明两个角相等. 【详解】证明:如图,在正方体1111ABCD A B C D -中,取11A B 的中点M ,连接名BM ,1F M由题意得112BF A M AB ==又1BF M A ∥∴四边形1A FBM 为平行四边形 ∴1A F BM ∥又1F ,M 分别为11C D ,11A B 的中点,则111F M C B =∥而11C B BC =∥∴1F M BC =∥∴四边形1F MBC 为平行四边形 ∴1BM F C ∥ 又1BM A F ∥ ∴11A F F C ∥ 同理可得11A ECE∴1EA F ∠与11E CF ∠的两边分别平行,且方向都相反 ∴111EA F E CF ∠=∠. 【点睛】本题考查了直线与直线平行的证明,空间中角的两边分别平行时两个角的关系,属于基础题. 18.(不写做法)(1)如图,直角梯形ABCD 中,//AB CD ,AB CD >,S 是直角梯形ABCD 所在平面外一点,画出平面SBD 和平面SAC 的交线.(2)如图所示,在正方体1111ABCD A B C D -中,试画出平面11AB D 与平面11ACC A 的交线.【答案】(1)见解析(2)见解析 【分析】(1)延长BD 和AC 交于点O ,再连接SO ,即得到交线; (2)先记11B D 与11A C 的交点为O ,连接AO ,即可得出交线. 【详解】(1)(延长BD 和AC 交于点O ,连接SO ,SO 即为平面SBD 和平面SAC 的交线),如图:(2)(记11B D 与11A C 的交点为O ,连接AO ,则AO 即为平面11AB D 与平面11ACC A 的交线),如图:【点睛】本题主要考查画出平面与平面的交线,考查空间想象能力,属于基础题型. 19.如图,已知正方体ABCD -A ′B ′C ′D .(1)哪些棱所在直线与直线BA′是异面直线?(2)直线BA′和CC′的夹角是多少?(3)哪些棱所在的直线与直线AA′垂直?【答案】(1)棱AD、DC、CC′、DD′、D′C′、B′C′(2)45°(3)AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′【分析】(1)根据异面直线的定义判断即可;(2)∠B′BA′为异面直线BA′与CC′的夹角,进而可得直线BA′和CC′的夹角;(3)根据正方体的性质即可判断.【详解】(1)由异面直线的定义可知,棱AD、DC、CC′、DD′、D′C′、B′C′所在直线分别与直线BA′是异面直线;(2)由BB′∥CC′可知,∠B′BA′为异面直线BA′与CC′的夹角,∠B′BA′=45°,所以直线BA′和CC′的夹角为45°;(3)直线AB、BC、CD、DA、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直.【点睛】本题考查异面直线的定义,考查线线角的求解,考查线线垂直的判断,是基础题.VB VC的中点,求异20.如图,AB是圆O的直径,点C是弧AB的中点,,D E分别是,面直线DE与AB所成的角.【答案】45︒ 【分析】根据题意,直径所对圆周角是直角,BC AC ∴⊥,又知点C 是弧AB 的中点,则等腰直角三角形,再根据中位线平行,找到异面直线所成角的平面角,即可求解. 【详解】AB 是圆O 的直径,BC AC ∴⊥.∵点C 是弧AB 的中点,,45BC AC ABC ∴=∴∠=︒. 在VBC △中,,D E 分别为,VB VC 的中点,DE BC ∴∥,DE ∴与AB 所成的角为45ABC ∠=︒.故答案为:45︒ 【点睛】本题考查异面直线所成角问题,考查转化与化归思想,属于基础题.21.如图1所示,在梯形ABCD 中,//AB CD ,E ,F 分别为BC ,AD 的中点,将平面CDFE 沿EF 翻折起来,使CD 到达C D ''的位置(如图2),G ,H 分别为AD ',BC '的中点,求证:四边形EFGHEFGH 为平行四边形.图1 图2【答案】证明见详解.【分析】通过证明EF //GH ,且EF =GF ,即可证明. 【详解】在题图1中,∵四边形ABCD 为梯形,//AB CD ,E F ,分别为BC AD ,的中点,∴//EF AB 且()12EF AB CD =+. 在题图2中,易知////C D EF AB ''. ∵,G H 分别为AD ',BC '的中点, ∴//GH AB 且()()1122GH AB C D AB CD ''=+=+, ∴//GH EF ,GH EF =,∴四边形EFGH 为平行四边形.即证. 【点睛】本题考查通过线线平行证明平行四边形,主要借助几何关系进行证明.22.如图所示,已知,E F 分别是正方体1111ABCD A B C D -的棱11,AA CC 的中点,求证:四边形1BED F 是平行四边形.