航天测控.ppt
- 格式:ppt
- 大小:730.00 KB
- 文档页数:19
航天测控系统1.定义2.发展概况3.系统组成4.航天测控网5.总体设计6.总体设计中必须解决的问题7.电子测控系统8.航天电子测控系统的新发展9.计算系统10.测控的其他应用11.展望1.定义对运行中的航天器(运载火箭、人造地球卫星、宇宙飞船和其他空间飞行器)进行跟踪、测量和控制的大型电子系统。
2.发展概况中国航天测控系统也是在航天事业的发展中逐步臻于完善的。
在大陆上已经建立了多个测控站和一个测控通信中心。
为了扩展观测范围,还建造了海上测量船,以便驶往远洋对航天器进行跟踪观测。
在整个测控系统中使用了多台计算机,并有贯通各个测控站、测量船和测控中心的通信网络。
3.系统组成①跟踪测量系统:跟踪航天器,测定其弹道或轨道。
②遥测系统:测量和传送航天器内部的工程参数和用敏感器测得的空间物理参数。
③遥控系统:通过无线电对航天器的姿态、轨道和其他状态进行控制。
④计算系统:用于弹道、轨道和姿态的确定和实时控制中的计算。
⑤时间统一系统:为整个测控系统提供标准时刻和时标。
⑥显示记录系统:显示航天器遥测、弹道、轨道和其他参数及其变化情况,必要时予以打印记录。
⑦通信、数据传输系统:作为各种电子设备和通信网络的中间设备,沟通各个系统之间的信息,以实现指挥调度。
4. 航天测控网各种地面系统分别安装在适当地理位置的若干测控站(包括必要的测量船和测控飞机)和一个测控中心内,通过通信网络相互联接而构成整体的航天测控系统。
5.总体设计航天测控系统总体设计属于电子系统工程问题。
对整个系统来说,首先考虑的是航天任务的要求,可以针对某一个任务,也可以兼顾多个任务,从较长远的发展要求来设计。
航天测控系统的中心问题是从地面和航天器整体出发,实现信息获取,即将航天器的飞行和工作数据发回地面,并用计算机进行计算、决策和实时反馈来控制航天器飞行的轨道和姿态。
6.总体设计中必须解决的问题在总体设计中必须解决的问题有:①全系统所要具备的功能和实现这些功能的手段;②测控站布局的合理性;③控制的适时性和灵活性;④各种设备的性能、速度和精度;⑤长期工作的可靠性;⑥最低的投资和最短的建成时间。
航天测控的原理和应用一、航天测控的概述航天测控是指通过测量和控制手段对航天器进行监测、导航、控制和处理数据的技术,是航天任务顺利完成的关键环节。
航天测控系统由地面站和航天器组成,通过通信链路进行信息的传递,从而实现对航天器的测量和控制。
二、航天测控的原理航天测控的原理主要涉及到航天器的测量和控制两个方面。
2.1 航天器的测量原理航天器的测量是指对航天器各种状态参数和数据的获取和分析,包括航天器的位置、速度、姿态、姿态稳定性等。
测量主要通过以下几种方式实现:•遥测测量:通过航天器上的传感器采集航天器的姿态、温度、气压等数据,并通过通信链路传输到地面站进行分析和处理。
•测距测速:通过测距仪和测速仪等设备,对航天器与地面站之间的距离和相对速度进行测量。
•星敏感器测量:通过星敏感器对航天器相对于恒星的视线角进行测量,从而确定航天器的姿态。
•惯性测量单元:通过惯性测量单元对航天器的加速度和角速度进行测量,从而获取航天器的位置和速度。
2.2 航天器的控制原理航天器的控制是指通过对航天器的姿态、轨道、飞行速度等参数进行控制,确保航天器按照任务要求进行运行。
控制主要通过以下几种方式实现:•推力控制:通过推进系统对航天器施加推力,改变航天器的轨道和速度。
•姿态控制:通过姿态控制系统对航天器的姿态进行调整,保持航天器稳定。
•电动控制:通过电动机、电液系统等设备对航天器的各个部件进行控制,实现对航天器的各种功能的操作和控制。
•控制算法:通过编写控制算法,对航天器的状态和参数进行监测和控制,确保航天器按照任务要求进行运行。
三、航天测控的应用航天测控技术在航天领域有着广泛的应用,主要包括以下几个方面:3.1 航天器的轨道控制航天测控技术可以通过对航天器的推力、姿态和速度等参数进行控制,实现对航天器轨道的调整和控制。
例如,对于地球同步轨道的通信卫星,需要保持恒定的轨道位置,航天测控技术可以实现对其轨道位置的控制,从而确保通信卫星能够始终覆盖特定地区。