小学数学公式及概念、易错题
- 格式:doc
- 大小:137.50 KB
- 文档页数:7
小学六年级数学概念和公式大全一、分数乘法1、 分数乘整数,用分数的分子与整数相乘的积作分子,分母不变。
2、 分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
3、 求一个数的几分之几是多少用乘法计算(一个数×几几=具体量)。
能约分的先约分再乘。
二、分数除法1、 乘积是1的两个数 互为倒数。
2、分数除以整数(0除外),等于分数乘这个数的倒数。
3、整数除以分数,就是整数乘这个数的倒数。
4、甲数除以乙数(0除外),等于甲数乘乙数的倒数。
5、单位“1”(一个数)×几几=具体量 ⇒ 具体量÷单位“1”(一个数)=几几⇒ 【已知一个数的几分之几是多少,求这个数】 单位“1”(一个数)=具体量÷几几三、圆1、 画圆时固定的一点是圆心,圆心一般用字母o 表示。
2、 圆上任意一点到圆心的线段是半径,半径一般用字母r 表示。
通过圆心且两端都在圆上的线段是直径,直径一般用字母d 表示。
r=2dd=2 r 3、 圆的大小和半径有关,圆的位置和圆心有关。
4、 圆的周长总是直径的3倍多一些,圆的周长除以直径的商是一个固定的数,把它叫做圆周率,用字母∏(读p ài )表示。
计算时通常取它的近似值∏=3.14。
5、 周长C =πd =2πr ⇒ d= πC=C ÷π ⇒ r = π2C =C ÷2π=C ÷π÷2= C ÷2π6、 圆面积S =πr 2=π(2d )27、 扇形面积=大圆面积-小圆面积=πr 2大-πr 2小=π(r 2大-r 小2)8、 由圆心角的两条半径和圆心角所对的弧围成的图形叫做扇形。
在同一个圆内,扇形型的大小与这个扇形的圆心角的大小有关。
四、比和按比例分配1、 两个数相除又叫做这两个数的比。
2、比和除法、分数的区别:比 前 项 ∶ (比 号) 后项 比值是—种 相除关系。
除法被除数 ÷ (除 号) 除数 商是一种 运算。
小学数学知识点——1-6年级必背公式01.加法交换律和结合律:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)02.减法没有交换律和结合律,但有如下性质:a-b=a+(-b)03.乘法交换律和结合律:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)04.除法没有交换律和结合律,但有如下性质:a÷b=a×(1/b)05.基本运算法则:加法和乘法先行:a+b×c=a+(b×c)括号优先:先计算括号内的运算06.面积公式:正方形面积:边长×边长或a²长方形面积:长×宽或l×w三角形面积:底×高÷2或b×h/2圆的面积:半径×半径×π或r²×π(其中π约等于3.14)小学数学知识点——1-6年级必背公式07.体积公式:立方体体积:边长×边长×边长或a³长方体体积:长×宽×高或l×w×h圆柱体积:底面积×高或πr²h(其中r是底面半径)08.平均数:平均数=总和÷数量09.比例关系:如果a/b=c/d,则a/c=b/d(交叉相乘)10.时间、速度、距离的关系:距离=速度×时间或d=vt速度=距离÷时间或v=d/t时间=距离÷速度或t=d/v11.分数与小数的转换:分数转小数:用分子除以分母小数转分数:将小数写成分子,分母是根据小数位数确定的10的幂次方12.简单的等式:解一步方程:x+a=b,解为x=b-a解两步方程:ax+b=c,解为x=(c-b)/a。
精心整理小学一至六年级数学概念(最全、最新) 小学数学易错易失分的26个知识点总结(附例题+答案)小学数学概念(最全、最新)以下是小学数学易错易失分的26个知识点总结,附有例题和答案。
1.偶数:能被2整除的数叫做偶数,因为也能被2整除,所以也是偶数。
2.奇数:不能被2整除的数叫做奇数。
例如1、3、5、7.3.质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数或者素数。
例如2、3、5、7、11都是质数。
4.素数:素数就是质数。
5.合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
1不是质数,也不是合数。
例如4、6、8、9、10、12.都是合数。
6.质因数:每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数。
7.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如:12=3×2×28.公因数:几个数公有的因数,叫做这几个数的公因数。
9.最大公因数:在几个数的公因数中最大的一个,叫做这几个数的最大公因数。
例如1,2,4是8和12的公约因数;4是8和12的最大公约因数。
10.互质数:公约数只有1的两个数,叫做互质数。
例如5和7是互质数,8和9也是互质数。
11.公倍数:几个数公用的倍数,叫做这几个数的公倍数。
12.最小公倍数:在几个数的公倍数中最小的一个,叫做这几个数的最小公倍数。
例如12,24,36.都是4和6的公倍数,12是4和6的最小公倍数。
13.单价数量总价:每件商品的价钱,我们叫它单价,买了多少,叫做数量,一共用了多少钱,叫总价。
总价=单价×数量14.速度、时间、路程:每小时(或每分钟或者每天)行进的路程,我们叫它速度,行进了几小时(或几分钟或几天)我们叫它时间,一共行进多少路,我们叫它路程。
路程=速度×时间15.加法交换律:两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律。
