工程力学练习册答案
- 格式:doc
- 大小:2.81 MB
- 文档页数:22
工程力学课后习题答案单辉祖著工程力学课后习题答案(单辉祖著)在学习工程力学这门课程时,课后习题的练习与答案的参考对于巩固知识、加深理解起着至关重要的作用。
单辉祖所著的《工程力学》一书,以其严谨的逻辑和丰富的内容,成为众多学子学习工程力学的重要教材。
下面,我们将为您详细呈现这本教材的课后习题答案。
首先,让我们来谈谈第一章的习题。
在这部分中,主要涉及到静力学的基本概念和受力分析。
例如,有一道题是关于一个简单的支架结构,要求画出其受力图。
对于这道题,我们需要明确各个构件之间的连接方式,判断是固定铰支座、活动铰支座还是其他约束类型,然后根据力的平衡条件,准确地画出每个构件所受到的力。
答案中,我们清晰地标注了各个力的大小、方向和作用点,并且通过合理的布局,使受力图易于理解。
第二章的习题重点围绕平面汇交力系和平面力偶系展开。
其中,有一道计算题要求计算多个力在某一点的合力。
在解答这道题时,我们首先将每个力分解为水平和垂直方向的分力,然后分别计算水平和垂直方向上的合力,最后通过勾股定理求出总的合力大小和方向。
答案的给出过程中,每一步的计算都有详细的说明,让学习者能够清晰地看到解题的思路和方法。
第三章的内容是平面任意力系。
这一章的习题难度有所增加,涉及到力系的简化、平衡方程的应用等。
比如,有一道题是求解一个复杂结构在给定载荷下的支座反力。
解题时,我们先对力系进行简化,找到主矢和主矩,然后根据平衡方程列出方程组,通过求解方程组得到支座反力的大小和方向。
答案中不仅给出了最终的结果,还展示了求解方程组的具体步骤和计算过程,方便学习者对照检查自己的解题过程。
第四章是空间力系。
这部分的习题对于空间想象力和数学运算能力有一定的要求。
例如,有一道题要求计算空间力在坐标轴上的投影以及对某点的矩。
在解答时,我们需要运用空间直角坐标系的知识,通过三角函数等方法求出投影的大小,再根据矩的定义计算出对某点的矩。
答案中会详细说明投影和矩的计算过程,并且配以适当的图示,帮助学习者更好地理解空间力系的概念。
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体 A ,构件 AB , BC 或 ABC 的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a(b(c(d(e(f(g1-2 试画出图示各题中 AC 杆(带销钉和 BC 杆的受力图(a (b (c(a1-3 画出图中指定物体的受力图。
所有摩擦均不计, 各物自重除图中已画出的外均不计。
(a(b(c(d(e(f(g第二章平面力系2-1 电动机重 P=5000N ,放在水平梁 AC 的中央,如图所示。
梁的 A 端以铰链固定, 另一端以撑杆 BC 支持, 撑杆与水平梁的夹角为 30 0。
如忽略撑杆与梁的重量, 求绞支座 A 、 B 处的约束反力。
题 2-1图∑∑=︒+︒==︒-︒=P F F F F F FB A y A B x 30sin 30sin , 0030cos 30cos , 0解得 : N P F F B A 5000=== 2-2 物体重 P=20kN ,用绳子挂在支架的滑轮 B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计, A 、 B 、 C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆 AB 和支杆BC 所受的力。
题 2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin , 0030sin 30cos , 0P P F F P F F FBC y BC AB x解得 :P F P F BC AB 732. 2732. 3=-=2-3 如图所示,输电线 ACB 架在两电线杆之间,形成一下垂线,下垂距离 CD =f =1m , 两电线杆间距离 AB =40m。
电线 ACB 段重 P=400N ,可近视认为沿 AB 直线均匀分布,求电线的中点和两端的拉力。
题 2-3图以 AC 段电线为研究对象,三力汇交NF NF F F F F F FC A GA y C A x 200020110/1tan sin , 0, cos , 0=======∑∑解得:ααα2-4 图示为一拔桩装置。
