2016河南省中考数学试卷及答案(word版)
- 格式:docx
- 大小:696.52 KB
- 文档页数:13
2016年河南省中考物理试题及参考答案与解析一、填空题(本题共6小题,每空1分,共14分)1.中华民族有着悠久的文明历史,古代就有许多对自然现象的观察和记载“司南之杓,投之于地,其抵指南”是由于受到的作用;“削冰令圆,举以向日,可生火”是由于凸透镜对光具有作用。
2.手机是现代最常用的通信工具,手机之间是利用传递信息的.人们在不同场合需要选择不同的音量,改变的是手机声音的。
接听电话时能辨别不同的人,是因为不同人说话时声音的不同。
3.用丝稠摩擦玻璃棒,玻璃棒由于失去电子而带电。
如图所示,用这个玻璃棒靠近悬挂的气球,气球被推开,则气球带电。
4.将一瓶质量为0.5kg、温度为25℃的纯净水放入冰箱,一段时间后纯净水的温度降低到5℃,则这瓶纯净水的内能减少了J,这是通过的方式改变了水的内能。
水的比热容c=4.2×103J/(kg•℃。
5.在如图所示的电路中,定值电阻的阻值R0和电源电压U均为已知。
在a、b间接入一个未知电阻R x,闭合开关,电压表的示数为U x,则由已知量和测得量可以推出:R x=,R x的电功率P x=。
6.物理知识是对自然现象的概括和总结,又广泛应用于生活和技术当中。
请联系表中的相关内容填写表中空格。
二、选择题(本题共8小题,每小题2分,共16分.第7-12题每小题只有一个选项符合题目要求,第13-14题每小题有两个选项符合题目要求,全部选对得2分,选对但不全得1分,有错选的得0分)7.如图所示是某种物质温度随时间变化的图象。
该图象描述的过程可能是()A.蜡的熔化B.海波的熔化C.水的凝固D.玻璃的凝固8.如图所示是近视眼和远视眼的成因示意图.下列说法正确的是()A.甲是远视眼,应佩戴凹透镜矫正B.甲是远视眼,晶状体折光能力较弱C.乙是近视眼,应佩戴凸透镜矫正D.乙是近视眼,晶状体折光能力较弱9.下列说法正确的是()A.物理学规定正电荷定向移动的方向为电流方向B.导体的电阻由导体的长度、横截面积和电压决定C.导线用铜制造是利用了铜具有较好的导热性D.遥感卫星利用物体辐射的紫外线拍摄地面情况10.如图所示是某同学设计的家庭电路,电灯开关已断开。
保密★启用前2016年中考真题数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2(1)⨯-的结果是()A、12-B、2-C、1 D、22、若∠α的余角是30°,则cosα的值是()A、12BCD3、下列运算正确的是()A、21a a-=B、22a a a+=C、2a a a⋅=D、22()a a-=-4、下列图形是轴对称图形,又是中心对称图形的有()A、4个B、3个C、2个D、1个5、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=()A、40°B、50°C、60°D、80°6、已知二次函数2y ax=的图象开口向上,则直线1y ax=-经过的象限是()A、第一、二、三象限B、第二、三、四象限C、第一、二、四象限D、第一、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是()8、如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A、28℃,29℃B、28℃,29.5℃C、28℃,30℃D、29℃,29℃9、已知拋物线2123y x=-+,当15x≤≤时,y的最大值是()A、2B、23C、53D、7310、如图,已知OBOA,均为⊙O上一点,若︒=∠80AOB,则=∠ACB()A.80°B.70°C.60°D.40°11、如图,是反比例函数1kyx=和2kyx=(12k k<)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若2AOBS∆=,则21k k-的值是()A、1B、2C、4D、812、一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是()A、1011升B、19升C、110升D、111升二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上)13、2011-的相反数是__________14、近似数0.618有__________个有效数字.15、分解因式:39a a-= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为__________17、如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则'C DCD的值为__________ABCD16题图17题图18题图(第10题18、如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:①点D为AC的中点;②'12O OE AOCS S∆∆=;③2AC AD=;④四边形O'DEO是菱形.其中正确的结论是__________.(把所有正确的结论的序号都填上)三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19、计算:101()(5)32π-----+20、已知:12x x、是一元二次方程2410x x-+=的两个实数根.求:2121211()()x xx x+÷+的值.21、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为10米,小强的身高AB为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到11.411.73 )22、如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA3π,求⊙O的半径r.23、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A、白B、白C表示),若从中任意摸出一个棋子,是白色棋子的概率为34.