小学数学必背公式全集(一)几何类公式1.长方形周长=(长+宽)×2 C=(a+b)×22.正方形周长=边长×4 C=4a3.长方形面积=长×宽S=ab4.正方形面积=边长×边长S=a×a5.三角形的面积=底×高÷2 S=ah÷26.平行四边形面积=底×高S=ah7.梯形的面积=(上底+下底)×高÷2 S=(a+b)×h÷28.圆的直径=半径×2d=2r9.半径=直径÷2r=d÷210.圆的周长=圆周率×直径C=πd=2πr11.圆的面积=圆周率×半径×半径S=πr²(二)代数类公式1.每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2.速度×时间=路程路程÷速度=时间路程÷时间=速度3.单价×数量=总价总价÷单价=数量总价÷数量=单价4.工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率(三)其他公式1.加法:加数+加数=和和-一个加数=另一个加数2.减法:被减数-减数=差被减数-差=减数差+减数=被减数3.乘法:因数×因数=积积÷一个因数=另一个因数4.除法:被除数÷除数=商被除数÷商=除数商×除数=被除数注意:在数学中,a、b、c等字母常用来表示变量或特定的数值,具体的含义需根据上下文来理解。
小学数学【运算定律大全】公式+例题加法运算概念:把两个数合并成一个数的运算叫做加法。
在加法里,相加的数叫做加数,加得的数叫做和。
字母:a+b=c举例:195+25=220减法运算概念:已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。
被减数是总数,减数和差分别是部分数。
字母:a-b=c举例:195-25=170乘法运算概念:求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都是因数,相同加数的和叫做积。
字母:a×b=c举例:195×25=4875除法运算概念:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
字母:a÷b=c举例:195÷25=7.8加法交换律概念:两个数相加,交换加数的位置,它们和不变。
字母:a+b=b+a举例:195+25=25+195=220加法结合律概念:三个数相加,先把前两个数相加,再加第三个数;或者先把后两个数相加,再和第一个数相加,它们的和不变。
字母:(a+b)+c=a+(b+c)举例:(195+25)+75=195+(25+75)=295乘法交换律概念:两个数相乘,交换因数的位置,它们的积不变。
字母:a×b=b×a举例:195×25=25×195=4875乘法结合律概念:三个数相乘,先把前两个数相乘,再乘第三个数,或者先把后两个数相乘,再和第一个数相乘,它们的积不变。
字母:(a×b)×c=a×(b×c)举例:(195×25)×4=195×(25×4)=19500乘法分配率概念:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘,再把两个积相加。
字母:(a+b)×c=a×c+b×c举例:(195+25)×4=195×4+25×4等式的运算性质概念:在减法中,被减数、减数同时加上或者减去同一个数,差不变。
小学数学公式大全(完整版)一、数的概念和认识1.1 整数1.自然数:1, 2, 3, …2.整数:-3, -2, -1, 0, 1, 2, 3, …1.2 分数1.分数的定义:$\\frac{a}{b}$2.假分数:分子大于分母的分数3.真分数:分子小于分母的分数4.基数:分子5.除数:分母二、四则运算2.1 加法加法规律:\[a + b = b + a\]2.2 减法减法规律:\[a - b ≠ b - a\]2.3 乘法乘法公式:\[a \times b = b \times a\]2.4 除法除法:\[a \div b = \frac{a}{b}\]三、计算方法3.1 算式1.算式:由数字和运算符组成的式子2.省略乘号:\[a(b+c) = ab + ac\]3.2 进位与退位1.进位:\[9+3 = 12\]2.退位:\[10-6 = 4\]3.3 整数运算1.两个数的和:\[a + b\]2.两个数的差:\[a - b\]3.两个数的积:\[a \times b\]4.两个数的商:\[a \div b\]四、几何图形4.1 直线1.定义:2.符号:AB4.2 线段1.定义:两个端点的直线就是线段2.书写:$\\overleftrightarrow{AB}$4.3 角角的定义:\(OA\)和\(OB\)的夹角\(AOB\)叫做角。
4.4 等腰三角形1.定义:两边相等的三角形2.性质:底边角相等五、面积和周长5.1 长方形1.面积公式:\[A = l \times w\]2.周长公式:\[P = 2(l + w)\]5.2 正方形1.面积公式:\[A = a \times a\]2.周长公式:\[P = 4a\]六、容积和体积6.1 容积1.计算方法:\[V = l \times w \times h\]2.单位:立方米(m³)6.2 体积1.立体图形的体积:\[V = \frac{4}{3}\pi r^3\]七、数学公式7.1 勾股定理勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
11、定义新运算:基本概念:定义一种新的运算符号,这个新的运算符号包含有多种基本(混合)运算。
基本思路:严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规律进行运算。
关键问题:正确理解定义的运算符号的意义。
注意事项:①新的运算不一定符合运算规律,特别注意运算顺序。
②每个新定义的运算符号只能在本题中使用。
12、数列求和:等差数列:在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。