工程力学练习册第2版答案工程力学是研究物体在外力作用下的运动规律和内部应力分布的科学。
本练习册旨在帮助学生更好地理解和掌握工程力学的基本概念、原理和计算方法。
以下是《工程力学练习册第2版》的部分习题及答案。
习题一:静力学基础1. 某物体受到三个共点力的作用,分别为F1=200N,F2=300N,F3=100N。
若F1和F2的夹角为120°,求这三个力的合力大小。
答案:首先,根据矢量合成法则,我们可以使用余弦定理计算合力的大小: \[ F_{合} = \sqrt{F1^2 + F2^2 + 2 \cdot F1 \cdot F2 \cdot\cos(120°)} \]\[ F_{合} = \sqrt{200^2 + 300^2 + 2 \cdot 200 \cdot 300\cdot (-0.5)} \]\[ F_{合} = \sqrt{40000 + 90000 - 60000} \]\[ F_{合} = \sqrt{70000} \approx 264.58N \]2. 一个物体在水平面上,受到一个斜向上的拉力F=150N,与水平方向夹角为30°。
求物体受到的支持力和摩擦力的大小。
答案:将拉力分解为水平和垂直分量:\[ F_{水平} = F \cdot \cos(30°) = 150 \cdot 0.866 \approx 129.9N \]\[ F_{垂直} = F \cdot \sin(30°) = 150 \cdot 0.5 = 75N \] 物体在水平面上,支持力等于垂直向上的力,即:\[ N = F_{垂直} = 75N \]摩擦力的大小由水平力决定:\[ f = \mu \cdot N \]其中μ为摩擦系数,由于题目未给出,我们无法计算具体数值。
习题二:材料力学1. 一根直径为d=20mm,长度为L=2m的圆杆,在一端受到一个拉力P=10kN。
第一章静力学基础7 【最新整理,下载后即可编辑】第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)8 第一章静力学基础(d)(e)(f)(g)第一章静力学基础71-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)8 第一章静力学基础1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)第一章静力学基础7(b)(c)(d)8 第一章静力学基础第一章静力学基础7(e)(f)8 第一章静力学基础(g)附录Ⅰ平面图形的几何性质25第二章平面力2-1 电动机重P=5000N,放在水平梁AC的中央,如图所示。
梁的A端以铰链固定,另一端以撑杆BC支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A、B处的约束反力。
题2-1图24 附录Ⅰ 平面图形的几何性质∑∑=︒+︒==︒-︒=P F F F F F FB A y A B x 30sin 30sin ,0030cos 30cos ,0解得: N P F FB A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F F P F F F BC y BC AB x解得:PFPFBCAB732.2732.3=-=2-3 如图所示,输电线ACB架在两电线杆之间,形成一下垂线,下垂距离CD=f=1m,两电线杆间距离AB=40m。
电线ACB 段重P=400N,可近视认为沿AB直线均匀分布,求电线的中点和两端的拉力。
工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系 9图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触.(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1—2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1—3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计.(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0.如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图第二章 平面力系 9所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m.电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力.题2—3图以AC 段电线为研究对象,三力汇交NF N F F F FF F F C A GA yC A x 200020110/1tan sin ,0,cos ,0=======∑∑解得:ααα2-4 图示为一拔桩装置。