(1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.24、上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=100%⨯利润进价)25、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,EB的长.26、已知抛物线223 (0)y ax ax a a=--<与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.(1)求A、B的坐标;(2)过点D作DH丄y轴于点H,若DH=HC,求a的值和直线CD的解析式;(3)在第(2)小题的条件下,直线CD与x轴交于点E,过线段OB的中点N作NF丄x轴,并交直线CD于点F,则直线NF上是否存在点M,使得点M到直线CD的距离等于点M到原点O的距离?若存在,求出点M的坐标;若不存在,请说明理由.。
2016年河南省中考数学试卷一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的. 1.B .2.A .3.C .4.A .5.C .6.D .7.A .8.B .二、填空题(每小题3分,共21分)9.1−.10.110︒.11.94k >−.12.14.13.(1,4).13π. 三、解答题(本大题共8小题,满分75分)16.解:2221(1)21x x x x x x −−÷+++ 2(1)[1](1)(1)(1)x x x x x x +=−⨯++− 111()111x x x x x ++=−⨯++− 111x x x x −+=⨯+− 1x x =−−, 解不等式组1214x x −⎧⎨−<⎩得:512x −<, 当2x =时,原式21x x =−=−−. 17.解:(1)4m =,1n =.故答案是:4,1;(2);(3)行走步数的中位数落在B 组,故答案是:B ;(4)一天行走步数不少于7500步的人数是:4311204820++⨯=(人). 答:估计一天行走步数不少于7500步的人数是48人.18.(1)证明:90ABC ∠=︒,AM MC =,BM AM MC ∴==,A ABM ∴∠=∠,四边形ABED 是圆内接四边形,180ADE ABE ∴∠+∠=︒,又180ADE MDE ∠+∠=︒,MDE MBA ∴∠=∠,同理证明:MED A ∠=∠,MDE MED ∴∠=∠,MD ME ∴=.(2)①由(1)可知,A MDE ∠=∠,//DE AB ∴,∴DE MD AB MA=, 2AD DM =,:1:3DM MA ∴=,116233DE AB ∴==⨯=.故答案为2. ②当60A ∠=︒时,四边形ODME 是菱形.理由:连接OD 、OE ,OA OD =,60A ∠=︒,AOD ∴∆是等边三角形,60AOD ∴∠=︒,//DE AB ,60ODE AOD ∴∠=∠=︒,60MDE MED A ∠=∠=∠=︒, ODE ∴∆,DEM ∆都是等边三角形,OD OE EM DM ∴===,∴四边形OEMD 是菱形.答案为60︒.19.解:在Rt BCD ∆中,9BD =米,45BCD ∠=︒,则9BD CD ==米. 在Rt ACD ∆中,9CD =米,37ACD ∠=︒,则tan 3790.75 6.75AD CD =︒≈⨯=(米). 所以,15.75AB AD BD =+=米,整个过程中旗子上升高度是:15.75 2.2513.5−=(米),因为耗时45s ,所以上升速度13.50.345v ==(米/秒). 答:国旗应以0.3米/秒的速度匀速上升.20.解:(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元,根据题意,得:3263229x y x y +=⎧⎨+=⎩,解得:57x y =⎧⎨=⎩,答:一只A 型节能灯的售价是5元,一只B 型节能灯的售价是7元;(2)设购进A 型节能灯m 只,总费用为W 元,根据题意,得:57(50)2350W m m m =+−=−+,20−<,W ∴随m 的增大而减小,又3(50)m m −,解得:37.5m ,而m 为正整数,∴当37m =时,237350276W =−⨯+=最小,此时503713−=,答:当购买A 型灯37只,B 型灯13只时,最省钱.21.解:(1)把2x =−代入22||y x x =−得0y =,即0m =,故答案为:0;(2)如图所示;(3)由函数图象知:①函数22||y x x =−的图象关于y 轴对称;②当1x >时,y 随x 的增大而增大;(4)①由函数图象知:函数图象与x 轴有3个交点,所以对应的方程22||0x x −=有3个实数根;②如图,22||y x x =−的图象与直线2y =有两个交点,22||2x x ∴−=有2个实数根;③由函数图象知:关于x 的方程22||x x a −=有4个实数根, a ∴的取值范围是10a −<<,故答案为:3,3,2,10a −<<.22.解:(1)点A 为线段BC 外一动点,且BC a =,AB b =, ∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC AB a b +=+, 故答案为:CB 的延长线上,a b +;(2)①CD BE =,理由:ABD ∆与ACE ∆是等边三角形,AD AB ∴=,AC AE =,60BAD CAE ∠=∠=︒,BAD BAC CAE BAC ∴∠+∠=∠+∠,即CAD EAB ∠=∠,在CAD ∆与EAB ∆中,AD AB CAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,CAD EAB ∴∆≅∆,CD BE ∴=; ②线段BE 长的最大值=线段CD 的最大值,由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上, ∴最大值为4BD BC AB BC +=+=;(3)将APM ∆绕着点P 顺时针旋转90︒得到PBN ∆,连接AN , 则APN ∆是等腰直角三角形,2PN PA ∴==,BN AM =, A 的坐标为(2,0),点B 的坐标为(5,0),2OA ∴=,5OB =,3AB ∴=,∴线段AM 长的最大值=线段BN 长的最大值,∴当N 在线段BA 的延长线时,线段BN 取得最大值,最大值AB AN =+,2AN ==∴最大值为3;如图2,过P 作PE x ⊥轴于E ,APN ∆是等腰直角三角形,PE AE ∴==,532OE BO AB AE ∴=−−=−=(2P ∴.23.