基本概念:首项:等差数列的第一个数,一般用a1表示;项数:等差数列的所有数的个数,一般用n表示;公差:数列中任意相邻两个数的差,一般用d表示;通项:表示数列中每一个数的公式,一般用an表示;数列的和:这一数列全部数字的和,一般用Sn表示.基本思路:等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。
基本公式:通项公式:an = a1+(n-1)d;通项=首项+(项数一1)×公差;数列和公式:sn,= (a1+ an)×n÷2;数列和=(首项+末项)×项数÷2;项数公式:n= (an+ a1)÷d+1;项数=(末项-首项)÷公差+1;公差公式:d =(an-a1))÷(n-1);公差=(末项-首项)÷(项数-1);关键问题:确定已知量和未知量,确定使用的公式;13、二进制及其应用:十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。
所以234=200+30+4=2×102+3×10+4。
=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。
50道小学数学易错题50道小学数学易错题是小学生学习数学时最容易困惑的考题,而且也是经常被提及的一个话题。
为了帮助更多的小学生在学习数学时避免这些易错的考题,以下整理了50道小学数学易错题的解析。
第一道小学数学易错题:12+2= ?这个题目很简单,但是有许多小学生误算成14。
正确答案是14。
第二道小学数学易错题:3×7= ?很多小学生会误算成27,而正确答案应该是21。
第三道小学数学易错题:4×4= ?很多小学生都会误算成16,但正确答案应该是8。
第四道小学数学易错题:6/2= ?小学生很容易误算成3,而正确答案应该是3。
第五道小学数学易错题:45%的数是多少?小学生会错误的答案45,而正确答案应该是0.45。
第六道小学数学易错题:2+(-5)= ?小学生会错误的答案7,而正确答案应该是-3。
第七道小学数学易错题:6×(-3)= ?小学生会错误的答案18,而正确答案应该是-18。
第八道小学数学易错题:15%的数是多少?小学生会错误的答案15,而正确答案应该是0.15。
第九道小学数学易错题:30÷(-2)= ?小学生会错误的答案15,而正确答案应该是-15。
第十道小学数学易错题:1/2+1/2= ?小学生会错误的答案1,而正确答案应该是1/1。
第十一道小学数学易错题:4×3-1= ?小学生会错误的答案11,而正确答案应该是11。
第十二道小学数学易错题:6/3÷2= ?小学生会错误的答案3,而正确答案应该是1。
第十三道小学数学易错题:18+(-3)×4= ?小学生会错误的答案30,而正确答案应该是6。
第十四道小学数学易错题:≤7÷3= ?小学生会错误的答案2,而正确答案应该是2.33。
第十五道小学数学易错题:8-2= ?小学生会错误的答案6,而正确答案应该是6。
第十六道小学数学易错题:12÷6+2= ?小学生会错误的答案4,而正确答案应该是4。
小学四年级数学行程问题(相遇、追及、相离)易错题1、在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题。
也叫行程问题。
2、行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:距离=速度×时间速度=距离÷时间时间=距离÷速度3、按运动方向,行程问题可以分成三类:(1)相向运动问题(相遇问题)(2)同向运动问题(追及问题)(3)背向运动问题(相离问题)1、相向运动问题(1)相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题。
两个运动物体由于相向运动而相遇。
(2)解答相遇问题的关键,是求出两个运动物体的速度之和。
基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间例1、两列火车同时从相距540千米的甲乙两地相向而行,经过3.6小时相遇。
已知客车每小时行80千米,货车每小时行多少千米?例2、两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行。
甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇。
求从出发到相遇经过几小时?2、同向运动问题(追及问题)(1)两个运动物体同向而行,一快一慢,慢在前快在后,经过一定时间快的追上慢的,称为追及。
解答追及问题的关键,是求出两个运动物体的速度之差。
(2)基本公式有:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间例1、甲乙两人在相距12千米的AB两地同时出发,同向而行。
甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。
几小时后乙能追上甲?例2、一个通讯员骑摩托车追赶前面部队乘的汽车。
汽车每小时行48千米,摩托车每小时行60千米。
通讯员出发后2小时追上汽车。
通讯员出发的时候和部队乘的汽车相距多少千米?注意:要求距离差,需要知道速度差和追及时间。
小学数学重点知识点所有公式总结在小学数学中,有许多重要的知识点和相关公式。
这些公式不仅可以帮助我们解决数学问题,还可以培养我们的逻辑思维和解决问题的能力。
下面是我总结的小学数学重点知识点的公式。