第二章平面基本力系答案一、填空题(将正确答案填写在横线上)1.平面力系分为平面汇交力系、平面平行力系和平面一般力系.2.共线力系是平面汇交力系地特例.3.作用于物体上地各力作用线都在同一平面内 ,而且都汇交于一点地力系,称为平面汇交力系.4.若力FR对某刚体地作用效果与一个力系地对该刚体地作用效果相同,则称FR为该力系地合力,力系中地每个力都是FR地分力 .5.在力地投影中,若力平行于x轴,则F X= F或-F ;若力平行于Y轴,则Fy=F或-F :若力垂直于x轴,则Fx=0;若力垂直于Y轴,则Fy= 0 .6.合力在任意坐标轴上地投影,等于各分力在同一轴上投影地代数和 .7.平面汇交力系平衡地解析条件为:力系中所有力在任意两坐标轴上投影地代数和均为零 .其表达式为∑Fx=0 和∑Fy=0 ,此表达式有称为平面汇交力系地平均方程 .8.利用平面汇交力系平衡方程式解题地步骤是:(1)选定研究对象 ,并画出受力图.(2)选定适当地坐标轴 ,画在受力图上;并作出各个力地投影 .(3)列平衡方程,求解未知量.9.平面汇交力系地两个平衡方程式可解两个未知量.若求得未知力为负值,表示该力地实际指向与受力图所示方向相反 .10.在符合三力平衡条件地平衡刚体上,三力一定构成平面汇交力系 .11.用力拧紧螺丝母,其拎紧地程度不仅与力地大小有关,而且与螺丝母中心到力地作用线地距离有关.12.力矩地大小等于力和力臂地乘积,通常规定力使物体绕矩心逆时针转动时力矩为正,反之为负.力矩以符号Mo(F) 表示,O点称为距心 ,力矩地单位是N.M .13.由合力矩定力可知,平面汇交力系地合力对平面内任一点地力矩,等于力系中地各分力对于同一点力矩地代数和 .14.绕定点转动物体地平衡条件是:各力对转动中心O点地矩地代数和等于零 .用公式表示为∑Mo(Fi) =0 .15.大小相等、方向相反、作用线平行地二力组成地力系,称为力偶.力偶中二力之间地距离称为力偶臂.力偶所在平面称为力偶作用面 .16.在平面问题中,力偶对物体地作用效果,以力地大小和力偶臂地乘积来度量,这个乘积称为偶距 ,用符号M表示.17.力偶三要素是:力偶矩地大小、转向和作用面方位 .二、判断题(正确地打“√”,错误地打“×”)1.共线力系是平面汇交力系地特殊情形,但汇交点不能确定. (√)2.平面汇交力系地合力一定大于任何一个分力. (×)3.力在垂直坐标轴上地投影地绝对值与该力地正交分力大小一定相等. (√)4.力系在平面内任意一坐标轴上投影地代数和为零,则该力系一定是平衡力系. (×)5.只要正确地列出平衡方程,则无论坐标轴方向及矩心位置如何取定,未知量地最终计算结果总一致. (√)6.平面汇交力系地合力,等于各分力在互相垂直两坐标轴上投影地代数和. (×)7.力矩和力偶都是描述受力物体转动效果地物理量;力矩和力偶地含义和性质完全相同.( × )8.力对物体地转动效果用力矩来度量,其常用单位符号为N﹒m. (√)9.力矩使物体绕定点转动地效果取决于力地大小和力臂地大小两个方面. (×)10.同时改变力偶中力地大小和力偶臂长短,而不改变力偶地转向,力偶对物体地作用效果就一定不会改变. ( × ) 11.力偶矩地大小和转向决定了力偶对物体地作用效果,而与矩心地位置无关. (√)三.选择题(B )1.平面汇交力系地合力一定等于________.A.各分力地代数和B.各分力地失量和C.零(A )2.如图2—1所示地两个三角形,________是平衡力系.A.图aB.图bC.两个都不是(A )3.力使物体绕定点转动地效果用_______来度量.A.力矩B.力偶矩C.力地大小和方向(C )4.如图2—2所示中地______正确表示了力F对A点之矩Ma(F)2FL.(C )5.力偶可以用一个_______来平衡.A.力B.力矩C.力偶(C )6.力矩不为零件地条件是_______.A.作用力不等于零B.力地作用线不通过矩心C.作用力和力臂均不为零(C )7.如图2—3所示地各组力偶中,两个力偶等效地是_______.