【答案】见解析 【分析】取1D D 的中点G ,连接,EG GC ,证明四边形EGCB 是平行四边形,再证四边形1D GCF 为平行四边形,即可证明四边形1BED F 是平行四边形. 【详解】证明 取1D D 的中点G ,连接,EG GC .∵E 是1A A 的中点,G 是1D D 的中点,//EG AD ∴. 由正方体的性质知//AD BC ,//EG BC ∴, ∴四边形EGCB 是平行四边形,//EB GC ∴. 又,G F 分别是1D D ,1C C 的中点,1//D G FC ∴,且1D G FC =,∴四边形1D GCF 为平行四边形,1//D F GC ∴, 1//EB D F ∴,∴四边形1BED F 是平行四边形. 【点睛】本题考查了线线平行的判定,利用平行四边形的对边平行且相等证明线线平行,是基础题.。
高中数学几何证明相关定理公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。
(1)判定直线在平面内的依据(2)判定点在平面内的方法公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线(1)判定两个平面相交的依据(2)判定若干个点在两个相交平面的交线上公理3:经过不在一条直线上的三点,有且只有一个平面。
(1)确定一个平面的依据(2)判定若干个点共面的依据推论1:经过一条直线和这条直线外一点,有且仅有一个平面。
(1)判定若干条直线共面的依据(2)判断若干个平面重合的依据(3)判断几何图形是平面图形的依据推论2:经过两条相交直线,有且仅有一个平面。
推论3:经过两条平行线,有且仅有一个平面。
立体几何直线与平面空间二直线平行直线公理4:平行于同一直线的两条直线互相平行等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。
异面直线空间直线和平面位置关系(1)直线在平面内——有无数个公共点(2)直线和平面相交——有且只有一个公共点(3)直线和平面平行——没有公共点立体几何直线与平面直线与平面所成的角(1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角(2)一条直线垂直于平面,定义这直线与平面所成的角是直角(3)一条直线和平面平行,或在平面内,定义它和平面所成的角是00的角三垂线定理在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直三垂线逆定理在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直空间两个平面两个平面平行判定性质(1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行(2)垂直于同一直线的两个平面平行(1)两个平面平行,其中一个平面内的直线必平行于另一个平面(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行(3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面相交的两平面二面角:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角平面角是直角的二面角叫做直二面角两平面垂直判定性质如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直(1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面(2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内立体几何多面体、棱柱、棱锥多面体定义由若干个多边形所围成的几何体叫做多面体。
高一数学必修空间几何部分公式定理大全TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-必修2空间几何部分公式定理总结棱柱、棱锥、棱台的表面积设圆柱的底面半径为,母线长为,则它的表面积等于圆柱的侧面积(矩形)加上底面积(两个圆),即.设圆锥的底面半径为,母线长为,则它的表面积等于圆锥的侧面积(扇形)加上底面积(圆形),即.设圆台的上、下底面半径分别为,,母线长为,则它的表面积等上、下底面的面积(大、小圆)加上侧面的面积(扇环),即.柱、锥、台的体积公式柱体体积公式为:,(为底面积,为高)锥体体积公式为:,(为底面积,为高)台体体积公式为:(,分别为上、下底面面积,为高)球的体积和表面积球的体积公式球的表面积公式其中,为球的半径.显然,球的体积和表面积的大小只与半径有关.