一、四则运算公式1. 加法和减法的运算法则:- 加法交换律:a + b = b + a- 加法结合律:(a + b) + c = a + (b + c)- 减法法则:a - b +b = a2. 乘法和除法的运算法则:- 乘法交换律:a × b = b × a- 乘法结合律:(a × b) × c = a × (b × c)- 乘法分配律:a × (b + c) = a × b + a × c- 除法法则:a ÷ b × b = a二、面积和周长公式1. 矩形的面积公式:面积 = 长 ×宽2. 正方形的面积公式:面积 = 边长 ×边长3. 三角形的面积公式:面积 = 底边 ×高 ÷ 24. 圆的面积公式:面积= π × 半径 ×半径5. 矩形的周长公式:周长 = (长 + 宽) × 26. 正方形的周长公式:周长 = 边长 × 47. 圆的周长公式:周长= 2 × π × 半径三、分数的运算公式1. 分数的加法:a/b + c/d = (ad + bc)/(bd)2. 分数的减法:a/b - c/d = (ad - bc)/(bd)3. 分数的乘法:a/b × c/d = ac/bd4. 分数的除法:a/b ÷ c/d = ad/bc四、百分数的计算公式1. 百分数与小数的转换:将百分数的百分号去掉,除以100就得到了相应的小数。
例如:25% = 25/100 = 0.252. 百分数的加减法公式:将百分数转化为小数,然后进行相应的加减法运算,最后再将结果转化为百分数。
小学数学公式及概念第一部分:基本概念1、加法交换律:两数相加交换加数的位置,和不变。
a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
a+b+c=a+(b+c)3、乘法交换律:两数相乘,交换因数的位置,积不变。
a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,再与第三个数相乘,或者先把后两个数相乘,再和第三个数相乘,积不变。
a×b×c=a×(b×c)5、乘法分配律:两个数的和(或差)同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加(或减),结果不变。
a×(b±c) = a×b±a ×c6、除法的性质:一个数除以两个(或多个)数,等于除以这些数的积。
a÷b÷c=a÷(b×c)减法的性质: a-b-c=a-(b+c)简便乘法:因数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
商不变性质:被除数和除数同时乘(或除以)相同的数(0除外),商不变。
7、等式:表示相等关系的式子叫做等式。
等式的基本性质:等式两边同时加、减、乘或除以(不能除以0)一个相同的数,等式仍然成立。
8、方程:含有未知数的等式叫方程式。
9、方程的解:使方程左右两边相等的未知数的值,叫作方程的解。
求方程的解的过程叫作“解方程”。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
一位小数是十分之几,两位小数是百分之几,三位小数是千分之几……11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
能约分的先约分。
约分时是交叉约分。
15、除以一个数(0除外),等于乘以这个数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
18、带分数:把假分数写成整数+真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、负数比较大小:先不看负号,数大的负数反而小。
如-6<-5,-1.2>-2.621、把一个合数写成几个质数相乘的形式叫分解质因数。
通常用“短除法”。
如:40=2×2×522、比:两个数相除又叫作两个数的比。
如:2÷5可写为3:6或31。
比的基本性质:比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23、比例:表示两个比相等的式子叫做比例。
如3:6=9:1824、比例的基本性质:在比例里,两外项之积等于两内项之积。
用处:解比例和判断两个比是否成比例。
25、解比例:求比例中的未知项,叫做解比例。
26、正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)注意!kx=y 也同样代表正比例!27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x×y = k( k一定)注意! k ÷x = y代表反比例!28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
29、数的互化:①小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
如:1.23=100123②小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
③分数化成小数:用分子除以分母。
能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。
④分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
⑤百分数化成小数:把百分号去掉,同时把小数点向左移动两位。
⑥百分数化成分数:把百分数改写成分数,能约分的再约成最简分数。
30、求比值的方法:用前项除以后项。
结果是一个“值”!31、化简比的方法:①前、后项进行约分②用“求比值”的方法③用比的基本性质。
化简比的结果还是个比!32、图上距离与实际距离的比叫比例尺。
实际距离图上距离=比例尺33、常见的正反比例关系:*路程一定,速度和时间成反比例;时间一定,路程和速度成正比例;速度一定,路程和时间成正比例。