解:(1)点(0,4)C 在直线43y x n =−+上, 4n ∴=,443y x ∴=−+, 令0y =,3x ∴=,(3,0)A ∴, 抛物线223y x bx c =++经过点A ,交y 轴于点(0,2)B −. 2c ∴=−,6320b +−=,43b ∴=−, ∴抛物线解析式为224233y x x =−−, (2)点P 的横坐标为m ,且点P 在抛物线上,224(,2)33P m m m ∴−−, PD x ⊥轴,BD PD ⊥∴点D 坐标为(,2)m −||||BD m ∴=,224|||22||33PD m m =−−+, 当BDP ∆为等腰直角三角形时,PD BD =.222424|||22|||3333m m m m m ∴=−−+=− 22224()33m m m ∴=− 解得:10m =(舍去),272m =,312m =∴当BDP ∆为等腰直角三角形时,线段PD 的长为72或12. (3)PBP OAC '∠=∠,3OA =,4OC =,5AC ∴=,4sin 5PBP '∴∠=,3cos 5PBP '∠=, ①当点P '落在x 轴上时,过点D '作D N x '⊥轴,垂足为N ,交BD 于点M , PD x ⊥轴,90BMD '∴∠=︒,90DBD BD D ''∴∠+∠=︒,90BD D ND P '''∠+∠=︒,DBD ND P '''∴∠=∠由旋转知,DBD PBP ''∠=∠,DBD ND P PBP ''''∴∠=∠=∠,如图1, 由旋转知,22433P D PD m m ''==−, 在Rt △P D N ''中,3cos cos 5ND ND P PBP P D ''''∠==∠='', 2324()533ND m m '∴=−, 在Rt △BD M '中,BD m '=−,4sin sin 5D M DBD PBP BD '''∠==∠=', 45D M m '∴=−,2ND MD ''∴−=, ∴23244()()25335m m m −−−=,m ∴),或m =, 如图2,同①的方法得,2324()533ND m m '=−,45MD m '=2ND MD ''+=,∴23244()25335m m m −+=,m ∴m =),(P ∴或P , ②当点P '落在y 轴上时,如图3,过点D '作D M x '⊥轴,交BD 于M ,过点P '作P N y '⊥轴,交MD '的延长线于点N ,DBD ND P PBP ∴∠'=∠''=∠',同①的方法得,2424()533P N m m '=−,35BM m =, P N BM '=, ∴24243()5335m m m −=, 258m ∴=,25(8P ∴,11)32.(P ∴或P 或25(8P ,11)32.2017年河南省中考数学试卷一、选择题(每小题3分,共30分)1.A .2.B .3.D .4.A .5.A .6.B .7.C .8.C .9.D .10.C .二、填空题(每小题3分,共15分)11.6.12.12x −<.13.m n <.14.1215.解:①如图1,当90B MC ∠'=︒,B '与A 重合,M 是BC 的中点, 1122BM BC ∴==; ②如图2,当90MB C ∠'=︒,90A ∠=︒,AB AC =,45C ∴∠=︒,CMB ∴∆'是等腰直角三角形,CM ∴=',沿MN 所在的直线折叠B ∠,使点B 的对应点B ',BM B M ∴=',CM ∴=, 21BC =,1CM BM BM ∴+=+,1BM ∴=,综上所述,若△MB C '为直角三角形,则BM 12+或1,12或1.三、解答题(本题共8个小题,满分75分)16.解:2(2)()()5()x y x y x y x x y ++−+−−222224455x xy y x y x xy =+++−−+9xy =当1x +,1y =时,原式1)=9(21)=⨯−91=⨯9=17.解:(1)调查的总人数是1632%50÷=(人), 则5016%8b =⨯=,504168220a =−−−−=, A 组所占的百分比是48%50=,则8m =. 82028a b +=+=. 故答案是:50,28,8;(2)扇形统计图中扇形C 的圆心角度数是2036014450︒⨯=︒; (3)每月零花钱的数额x 在60120x <范围的人数是28100056050⨯=(人). 18.(1)证明:AB 是O 的直径,90BDA ∴∠=︒,BD AC ∴⊥,90BDC ∠=︒, BF 切O 于B ,AB BF ∴⊥,//CF AB ,CF BF ∴⊥,FCB ABC ∠=∠,AB AC =,ACB ABC ∴∠=∠,ACB FCB ∴∠=∠, BD AC ⊥,BF CF ⊥,BD BF ∴=;(2)解:10AB =,AB AC =,10AC ∴=, 4CD =,1046AD ∴=−=,在Rt ADB ∆中,由勾股定理得:8BD ==,在Rt BDC ∆中,由勾股定理得:BC ==19.解:如图作CE AB ⊥于E .在Rt ACE ∆中,45A ∠=︒,AE EC ∴=,设AE EC x ==,则5BE x =−,在Rt BCE ∆中,tan53EC BE ︒=,∴435x x =−,解得20x =, 20AE EC ∴==,28.2AC ∴==,25sin53EC BC ==︒, A ∴船到C 的时间28.20.9430≈=小时,B 船到C 的时间25125==小时, C ∴船至少要等待0.94小时才能得到救援.20.解:(1)将(3,1)B 代入k y x =,3k ∴=, 将(,3)A m 代入3y x=,1m ∴=,(1,3)A ∴, 将(1,3)A 代入y x b =−+,4b ∴=,4y x ∴=−+(2)设(,)P x y ,由(1)可知:13x ,4PD y x ∴==−+,OD x =,1(4)2S x x ∴=−+, ∴由二次函数的图象可知:S 的取值范围为:322S 故答案为:(1)4y x =−+;3y x =. 