公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2 过不在一条直线上的三点,有且只有一个平面.推论1 经过一条直线和直线外一点有且只有一个平面.推论2 经过两条相交的直线有且只有一个平面.推论3 经过两条平行的直线有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4 (平行公理)平行于同一条直线的两条直线互相平行.定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.不同在任何一个平面内的两条直线叫做异面直线.空间两条直线的位置关系有且只有三种:共面直线:相交直线(在同一平面内,有且只有一个公共点);平行直线(在同一平面内,没有公共点);异面直线:不同在任何一个平面内且没有公共点.空间中直线与平面位置关系有且只有三种:直线在平面内——有无数个公共点直线与平面相交——有且只有一个公共点直线与平面平行——没有公共点直线与平面相交或平行的情况统称为直线在平面外.两个平面的位置关系只有两种:两个平面平行——没有公共点两个平面相交——有一条公共直线异面直线所成的角已知两条异面直线,经过空间任一点作直线∥,∥,把与所成的锐角(或直角)叫做异面直线所成的角(夹角).如果两条异面直线所成的角是直角,就说这两条直线互相垂直,记作.异面直线的判定定理过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.直线与平面平行的判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.直线与平面平行的性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线都与该直线平行.两个平面平行的判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.推论:一个平面内两条相交的直线分别平行于另一个平面内的两条直线,则这两个平面平行.两个平面平行的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行.两个平面平行,还有如下推论:⑴如果两个平面平行,则一个平面内的任何直线都平行于另外一个平面;⑵夹在两个平行平面内的所有平行线段的长度都相等;⑶如果一条直线垂直于两个平行平面中的一个,那么这条直线也垂直于另一个平面.⑷如果一条直线和两个平行平面中的一个相交,那么它和另一个也相交.直线和平面垂直的概念如果直线与平面内的任意一条直线都垂直,就说直线与平面互相垂直,记做. 叫做垂线,叫垂面,它们的交点叫垂足.直线和平面垂直的判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.直线与平面所成的角如图,直线和平面相交但不垂直,叫做平面的斜线,和平面的交点叫斜足;,叫做斜线在平面上的射影.平面的一条斜线和它在平面上的射影所成的锐角,叫这条直线和平面所成的角.直线垂直于平面,则它们所成的角是直角;直线和平面平行或在平面内,则它们所成的角是°角.两个平面垂直的判定定理一个平面过另一个平面的垂线,则这两个平面垂直.从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面.在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线,则射线和构成的叫做二面角的平面角.平面角是直角的二面角叫直二面角.判断两平面垂直的方法:判定定理;求出二面角的平面角为直角.三垂线定理:平面内的一条直线,如果和平面的一条斜线的射影垂直,那么它也和这条斜线垂直.如图:在平面内的直线若垂直于直线,则就一定垂直于平面的斜线.直线与平面垂直的性质定理垂直于同一个平面的两条直线平行.平面与平面垂直的性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.两个平面垂直的性质还有:⑴如果两个平面互相垂直,那么经过一个平面内一点且垂直于另外一个平面的直线,必在这个平面内;⑵如果两个相交平面都垂直于另一个平面,那么这两个平面的交线垂直于这个平面;⑶三个两两垂直的平面,它们的交线也两两垂直.空间平行和垂直关系的转化。
几何要想取得好成绩,几何公式一定要烂熟于胸。
几何公式是做好几何题的根基,因此同学们一定要在几何公式上多下功夫。
本文总结了初中几何公式140条。