*总价一定,单价和数量成反比例;单价一定,总价和数量成正比例;数量一定,总价和单价成正比例。
*工作总量一定,工作效率和工作时间成反比例;工时一定,工总和工效成正比例;工效一定,工总和工时成正比例。
*总产量一定,单产量和数量成反比例;单产量一定,总产量和数量成正比例;数量一定,总产量和单产量成正比例。
*出勤人数一定,出勤率与应到人数成反比例;出勤率一定,出勤人数与应到人数成正比例;全班人数一定,出勤人数与出勤率成正比例。
应到人数出勤人数=出勤率(一定)34、最大公因数:几个数公有的因数,叫做这几个数的公因数。
其中最大的一个,叫做最大公约数。
)35、互质数:公约数只有1的两个数,叫做互质数。
36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通常用最小公倍数作“公分母”) 38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(分子、分母同时除以它们的公因数)39、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。
如∵20=2×2×5,∴201可以化成有限小数; ∵18=2×3×3,∴181不能化成有限小数。
40、100以内质数有25个,分别是:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
41、个位上是0、2、4、6、8的数,都能被2整除,它们是2的倍数。
42、个位上是0或者5的数,都能被5整除,它们都是5的倍数。
43、偶数和奇数:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
自然数中,最小的偶数是0,最小的奇数是1。
44、质数(素数):一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
质数最多有2个因数。
45、合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
合数最少有3个因数。
自然数中,1不是质数,也不是合数。
最小的合数是4,最小的质数是2。
自然数除了1外,不是质数就是合数。
如果把自然数按其因数的个数分类,可分为:质数、合数和1。
46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)47、利率:利息与本金的比值叫做利率。
一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。
48、自然数:用来表示物体个数的整数,叫做自然数。
最小的自然数是0。
49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
如3. 14141450、小数按小数部分位数的多少分为:有限小数和无限小数。
无限小数分为:循环小数和不循环小数。
51、圆周率π是无限不循环小数: 3. 141592654…… 52、数位顺序表:53、 整数包括正整数、负整数和0。
正整数和0统称为“自然数”。
54、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
一个自然数含有多少个数位叫作它的位数。
如最小三位数是100,最大两位数是99。
55、每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法(满十进一)。
从上表要知道:小数点左(右)边第几位是什么数位、计数单位是什么;哪一位的左(右)几位是哪一位;在哪个数位写上数字表示几个相应的计数单位。
56、整除整数a 除以整数b (b ≠ 0),除得的商是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。
如果数a 能被数b (b ≠ 0)整除,a 就叫做b 的倍数,b 就叫做a 的因数。
倍数和因数是相互依存的。
如:因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的 因数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
如:3的倍数有:3、6、9、12……其中最小的倍数是3 。
57、一个数的各位上的数的和能被3整除,这个数就能被3整除,如:12、108都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
58、①相邻的两个自然数互质。
②两个不同的质数互质。
③当合数不是质数的倍数时,这个合数和这个质数互质。
④两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
⑤如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。
即:a÷b=k,则a是a和b的最小公倍数,b是a和b的最大公因数。
⑥。
59、①准确数:为了计数的简便,把一个较大的数改写成以万或亿为单位的数。
改写后的数是原数的准确数,用“=”。
如把12 5430 0000 改写成以万做单位的数=12 5430 万;改写成以亿做单位的数=12.543 亿。
②近似数:还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示,用“≈”,通常用“省略、精确到、四舍五入约是”等词语。
例如:13 0249 0015 省略亿后面的尾数约是13 亿。
60、①商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。