21.(按买3个A 种魔方和买4个B 种魔方钱数相同解答) 解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:2613034x y x y +=⎧⎨=⎩,解得:2015x y =⎧⎨=⎩.答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.(2)设购进A 种魔方m 个(050)m <,总价格为w 元,则购进B 种魔方(100)m −个, 根据题意得:()200.8151000.410600w m m m =⨯+−⨯=+活动一;()2015100101500w m m m m =+−−=−+活动二.当w w <活动一活动二时,有10600101500m m +<−+,解得:45m <;当w w =活动一活动二时,有10600101500m m +=−+,解得:45m =;当w w >活动一活动二时,有10600101500m m +>−+,解得:4550m <.综上所述:当45m <时,选择活动一购买魔方更实惠;当45m =时,选择两种活动费用相同;当45m >时,选择活动二购买魔方更实惠.(按购买3个A 种魔方和4个B 种魔方需要130元解答)解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据题意得:2613034130x y x y +=⎧⎨+=⎩,解得:2613x y =⎧⎨=⎩. 答:A 种魔方的单价为26元/个,B 种魔方的单价为13元/个.(2)设购进A 种魔方m 个(050)m <,总价格为w 元,则购进B 种魔方(100)m −个, 根据题意得:()260.8131000.415.6520w m m m =⨯+−⨯=+活动一;()26131001300w m m m =+−−=活动二.当w w <活动一活动二时,有15.65201300m +<,解得:50m <;当w w =活动一活动二时,有15.65201300m +=,解得:50m =;当w w >活动一活动二时,有15.65201300m +>,不等式无解.综上所述:当050m <<时,选择活动一购买魔方更实惠;当50m =时,选择两种活动费用相同.22.解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE=,AB AC=,AD AE=,BD CE∴=,PM PN∴=,//PN BD,DPN ADC∴∠=∠,//PM CE,DPM DCA∴∠=∠,90BAC∠=︒,90ADC ACD∴∠+∠=︒,90 MPN DPM DPN DCA ADC∴∠=∠+∠=∠+∠=︒,PM PN∴⊥,故答案为:PM PN=,PM PN⊥,(2)由旋转知,BAD CAE∠=∠,AB AC=,AD AE=,()ABD ACE SAS∴∆≅∆,ABD ACE∴∠=∠,BD CE=,同(1)的方法,利用三角形的中位线得,12PN BD=,12PM CE=,PM PN∴=,PMN∴∆是等腰三角形,同(1)的方法得,//PM CE,DPM DCE∴∠=∠,同(1)的方法得,//PN BD,PNC DBC∴∠=∠,DPN DCB PNC DCB DBC∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC=∠+∠=∠+∠+∠ACB ABD DBC ACB ABC=∠+∠+∠=∠+∠,90BAC∠=︒,90ACB ABC∴∠+∠=︒,90MPN∴∠=︒,PMN∴∆是等腰直角三角形,(3)方法1、如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,AM ∴=在Rt ABC ∆中,10AB AC ==,AN =MN ∴==最大,22211114922242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2、由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大23.解:(1)23y x c =−+与x 轴交于点(3,0)A ,与y 轴交于点B , 02c ∴=−+,解得2c =,(0,2)B ∴,抛物线243y x bx c =−++经过点A ,B ,∴12302b c c −++=⎧⎨=⎩,解得1032b c ⎧=⎪⎨⎪=⎩, ∴抛物线解析式为2410233y x x =−++; (2)①由(1)可知直线解析式为223y x =−+, (,0)M m 为x 轴上一动点,过点M 且垂直于x 轴的直线与直线AB 及抛物线分别交于点P ,N ,2(,2)3P m m ∴−+,2410(,2)33N m m m −++, 223PM m ∴=−+,3AM m =−,22410242(2)43333PN m m m m m =−++−−+=−+, BPN ∆和APM ∆相似,且BPN APM ∠=∠,90BNP AMP ∴∠=∠=︒或90NBP AMP ∠=∠=︒,当90BNP ∠=︒时,则有BN MN ⊥,N ∴点的纵坐标为2,24102233m m ∴−++=,解得0m =(舍去)或 2.5m =, (2.5,0)M ∴;当90NBP ∠=︒时,过点N 作NC y ⊥轴于点C ,则90NBC BNC ∠+∠=︒,NC m =,22410410223333BC m m m m =−++−=−+, 90NBP ∠=︒,90NBC ABO ∴∠+∠=︒,ABO BNC ∴∠=∠,Rt NCB Rt BOA ∴∆∆∽, ∴NC CB OB OA=, ∴24103323m m m −+=,解得0m =(舍去)或118m =, 11(8M ∴,0); 综上可知当以B ,P ,N 为顶点的三角形与APM ∆相似时,点M 的坐标为(2.5,0)或11(8,0);②由①可知(,0)M m ,2(,2)3P m m −+,2410(,2)33N m m m −++, M ,P ,N 三点为“共谐点”, ∴有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点,当P 为线段MN 的中点时,则有224102(2)2333m m m −+=−++,解得3m =(三点重合,舍去)或12m =; 当M 为线段PN 的中点时,则有224102(2)0333m m m −++−++=,解得3m =(舍去)或1m =−;当N 为线段PM 的中点时,则有2241022(2)333m m m −+=−++,解得3m =(舍去)或14m =−; 综上可知当M ,P ,N 三点成为“共谐点”时m 的值为12或1−或14−.2018年河南省中考数学试卷一、选择题1.B .2.C .3.D .4.C .5.B .6.A .7.B .8.D .9.A .10.C .