(C )8.为便于解题,力地投影坐标轴方向一般应按_______选取,且将坐标原点与汇交点重合.A. 水平或者铅垂B. 任意C. 尽量与未知力垂直或多数力平行四.简答题1.如图2—4所示地钢架,A、D两点上地力F1、F2地作用线交于B点,若在D点上加力F3,并使钢架平衡,则力F3地作用线一定通过哪一点?其指向如何?答:通过B点,由B点指向D点.因为在主动力F1地作用下,C点地运动趋势方向向上,根据三力平衡汇交定理可知F3地方向是由B点指向D点.2.如图2-5所示,刚体受两力偶(F1,F1’)和(F2,F2’)作用,其力多边形恰好闭合,刚体处于平衡状态吗?答:刚体不会平衡.因为刚体受力偶(F1,F1’)和(F2,F2’)作用产生顺时针方向转动.3.如图2-6中,半径为r地圆盘在力偶M=Fr地作用下转动,如在盘地r/2处加一力F’,且F’=2F,便可使圆盘得到平衡,说明力偶距可用一个力来平衡,对吗?答:不对.力偶距是由力F’对O点地产生地距相平衡地.4.按图2-7所示a.b两种不同地捆法(a<β)吊起同一重物,哪种捆法易断?为什么?答:a图易断.计算起吊重物地钢丝绳强度时,应考虑起吊重物上升时地加速度,因为此时钢丝绳所受地拉力最大,应加上一定地安全系数.如图所示a<120°且越小越好;当a=180时,钢丝绳受力无穷大,无法保证其工作地安全性.5.结合图2-8所示地实例说明里偶地等效性.答:力偶地等效性有:(1)只要保持力偶矩大小和转向不变,力偶可在其作用面内任意移动,而不改变其作用效应.(2)只要保持力偶距大小和转向不变,可以同时改变力偶中力地大小和力偶臂地长短,其作用效果不变.图中d1<d2,若F1×d2=F2×d1,只要F2>F1,丝锥地转动效应会保持不变.五.计算题1.如图2—9所示,已知:F1=F2=F3=F4=40N.试分别求出各力在X,Y轴上地投影.解:F1x=F1·cos30°=34.64NF1y =F1·cos30°=20NF2x=0F2y=-F2=-40NF3x=-F3=-40NF3y=0F4x=-F4·cos135°=-28.28NF4y=F4·cos45°=28.28N2.试求图2—10所示中各力在X轴和Y轴上地投影.已知F1=F2=F4=100N,F3=F5=150N,F6=200N.解:F1x=F1=100NF1y=0NF2x=0NF2y=F2=100NF3x=F3·cos30°=129.9NF3y=F3·cos60°=75NF4x=F4·cos60°=50NF4y=-F4·cos150°=-86.6NF5x=F5·cos60°=75NF5y=-F5·cos150°=-129.9NF6x=-F6·cos120°=-100NF6y=-F6·cos150°=-173.2N3.试求图2—11所示中各力分别对O点和对A点地力矩.(用代数式表示)解:Mo(F1) =F1×1=F1M A(F1) =-F1×1=-F1Mo(F2) =-F2×2=-2F2M A(F2) =-F2×4=-4F2Mo(F3) =F3×0=0M A(F3) =F3×1×sin45°=0.707F3Mo(F4) =F4×3=3F4M A(F4) =F4×4=4F4Mo(F5) =F5×1.141=1.141F5M A(F5) =-F5×1×sin45°=-0.707F54.计算图2—12所示中力F对B点地力矩.已知F=50N,la=0.6m ,a=30°.(a) M B(F) =F1·la=30N·m(b) M B (F) =F 1·la·cosa =25.98N·m5.如图2—13所示矩形板ABCD 中,AB =100mm,BC =80mm,若力F =10N,a =30°.试分别计算力F 对A 、B 、C 、D 各点地力矩.解: ()0A M F N m =⋅()sin B M F F AB α=-∙∙1101005002N mm =-⨯⨯=-⋅ ()cos sin C M F F BC F AB αα=∙∙-∙∙31108010100192.822N mm =⨯⨯-⨯⨯=⋅ ()cos 0D M F F AD α=∙∙+31080692.82N mm =⨯⨯=⋅ 6. 如图2—15所示,已知:F =100N,La =80mm,Lb =15mm .试求力F 对点A 地力矩.解:(a) ()cos30sin 30A b a M F F l F l =-∙︒∙+∙︒∙ 311001510080 2.70122N m =-⨯⨯+⨯⨯=⋅ (b )()cos 60sin 60A a b M F F l F l =∙︒∙+∙︒∙131008010015 5.29922N m =⨯⨯+⨯⨯=⋅7.