初中几何公式:线1过两点有且只有一条直线2 两点之间线段最短3同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行初中几何公式:角9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14两直线平行,同旁内角互补初中几何公式:三角形15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等24推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合初中几何公式:等腰三角形30 等腰三角形的性质定理等腰三角形的两个底角相等31推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形初中几何公式:矩形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形初中几何公式:正方形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式:等腰梯形74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形初中几何公式:等分78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3 三边对应成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2146内公切线长= d-(R-r)外公切线长= d-(R+r)。
初中数学公理知识点总结数学公理是数学的基础,是数学体系的起点。
公理是自明的真理或者根据大家普遍的共识而得到承认的。
在数学中,公理是没有证明的,只有公理可以得到证明,而公理的真假只能通过实际的运用经验去判断。
因此数学公理就是基于数学的自然法则得出的一些基础原理。
下面我们来总结一下初中数学中的一些重要的公理知识点。
一、点、线、面的公理1. 点的公理点是几何学的最基本的概念,点是没有长度、宽度和高度的,只有位置的概念,点是几何学的基本元素。
点的公理表述了点的基本性质和概念。
点的公理是指没有部分,点就是点。
点在几何学中是一个没有延伸的,没有宽度和高度的对象。
点是线、面的起源,我们用点来构成线段、直线、射线等,因此点是所有几何对象的基础。
2. 线的公理线是一条没有宽度的直线,线的公理指出了线的基本性质和概念。
直线是一条无限延伸的线段,线段两端都是有限的,而直线是无限的。
线的公理规定了直线是无限的,既没有宽度也没有长度。
线的公理也规定了两个点确定一条线,因此线是通过两个点来确定的。
3. 面的公理在几何学中,面是一个没有厚度的平面,面的公理规定了面的基本性质和概念。
面的公理规定了一些平面中最基本的性质,例如平面上的任意三个点不共线,在同一平面内,通过一点可以向任意方向引出一条直线等。
二、射线公理射线是从一个起点向一个方向无限延伸的线段。
射线公理规定了射线的基本性质和概念。
射线的公理规定了射线有无限延伸性质,一条射线可以由一个起点向无限远处的一个方向无限延伸。
射线公理还规定了射线也是无限长的,在某一个方向上是无限长的。
三、集合的公理集合是数学中一个基本的概念,集合的公理规定了集合的基本性质和概念。
集合的三大公理为外延公理、概括公理和选择公理。
1. 外延公理外延公理规定了集合的相等性的概念,如果两个集合包含的元素是一样的,那么这两个集合是相等的。
也就是说集合的性质完全由其元素所决定。
2. 概括公理概括公理规定了通过一些特定的条件来确定一个集合,也就是说我们可以通过一些条件来确定满足这些条件的元素所构成的集合。
平面几何定理公理总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII 平面几何定理公理总结 一、 线与角 1. 两点之间,线段最短。线段的长叫两点间的距离。 2. 直线外一点到直线,垂线段最短,垂线段的长叫该点到直线的距离。 3. 一组平行线中,一条直线上一点到另一条直线的距离,叫两条平行线间的距离。 4. 经过两点有且只有一条直线,即两点确定一条直线。 5. 不在同一直线上的三点确定一个角。 6. 两直线相交,对顶角相等。 7. 同角(或等角)的余角相等;同角(或等角)的补角相等。 8. 经过直线外一点,有且只有一条直线与已知直线平行。 9. 经过直线外或直线上一点,有且只有一条直线与已知直线垂直。 10. 如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补。 11. 如果一个角的两边分别垂直于另一个角的两边,那么这两个角相等或互补。 12. 平行线 (1) 平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 (2) 平行线的判定方法: (3) ①两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。 (4) ②两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。 (5) ③如果两条直线都和第三条直线平行,那么这两条直线平行。 (6) ④如果两条直线都和第三条直线垂直,那么这两条直线平行。 (7) 平行线的性质: (8) ①两条平行线被第三条直线所截,同位角相等。 (9) ②两条平行线被第三条直线所截,内错角相等。 (10) ③两条平行线被第三条直线所截,同旁内角互补。 (11) ④如果一条直线和两条平行线中的一条平行,那么这条直线也和另一条平行。 (12) ⑤如果一条直线和两条平行线中的一条垂直,那么这条直线也和另一条垂直。 (13) ⑥平行线间的距离处处相等;夹在两条平行线间的平行线段相等。 13. 平行线等分线段定理: (1) 定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。 (2) 推论1:经过三角形一边的中点,且与另一边平行的直线必等分第三边。 (3) 推论2:经过梯形一腰的中点,且与底边平行的直线必等分另一腰。 14. 平行线分线段成比例定理: (1) 定理:三条平行线截两条直线,所得的对应线段成比例。 (2) 推论:平行于三角形一边的直线截其它两边(或两边的延长线)成比例。 15. 线段的垂直平分线: (1) 性质:线段垂直平分线上的点和这条线段两个端点的距离相等。 (2) 判定:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 16. 角平分线: (1) 性质:在角的平分线上的点到这个角的两边的距离相等。 (2) 判定:在角的内部,且到此角的两边的距离相等的点,在这个角的平分线上。
二、 三角形及多边形 1. 三角形的任何两边的和大于第三边,任何两边的差小于第三边。 2. 三角形内角和定理:三角形三个内角的和等于180°。 3. 四边形内角和定理:四边形内角和等于360°。 4. 多边形内角和定理:n边形的内角和等于(n-2)×180°。 5. 多边形外角和定理:任意多边形的外角和等于360°。 6. 三角形外角性质: (1) 三角形的一个外角等于和它不相邻的两个内角的和。 (2) 三角形的一个外角大于任何一个和它不相邻的内角。 7. 三角形中位线定理:三角形两边中点的连线叫做三角形的中位线。三角形的中位线平行于第三边,并且等于第三边的一半。 8. 等腰三角形的相关公理、定理: (1) 等腰三角形的两个底角相等(“等边对等角”)。 (2) 如果一个三角形有两个角相等,那么这两个角所对的边也相等(“等角对等边”)。 (3) 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合(“三线合一”)。 9. 等边三角形的公理、定理: (1) 三个边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形。 (2) 有一个角为60°的等腰三角形是等边三角形;有两个角为60°的三角形是等边三角形 (3) 等边三角形的三边相等;等边三角形的三角相等,且都等于60°。 (4) 等边三角形三条角平分线、三条中线、三条高均交于同一点,该点是等边三角形的中心。 10. 直角三角形的公理、定理: (1) 直角三角形的两锐角互余。 (2) 直角三角形斜边上的中线等于斜边的一半;(斜边是其外接圆直径,斜边上的中点是其外接圆圆心)。 (3) 若三角形一边的中线等于这边的一半,那此三角形为直角三角形。 (4) 直角三角形中,30°锐角所对的直角边等于斜边的一半; (5) 直角三角形中,如果一条直角边等于斜边的一半,那它所对的角等于30°。 (6) 勾股定理:直角三角形两直角边的平方和等于斜边的平方。 (7) 勾股定理的逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形。
11. 三角形全等: (1) 性质:全等三角形的对应边相等、对应角相等。 (2) 判定: (3) ①有三边对应相等的两个三角形全等(SSS); (4) ②两边及其夹角对应相等的两个三角形全等(SAS); (5) ③两角及其夹边对应相等的两个三角形全等(ASA); (6) ④两角和其中一角的对边对应相等的两个三角形全等(AAS); (7) ⑤直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等(HL)。 12. 相似三角形的判定: (1) 定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。相似三角形对应边的比例叫做相似比(或相似系数)。 (2) 预备定理:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形于原三角形相似。 (3) 判定: (4) ①两角对应相等,两三角形相似。 (5) ②两边对应成比例且夹角相等,两三角形相似。 (6) ③三边对应成比例,两三角形相似。 (7) 引理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。 (8) 直角三角形相似的判定: (9) ①如果两个直角三角形有一个锐角对应相等,两三角形相似。 (10) ②如果两个直角三角形的两条直角边对应成比例,那么两三角形相似。 (11) ③如果两个直角三角形的斜边和一条直角边于另一个三角形的斜边和一条直角边成比例,那么两三角形相似。 13. 相似三角形的性质定理: (1) 相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。 (2) 相似三角形周长的比等于相似比。 (3) 相似三角形面积比等于相似比的平方。 (4) 相似三角形的外接圆、内切圆的直径比、周长比等于相似比,外接圆、内切圆的面积比等于相似比的平方。 14. 直角三角形的射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它在斜边上的射影于斜边的比例中项。 15. 也可表述为:直角三角形的直角顶点,到斜边端点和斜边上高的垂足三点中其中一点的距离(线段),是该点到其它两点的距离(线段)的比例中项。
16. 三角形垂直平分线的性质:三角形三条边的垂直平分线相交于一点,且这点到三个顶点距离相等,这点为三角形外接圆的圆心(简称“外心”)。 17. 三角形角平分线的性质:三角形三条角平分线相交于一点,且这点到三边距离相等,这点为三角形内切圆的圆心(简称“内心”)。 18. 三角形中线的性质:三角形的三条中线交于一点,该点叫做三角形的重心。 19. 三角形高的性质:三角形的三条高交于一点,该点叫做三角形的垂心。
三、 多边形 20. 四边形内角和定理:四边形内角和等于360°。 21. 多边形内角和定理:n边形的内角和等于(n-2)×180°。 22. 多边形外角和定理:任意多边形的外角和等于360°。 23. 如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分。
四、 特殊四边形 1. 平行四边形的性质: (1) 平行四边形的对角相等。 (2) 平行四边形的对边相等。 (3) 平行四边形的对角线互相平分。 2. 平行四边形的判定: (1) 两组对边分别相等的四边形是平行四边形。 (2) 两组对边分别平行的四边形是平行四边形。 (3) 一组对边平行且相等的四边形是平行四边形。 (4) 两组对角分别相等的四边形是平行四边形。 (5) 两组邻角分别互补的四边形是平行四边形。 (6) 对角线互相平分的四边形是平行四边形。 3. 矩形的性质: (1) 矩形的四个角都是直角。 (2) 矩形的对角线相等。
4. 矩形的判定: (1) 有三个角是直角的四边形是矩形。 (2) 对角线相等且互相平分的四边形是矩形。 (3) 有一个角是直角的平行四边形是矩形。 (4) 对角线相等的平行四边形是矩形。 5. 菱形的性质: (1) 菱形的四条边相等。 (2) 菱形的对角线互相垂直,并且每一组对角线平分一组对角。 6. 菱形的判定: (1) 四边都相等的四边形是菱形。 (2) 对角线互相垂直平分的四边形是菱形。 (3) 邻边相等的平行四边形是菱形。 (4) 对角线互相垂直的平行四边形是菱形; (5) 两条对角线分别平分两组对角的四边形是菱形。 (6) 有一条对角线平分一个内角的平行四边形是菱形。 7. 正方形的性质: (1) 正方形的四个角都是直角,四条边都相等 (2) 邻边相等且垂直的是正方形;对角线垂直且相等的平 (3) 正方形的两条对角线相等,且互相垂直平分,每条对角线平分一组对角。
8. 正方形的判定: (1) 邻边相等的矩形是正方形。 (2) 对角线互相垂直的矩形是正方形。 (3) 有一个角是直角的菱形是正方形; (4) 对角线相等的菱形是正方形。 (5) 邻边相等且垂直的是平行四边形正方形。 (6) 对角线垂直且相等的平行四边形是正方形。 (7) 对角线互相垂直平分且相等的四边形是正方形。
9. 等腰梯形的性质: (1) 等腰梯形在同一底上的两个角相等; (2) 等腰梯形的两对角线相等; 10. 等腰梯形的判定: (1) 在同一底上的两个角相等的梯形是等腰梯形; (2) 对角线相等的梯形是等腰梯形。
11. 梯形的中位线定理:梯形两腰中点的连线叫做梯形的中位线。梯形的中位线平行于梯形的两底边,并且等于两底和的一半。
五、 圆 1. 在同一平面内,到定点的距离等于定长的点的轨迹(集合),是以定点为圆心,定长为半径的圆。 2. 不在同一条直线上的三个点确定一个圆。