二、细心填一填11.2.12.140︒.13.2−.14.5342π−.15. 或4;三、计算题(本大题共8题,共75分,请认真读题)16.解:当1x 时,原式(1)(1)1x x x x x−+−=+1x =−=17.解:(1)本次接受调查的市民人数为30015%2000÷=人,故答案为:2000;(2)扇形统计图中,扇形E 的圆心角度数是16036028.82000︒⨯=︒,故答案为:28.8︒; (3)D 选项的人数为200025%500⨯=, 补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为9040%36⨯=(万人).18.解:(1)反比例函数(0)k y x x=>的图象过格点(2,2)P , 224k ∴=⨯=, ∴反比例函数的解析式为4y x=; (2)如图所示:矩形OAPB 、矩形OCDP 即为所求作的图形.19.(1)证明:连接OC ,如图, CE 为切线,OC CE ∴⊥,90OCE ∴∠=︒,即1490∠+∠=︒,DO AB ⊥,390B ∴∠+∠=︒,而23∠=∠,290B ∴∠+∠=︒,而OB OC =,4B ∴∠=∠,12∴∠=∠,CE FE ∴=;(2)解:①当30D ∠=︒时,60DAO ∠=︒,而AB 为直径,90ACB ∴∠=︒,30B ∴∠=︒,3260∴∠=∠=︒,而CE FE =,CEF ∴∆为等边三角形,CE CF EF ∴==,同理可得60GFE ∠=︒,利用对称得FG FC =,FG EF =,FEG ∴∆为等边三角形,EG FG ∴=,EF FG GE CE ∴===,∴四边形ECFG 为菱形;②当22.5D ∠=︒时,67.5DAO ∠=︒,而OA OC =,67.5OCA OAC ∴∠=∠=︒,18067.567.545AOC ∴∠=︒−︒−︒=︒,45AOC ∴∠=︒,45COE ∴∠=︒,利用对称得45EOG ∠=︒,90COG ∴∠=︒,易得OEC OEG ∆≅∆,90OGE OCE ∴∠=∠=︒,∴四边形ECOG 为矩形,而OC OG =,∴四边形ECOG 为正方形.故答案为30︒,22.5︒.20.解:在Rt ACE ∆中,tan CE CAE AE ∠=, 15515521()tan tan82.47.5CE AE cm CAE ∴==≈≈∠︒ 在Rt DBF ∆中,tan DF DBF BF ∠=, 23423440()tan tan80.3 5.85DF BF cm DBF ∴==≈=∠︒ 219040151()EF EA AB BF cm =++≈++=CE EF ⊥,CH DF ⊥,DF EF ⊥∴四边形CEFH 是矩形,151CH EF cm ∴==答:高、低杠间的水平距离CH 的长为151cm .21.解;(1)设y 关于x 的函数解析式为y kx b =+,8517595125k b k b +=⎧⎨+=⎩,得5600k b =−⎧⎨=⎩, 即y 关于x 的函数解析式是5600y x =−+,当115x =时,511560025y =−⨯+=,即m 的值是25;(2)设成本为a 元/个,当85x =时,875175(85)a =⨯−,得80a =,22(5600)(80)51000480005(100)2000w x x x x x =−+−=−+−=−−+,∴当100x =时,w 取得最大值,此时2000w =,故答案为:80,100,2000;(3)设科技创新后成本为b 元,当90x =时,(590600)(90)3750b −⨯+−,解得,65b ,答:该产品的成本单价应不超过65元.22.解:(1)问题发现①如图1,40AOB COD ∠=∠=︒,COA DOB ∴∠=∠,OC OD =,OA OB =,()COA DOB SAS ∴∆≅∆,AC BD ∴=, ∴1AC BD=, ②COA DOB ∆≅∆,CAO DBO ∴∠=∠,40AOB ∠=︒,140OAB ABO ∴∠+∠=︒,在AMB∆180()180()18014040AMB CAO OAB ABD DBO OAB ABD ∠=︒−∠+∠+∠=︒−∠+∠+∠=︒−︒=︒,故答案为:①1;②40︒;(2)类比探究如图2,AC BD=90AMB ∠=︒,理由是: Rt COD ∆中,30DCO ∠=︒,90DOC ∠=︒,∴tan 30OD OC =︒同理得:tan 30OB OA =︒=,∴OD OB OC OA =, 90AOB COD ∠=∠=︒,AOC BOD ∴∠=∠,AOC BOD ∴∆∆∽,∴AC OC BD OD==CAO DBO ∠=∠, 在AMB ∆中,180()180()90AMB MAB ABM OAB ABM DBO ∠=︒−∠+∠=︒−∠+∠+∠=︒;(3)拓展延伸①点C 与点M 重合时,如图3,同理得:AOC BOD ∆∆∽,90AMB ∴∠=︒,AC BD=设BD x =,则AC =,Rt COD ∆中,30OCD ∠=︒,1OD =,2CD ∴=,2BC x =−,Rt AOB ∆中,30OAB ∠=︒,OB =,2AB OB ∴==在Rt AMB ∆中,由勾股定理得:222AC BC AB +=,222)(2)x +−=,13x =,22x =−,AC ∴=②点C 与点M 重合时,如图4,同理得:90AMB ∠=︒,AC BD=设BD x =,则AC =,在Rt AMB ∆中,由勾股定理得:222AC BC AB +=,222)(2)x ++=13x =−,22x =,AC ∴=;综上所述,AC 的长为.23.