如图2-15所示为拖拉机制动装置,制动时用力F踩踏板,通过拉杆CD而使拖拉机制动. 设F=100N,踏板和拉杆自重不计.求图示位置拉杆地拉力FD及铰链支座B地约束反力. 解:(1)取踏板ABC为研究对象由三力平衡定理可知:B点地约束反力FB通过汇交点O,如图所示以O点为坐标原点建立坐标系.(2)做投影Fx=-F·cos135°=-0.707F F Y=-F·cos135°=-0.707FF D x=F D F DY=0F B x=-F B·cos135°=-0.866F B F BY=F B·cos60°=0.5F B(3)列方程由ΣFix=0 : Fx+F D x+F B x=0由ΣFi Y=0 : F Y+F DY+F BY=0(4) 解方程解方程得到:F D=193.2NF B=141.2N。
五 轴向拉伸与压缩试求图示各杆横截面1-1、2-2、3-3上的轴力,并作轴一根中部对称开槽的直杆如图所示。
试求横截面1-1和2-2 解: 1.轴力由截面法可求得,杆各横截面上的轴力为 2.应力 63111111104201014----⨯⨯⨯-=-==A P A N σPa 175-=MPa ()6322222210410201014----⨯⨯-⨯-=-==A P A N σPa 350-=MPa 一桅杆起重机如图所示。
起重杆AB 的横截面是外径为18 mm 的圆环,钢丝绳CB 的横截面面积为10 mm 2。
试求起重杆和钢丝绳横截面上的应力。
解: 1.轴力取节点B 为研究对象,受力如图所示,0=∑X : 045cos 30cos =++ P N N AB BC0=∑Y : 030sin 45sin =--AB N P由此解得: 83.2-=AB N kN , 04.1=BC N kN 2.应力起重杆横截面上的应力为()622310182041083.2-⨯-⨯⨯-==πσAN AB AB Pa 4.47-=MPa 钢丝绳横截面上的应力为6310101004.1-⨯⨯==A N BC BC σPa 104=MPa 铜和钢的弹性模量分1001=GPa 和2102=E GPa 。
若杆的总伸长为126.0=l ∆ mm ,试求杆横截面上的应力和载荷P 。
解:1.横截面上的应力 由题意有由此得到杆横截面上的应力为9922111021040010100600126.0⨯+⨯=+∆=E l E l l σPa 9.15=MPa 2.载荷62610404109.15-⨯⨯⨯⨯==πσA P N 20=kN200=E GPa 。
试求杆 解:1.最大正应力由于杆各横截面上的轴力相同,故杆横截面上的最大正应力发生在BC段的任一横截面上,即80][=σMPa ,试校核立柱的强度。
解:立柱横截面上的正应力为 所以立柱满足强度条件。
第3章2-1. 已知:CD AB AC ==,kN 10P =,求A 、B 处约束反力。
解:取杆ACD 为研究对象,受力如图。
0=∑A m ,0245sin 0=⨯-⨯AC P AC F CkN P F C 28.282==∑=0xF ,045cos 0=-Ax C F F)(10←=kN F Ax∑=0yF,045sin 0=--P F F Ay C)(10↓=kN F Ay2-2. 已知力P 的作用线垂直于AB 杆,BC 杆与P 力的作用线夹角为045,杆BC 垂直于杆CD ,力Q 的作用线与CD 杆的夹角为060。
kN 1P =,求系统平衡时Q =?解:分别取节点B 、C 为研究对象,受力如图。
对于节点B :0=∑xF ,045cos 0=-BC F P对于节点C :0=∑xF,030cos 0'=-Q F BC联立上两式解得:kN P Q 362362==2-3. 图示结构中,AB 杆水平,AC 杆与AB 杆的夹角为030,杆件的自重不计,kN 10W =,求B 、C 处反力。
解:取整体为研究对象,受力如图。
0=∑yF,045cos 30sin 00=--T C F W FkN W F C 14.34)22(=+=(压)0=∑XF,045sin 30cos 00=-+T C B F F F)(43.15←-=kN F B2-4. 已知:m N 200M 1⋅=,m N 500M 2⋅=,m 0.8AB CD AC ===, 求A 、C 处支反力。
解:取杆ACD 为研究对象,受力如图。
0=∑Am,08.045sin 210=-+⨯M M F CB C F N F ==3752-5. 已知AD 杆上固接一销钉,此销钉可以在BC 杆的滑道内无摩擦地滑动,系统平衡在图示位置,BC 与AD 成045,m N 1000M 1⋅=,求2M 。
解:取杆AD 为研究对象,受力如图。
0=∑Am,045cos 10=-⨯M AC F C取杆BC 为研究对象,受力如图。
∑=0Bm ,045cos 20'=+⨯-M ACF C联立上两式解得:m N M M .200045cos 0212==2-6. cm 60AB =,滑轮半径为cm 10R =,cm 20B D C ==B ,N 1800W =,求A 处反力和CD 绳的张力。
解:取整体为研究对象,受力如图。
0=∑Am,0)10(10)20(45sin 0=+⨯-⨯++⨯AB W F AB F T CN F C 5.1909=0=∑xF,045cos 0=--T C Ax F F FN F Ax 3150= 0=∑y F ,045sin 0=--W F F C AyN F Ay 3150=2-7. m 4B D A B ==,m 6CE B C ==,求A 、B 、C 、D 处反力。
解:取杆AD 为研究对象,受力如图。
0=∑xF,041=-⨯Dx F)(4←=kN F Dx0=∑A m ,044121442=⨯-⨯⨯-⨯Dy F)(2↓=kN F Dy0=∑yF,0=-Dy A F F)(2↑=kN F A取杆AD 为研究对象,受力如图。
0∑=xF,0=-Dx Bx F F1C)(4→=kN F Bx0=∑Bm , 06221462'=⨯⨯-⨯-⨯Dx C F F )(67.8↑=kN F C0=∑yF,026267.8=+⨯-+By F)(33.1↑=kN F By2-8. 力P 作用在BC 杆的中点,求A 、B 处反力。
解:取杆BC 为研究对象,受力如图。
0=∑C m ,45cos 245cos 00=⨯-⨯BCP BC F B)(4↑=kN F B 取整体为研究对象,受力如图。
∑=0x F,0=Ax F0=∑yF,014=⨯--+P F F B Ay)(8↑=kN F Ay0=∑Am,05.11434=⨯⨯-⨯-⨯+P F M B Am kN M A .14=(逆时针)第5章 轴向拉伸和压缩2.1 求图示杆11-、22-、及33-截面上的轴力。
解:11-截面,取右段如)(a 由0=∑x F ,得 01=N F22-截面,取右段如)(b由0=∑x F ,得 P F N -=233-截面,取右段如)(c由0=∑x F ,得 03=N F2.2 图示杆件截面为正方形,边长cm a 20=,杆长m l 4=,kN P 10=,比重3/2m kN =γ。
在考虑杆本身自重时,11-和22-截面上的轴力。
解:11-截面,取右段如)(a 由0=∑xF,得21/40.08N F l a k N γ==-22-截面,取右段如)(b由0=∑xF,得4/4/4/4/)(a )(b )(c 2N 1N )(a223/410.24N F la P kN γ=+=-2.3 横截面为210cm 的钢杆如图所示,已知kN P 20=,kN Q 20=。
试作轴力图并求杆的总伸长及杆下端横截面上的正应力。
G P a E 200=钢。
解:轴力图如图。
杆的总伸长:m EA lF l N 59102001.0102001.02000022-⨯-=⨯⨯⨯-⨯==∆ 杆下端横截面上的正应力:MPa A F N 20100020000-=-==σ 2.4 两种材料组成的圆杆如图所示,已知直径mm d 40=,杆的总伸长cm l 21026.1-⨯=∆。
试求荷载P 及在P 作用下杆内的最大正应力。
(GPa E 80=铜,GPa E 200=钢)。
解:由∑=∆EAl F l N ,得)104010806.0410********.04(1026.16296294---⨯⨯⨯⨯⨯+⨯⨯⨯⨯⨯=⨯ππP 解得: kN P 7.16= 杆内的最大正应力:MPa A F N 3.13401670042=⨯⨯==πσ 2.5 在作轴向压缩试验时,在试件的某处分别安装两个杆件变形仪,其放大倍数各为1200=A k ,1000=B k ,标距长为cm s 20=,受压后变形仪的读数增量为mm n A 36-=∆,mm n B 10=∆,试求此材料的横向变形系数ν(即泊松比)。