解:(1)当0x =时,55y x =−=−,则(0,5)C −, 当0y =时,50x −=,解得5x =,则(5,0)B ,把(5,0)B ,(0,5)C −代入26y ax x c =++得253005a c c ++=⎧⎨=−⎩,解得15a b =−⎧⎨=−⎩,∴抛物线解析式为265y x x =−+−;(2)①解方程2650x x −+−=得11x =,25x =,则(1,0)A , (5,0)B ,(0,5)C −, OCB ∴∆为等腰直角三角形, 45OBC OCB ∴∠=∠=︒,AM BC ⊥,AMB ∴∆为等腰直角三角形,422AM AB ∴=== 以点A ,M ,P ,Q 为顶点的四边形是平行四边形,//AM PQ ,PQ AM ∴==PQ BC ⊥,作PD x ⊥轴交直线BC 于D ,如图1,则45PDQ ∠=︒,4PD ∴===,设2(,65)P m m m −+−,则(,5)D m m −, 当P 点在直线BC 上方时,2265(5)54PD m m m m m =−+−−−=−+=,解得11m =,24m =,当P 点在直线BC 下方时,225(65)54PD m m m m m =−−−+−=−=,解得1m =,2m =,综上所述,P 点的横坐标为4;②作AN BC ⊥于N ,NH x ⊥轴于H ,作AC 的垂直平分线交BC 于1M ,交AC 于E ,如图2,11M A M C =,11ACM CAM ∴∠=∠,12AM B ACB ∴∠=∠, ANB ∆为等腰直角三角形,2AH BH NH ∴===,(3,2)N ∴−,易得AC 的解析式为55y x =−,E 点坐标为1(2,5)2−,设直线1EM 的解析式为15y x b =−+,把1(2E ,5)2−代入得15102b −+=−,解得125b =−,∴直线1EM 的解析式为11255y x =−−,解方程组511255y x y x =−⎧⎪⎨=−−⎪⎩得136176x y ⎧=⎪⎪⎨⎪=−⎪⎩,则113(6M ,17)6−; 作直线BC 上作点1M 关于N 点的对称点2M ,如图2,则212AM C AM B ACB ∠=∠=∠, 设2(,5)M x x −,13632x+=,236x ∴=,223(6M ∴,7)6−, 综上所述,点M 的坐标为13(6,17)6−或23(6,7)6−.2019年河南省中考数学试卷一、选择题1.B .2.C .3.B .4.D .5.A .6.A .7.C .8.C .9.A .10.D . 二、填空题11.112. 12.2x −. 13.49.14.解:作OE AB ⊥于点F ,在扇形AOB 中,120AOB ∠=︒,半径OC 交弦AB 于点D ,且OC OA ⊥.OA = 90AOD ∴∠=︒,90BOC ∠=︒,OA OB =, 30OAB OBA ∴∠=∠=︒,tan302OD OA ∴=︒==,4AD =,226AB AF ==⨯=,OF , 2BD ∴=,∴阴影部分的面积是:AOD BDOOBC S S S π∆∆+−==扇形,π.15.解:分两种情况:①当点B '落在AD 边上时,如图1. 四边形ABCD 是矩形, 90BAD B ∴∠=∠=︒,将ABE ∆沿AE 折叠,点B 的对应点B '落在AD 边上, 1452BAE B AE BAD ∴∠=∠'=∠=︒,AB BE ∴=, ∴315a =, 53a ∴=; ②当点B '落在CD 边上时,如图2.四边形ABCD 是矩形,90BAD B C D ∴∠=∠=∠=∠=︒,AD BC a ==.将ABE ∆沿AE 折叠,点B 的对应点B '落在CD 边上, 90B AB E ∴∠=∠'=︒,1AB AB ='=,35EB EB a ='=,DB ∴'=,3255EC BC BE a a =−=−=.在ADB ∆'与△B CE '中,9090B AD EB C AB DD C ∠'=∠'=︒−∠'⎧⎨∠=∠=︒⎩, ADB ∴∆'∽△B CE ',∴DB AB CE B E ''='1355a a =,解得13a =,20a =(舍去). 综上,所求a 的值为53或故答案为53.三、解答题(本大题共8个小题,满分75分) 16.解:原式212(2)()22(2)x x x x x x x +−−=−÷−−− 322x x x −=−3x=,当x ===17.解:(1)证明:如图1,BA BC =,90ABC ∠=︒,45BAC ∴∠=︒AB 是O 的直径, 90ADBAEB ∴∠=∠=︒,90DAF BGD DBG BGD ∴∠+∠=∠+∠=︒ DAF DBG ∴∠=∠ 90ABD BAC ∠+∠=︒ 45ABD BAC ∴∠=∠=︒AD BD ∴=()ADF BDG ASA ∴∆≅∆;(2)①如图2,过F 作FH AB ⊥于H ,点E 是BD 的中点,BAE DAE ∴∠=∠FD AD ⊥,FH AB ⊥FH FD ∴=sin sin 452FH ABD BF =∠=︒=,∴FD BF =,即BF4AB =,4cos 45BD ∴=︒=BF FD +=,1)FD =4FD ∴=−4−②连接OE ,EH ,点H 是AE 的中点,OH AE ∴⊥, 90AEB ∠=︒BE AE ∴⊥//BE OH ∴四边形OBEH 为菱形, 12BE OH OB AB ∴=== 1sin 2BE EAB AB ∴∠==30EAB ∴∠=︒.故答案为:30︒18.解:(1)在这次测试中,七年级在80分以上(含80分)的有15823+=人, 故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79, 777877.52m +∴==,故答案为:77.5; (3)甲学生在该年级的排名更靠前,七年级学生甲的成绩大于中位数78分,其名次在该班25名之前, 八年级学生乙的成绩小于中位数78分,其名次在该班25名之后, ∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为515840022450++⨯=(人). 19.解:90ACE ∠=︒,34CAE ∠=︒,55CE m =, tan CECAE AC∴∠=,5582.1tan340.67CE AC m ∴==≈︒,21AB m =,61.1BC AC AB m ∴=−=,在Rt BCD ∆中,tan 60CDBC︒==,1.7361.1105.7CD m ∴=≈⨯≈, 105.75551DE CD EC m ∴=−=−≈,答:炎帝塑像DE 的高度约为51m .20.解:(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得3212054210x y x y +=⎧⎨+=⎩,∴3015x y =⎧⎨=⎩,A ∴的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30)z −个,购买奖品的花费为W 元, 由题意可知,1(30)3zz −,152z∴, 3015(30)45015W z z z =+−=+,当8z =时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少; 21.解:(1)x ,y 都是边长,因此,都是正数, 故点(,)x y 在第一象限,答案为:一; (2)图象如下所示:(3)①把点(2,2)代入2m y x =−+得:222m=−+,解得:8m =, 即:0个交点时,8m <;1个交点时,8m =; 2个交点时,8m >; ②在直线平移过程中,交点个数有:0个、1个、2个三种情况, 联立4y x =和2my x =−+并整理得:21402x mx −+=, △214404m =−⨯时,两个函数有交点,解得:8m ;(4)由(3)得:8m .22.解:(1)如图1中,延长CP 交BD 的延长线于E ,设AB 交EC 于点O .60PAD CAB ∠=∠=︒,CAP BAD ∴∠=∠, CA BA =,PA DA =,()CAP BAD SAS ∴∆≅∆,PC BD ∴=,ACP ABD ∠=∠,AOC BOE ∠=∠,60BEO CAO ∴∠=∠=︒,∴1BDPC=,线BD 与直线CP 相交所成的较小角的度数是60︒,故答案为1,60︒.(2)如图2中,设BD 交AC 于点O ,BD 交PC 于点E .45PAD CAB ∠=∠=︒,PAC DAB ∴∠=∠,AB ADAC AP =DAB PAC ∴∆∆∽,PCA DBA ∴∠=∠,BD ABPC AC== EOC AOB ∠=∠,45CEO OABB ∴∠=∠=︒,∴直线BD 与直线CP 相交所成的小角的度数为45︒.(3)如图31−中,当点D 在线段PC 上时,延长AD 交BC 的延长线于H .CE EA =,CF FB =,//EF AB ∴,45EFC ABC ∴∠=∠=︒, 45PAO ∠=︒,PAO OFH ∴∠=∠, POA FOH ∠=∠,H APO ∴∠=∠, 90APC ∠=︒,EA EC =,PE EA EC ∴==,EPA EAP BAH ∴∠=∠=∠,H BAH ∴∠=∠,BH BA ∴=, 45ADP BDC ∠=∠=︒,90ADB ∴∠=︒,BD AH ∴⊥,22.5DBA DBC ∴∠=∠=︒, 90ADB ACB ∠=∠=︒,A ∴,D ,C ,B 四点共圆, 22.5DAC DBC ∠=∠=︒,22.5DCA ABD ∠=∠=︒,22.5DAC DCA∴∠=∠=︒,DA DC∴=,设AD a=,则DC AD a==,PD=,∴2ADCP==如图32−中,当点P在线段CD上时,同法可证:DA DC=,设AD a=,则CD AD a==,PD=,2PC a a∴=−,∴2ADPC==+23.解:(1)当0x=时,1222y x=−−=−,∴点C的坐标为(0,2)−;当0y=时,1202x−−=,解得:4x=−,∴点A的坐标为(4,0)−.将(4,0)A−,(0,2)C−代入212y ax x c=++,得:16202a cc−+=⎧⎨=−⎩,解得:142ac⎧=⎪⎨⎪=−⎩,∴抛物线的解析式为211242y x x=+−.(2)①PM x⊥轴,90PMC∴∠≠︒,∴分两种情况考虑,如图1所示.()i当90MPC∠=︒时,//PC x轴,∴点P的纵坐标为2−.当2y=−时,2112242x x+−=−,解得:12x=−,2x=,∴点P的坐标为(2,2)−−;()ii当90PCM∠=︒时,设PC与x轴交于点D.90OAC OCA∠+∠=︒,90OCA OCD∠+∠=︒,OAC OCD∴∠=∠.又90AOC COD ∠=∠=︒,AOC COD ∴∆∆∽, ∴OD OC OC OA=,即224OD =,1OD ∴=,∴点D 的坐标为(1,0).设直线PC 的解析式为(0)y kx b k =+≠, 将(0,2)C −,(1,0)D 代入y kx b =+,得:20b k b =−⎧⎨+=⎩,解得:22k b =⎧⎨=−⎩,∴直线PC 的解析式为22y x =−. 联立直线PC 和抛物线的解析式成方程组,得:22211242y x y x x =−⎧⎪⎨=+−⎪⎩, 解得:1102x y =⎧⎨=−⎩,22610x y =⎧⎨=⎩,点P 的坐标为(6,10).综上所述:当PCM ∆是直角三角形时,点P 的坐标为(2,2)−−或(6,10). ②当0y =时,2112042x x +−=,解得:14x =−,22x =,∴点B 的坐标为(2,0).点P 的横坐标为(0m m >且0)m ≠,∴点P 的坐标为211(,2)42m m m +−,∴直线PB 的解析式为11(4)(4)42y m x m =+−+(可利用待定系数求出). 点B ,B '关于点C 对称,点B ,B ',P 到直线l 的距离都相等, ∴直线l 过点C ,且直线//l 直线PB ,∴直线l 的解析式为1(4)24y m x =+−.2020年河南省中考数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.A 2.D 3.C 4.B 5.A 6.C 7.A 8.C 9.B 10.D二、填空题(每小题3分,共15分)11.√3 12.x >a 13.14 14.1 15.6√2+π3三、解答题(本大题共8个小题,满分75分)16.