解:纵向应变: 0015.012002036-=⨯-=∆=A A A sk n ε横向应变: 0005.010002010=⨯=∆=B B B sk n εkNkN 图NF cm cmcm泊松比为: 31=-=A B εεν 2.6 图示结构中AB 梁的变形和重量可忽略不计,杆1为钢质圆杆,直径mm d 201=,GPa E 2001=,杆2为铜质圆杆,直径mm d 252=,GPa E 1002=,试问:⑴荷载P 加在何处,才能使加力后刚梁AB 仍保持水平? ⑵若此时kN P 30=,则两杆内正应力各为多少? 解: 2/1Px F N =。
2/)2(2x P F N -=⑴要使刚梁AB 持水平,则杆1和杆2的伸长量相等,有222510041)2(2020045.1⨯⨯⨯⨯-=⨯⨯⨯⨯ππx P Px 解得:m x 9209.0=⑵ M P ad Px A F N 442029209.03000042/4/22111=⨯⨯⨯⨯===ππσ M P a d x P A F N 332520791.13000042/)2(4/22222=⨯⨯⨯⨯=-==ππσ 2.7 横截面为圆形的钢杆受轴向拉力kN P 100=,若杆的相对伸长不能超过20001,应力不得超过MPa 120,试求圆杆的直径。
GPaE 200=钢解:由强度条件][σ≤AP得 mm P d 6.32101201000004][46=⨯⨯⨯=≥πσπ 由刚度条件EAP ll =∆得mm E l Pld 7.35102002000100000449=⨯⨯⨯⨯=∆≥ππ. 则圆杆的直径mm d 36=。
2.8 由两种材料组成的变截面杆如图所示。
AB 、BC 的横截面面积分别为220cm A AB =和210cm A BC =。
若P Q 2=,钢的许用应力MPa 160][1=σ,铜的许用应力MPa 120][2=σ,试求其许用荷载][P 。
解:由钢的强度条件][σ≤AP 得kN A P 1201201000][111=⨯=≤σ 由铜的强度条件][2σ≤AP 得kN A P 1602/16020002/][222=⨯=≤σ 故许用荷载kN P 120][=2.9 结构如图所示,水平梁CD 的刚度很大,可忽略其变形,AB 为一钢杆(GPa E 200=钢),直径cm d 3=,m a 1=,试问:⑴若在AB 杆上装有杠杆变形仪,加力后其读数增量为14.3格(每格代表mm 10001),杠杆仪标距cm s 2=,试问P 为多少?⑵若AB 杆材料的许用应力MPa 160][=σ,试求结构的许用荷载P 及此时D 点的位移。
解:⑴AB 杆的内力为:P F N 2=AB 杆的应变为:41015.72010003.14-⨯=⨯=ε则 kN EA P 5.501015.724302002/42=⨯⨯⨯⨯⨯==-πε⑵ kN A P 55.5616024302/][2=⨯⨯⨯=≤πσAB 杆的应变为: 4108-⨯==EσεAB 杆的变形为: m l l 4108-⨯==∆ε D 点的位移为: m l l D 3106.122-⨯==∆=∆ε第6章 扭转3.1 图示圆轴的直径mm d 100=,cm l 50=,m kN M ⋅=71,m kN M ⋅=52,GPa G 82=, ⑴试作轴的扭矩图; ⑵求轴的最大切应力;⑶求C 截面对A 截面的相对扭转角AC ϕ。
解:⑴扭矩图如图。
⑵轴的最大切应力 m a x 316500025.510BC pT MPa W τπ⨯===⨯⑶C 截面对A 截面的相对扭转角AC ϕr a d GI l T GI l T pBC pAB AC 341086.1108200032501000)52(-⨯-=⨯⨯⨯⨯⨯-=+=πϕ3.2 已知变截面圆轴上的m kN M ⋅=181,m kN M ⋅=122。
试求轴的最大切应力和最大单位长度扭转角。
GPa G 80= 解:31612000488.95BC BCp T MPa W τπ⨯===⨯ 31630000362.27.5AB ABp T MPa W τπ⨯===⨯ MPa BC 9.488max ==ττ m rad GI T p BC BC /244.0580012000324=⨯⨯⨯=='πϕ m rad GI T p AB AB /121.05.780030000324=⨯⨯⨯=='πϕ m rad BC /244.0max='='ϕϕ 3.3 图示钢圆轴(GPa G 80=)所受扭矩分别为m kN M ⋅=801,m kN M ⋅=1202,及m kN M ⋅=403。