解:(1−1a+1)÷a a 2−1 =a+1−1a+1×(a−1)(a+1)a =a ﹣1, 把a =√5+1代入a ﹣1=√5+1﹣1=√5.17.解:(1)将乙的成绩从小到大排列后,处在中间位置的两个数都是501,因此中位数是501,b =3÷20=15%,故答案为:501,15%;(2)选择乙机器,理由:乙的不合格率较小,18.解:(1)过A 作AD ⊥PM 于D ,延长BC 交AD 于E ,则四边形BMNC ,四边形BMDE 是矩形,∴BC =MN =16m ,DE =CN =BM =1.6m ,∵∠AEC =90°,∠ACE =45°,∴△ACE 是等腰直角三角形,∴CE =AE ,设AE =CE =x ,∴BE =16+x ,∵∠ABE =22°,∴tan22°=AE BE =x 16+x =0.40,∴x ≈10.7(m ),∴AD =10.7+1.6=12.3(m ),答:观星台最高点A 距离地面的高度约为12.3m ;(2)∵“景点简介”显示,观星台的高度为12.6m ,∴本次测量结果的误差为12.6﹣12.3=0.3(m ),减小误差的合理化建议为:为了减小误差可以通过多次测量取平均值的方法.19.解:(1)∵y 1=k 1x +b 过点(0,30),(10,180),∴{b =3010k 1+b =180,解得{k 1=15b =30, k 1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b =30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),则k 2=25×0.8=20;(3)选择方案一所需费用更少.理由如下:由题意可知,y 1=15x +30,y 2=20x . 当健身8次时,选择方案一所需费用:y 1=15×8+30=150(元),选择方案二所需费用:y 2=20×8=160(元),∵150<160,∴选择方案一所需费用更少.20.解:已知:如图2,点A ,B ,O ,C 在同一直线上,EB ⊥AC ,垂足为点B ,AB =OB ,EN 切半圆O 于F .求证:EB ,EO 就把∠MEN 三等分,证明:∵EB ⊥AC ,∴∠ABE =∠OBE =90°,∵AB =OB ,BE =BE ,∴△ABE ≌△OBE (SAS ),∴∠1=∠2,∵BE ⊥OB ,∴BE 是⊙O 的切线,∵EN 切半圆O 于F ,∴∠2=∠3,∴∠1=∠2=∠3,∴EB ,EO 就把∠MEN 三等分.故答案为:AB =OB ,EN 切半圆O 于F ;EB ,EO 就把∠MEN 三等分.21.解:(1)∵抛物线y =﹣x 2+2x +c 与y 轴正半轴交于点B ,∴点B (0,c ),∵OA =OB =c ,∴点A (c ,0),∴0=﹣c 2+2c +c ,∴c =3或0(舍去),∴抛物线解析式为:y =﹣x 2+2x +3,∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴顶点G 的坐标为(1,4);(2)∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴对称轴为直线x =1,∵点M ,N 为抛物线上两点(点M 在点N 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,∴点M 的横坐标为﹣2或4,点N 的横坐标为6,∴点M 坐标为(﹣2,﹣5)或(4,﹣5),点N 坐标为(6,﹣21), ∵点Q 为抛物线上点M ,N 之间(含点M ,N )的一个动点,∴﹣21≤y Q ≤4或﹣21≤y Q ≤﹣5.22.解:(1)∵点D 为BC ̂的中点,∴BD ̂=CD ̂,∴BD =CD =a =5.0cm ,故答案为:5.0;(2)∵点A 是线段BC 的中点,∴AB =AC ,∵CF ∥BD ,∴∠F =∠BDA ,又∵∠BAD =∠CAF ,∴△BAD ≌△CAF (AAS ),∴BD =CF ,∴线段CF 的长度无需测量即可得到;(3)由题意可得:(4)由题意画出函数y CF 的图象;由图象可得:BD =3.8cm 或5.0cm 或6.2cm 时,△DCF 为等腰三角形.23.解:(1)如图1,∵AB 绕点A 逆时针旋转至AB ′,∴AB =AB ',∠BAB '=60°,∴△ABB '是等边三角形,∴∠BB 'A =60°,∴∠DAB '=∠BAD ﹣∠BAB '=90°﹣60°=30°,∵AB '=AB =AD ,∴∠AB 'D =∠ADB ',∴∠AB 'D =180°−30°2=75°, ∴∠DB 'E =180°﹣60°﹣75°=45°,∵DE ⊥B 'E ,∴∠B 'DE =90°﹣45°=45°,∴△DEB '是等腰直角三角形.∵四边形ABCD 是正方形,∴∠BDC =45°,∴BD DC =√2, 同理B′D DE =√2,∴BD DC =B′D DE ,∵∠BDB '+∠B 'DC =45°,∠EDC +∠B 'DC =45°,∴∠BDB '=∠EDC ,∴△BDB '∽△CDE ,∴BB′CE =BD DC=√2. 故答案为:等腰直角三角形,BB′CE =√2.(2)①两结论仍然成立.证明:连接BD,∵AB=AB',∠BAB'=α,∴∠AB'B=90°−α2,∵∠B'AD=α﹣90°,AD=AB',∴∠AB'D=135°−α2,∴∠EB'D=∠AB'D﹣∠AB'B=135°−α2−(90°−α2)=45°,∵DE⊥BB',∴∠EDB'=∠EB'D=45°,∴△DEB'是等腰直角三角形,∴DB′DE=√2,∵四边形ABCD是正方形,∴BDCD=√2,∠BDC=45°,∴BDCD=DB′DE,∵∠EDB'=∠BDC,∴∠EDB'+∠EDB=∠BDC+∠EDB,即∠B'DB=∠EDC,∴△B'DB∽△EDC,∴BB′CE=BDCD=√2.②BEB′E=3或1.若CD为平行四边形的对角线,点B'在以A为圆心,AB为半径的圆上,取CD的中点.连接BO交⊙A于点B',过点D作DE⊥BB'交BB'的延长线于点E,由(1)可知△B'ED是等腰直角三角形,∴B'D=√2B'E,由(2)①可知△BDB'∽△CDE,且BB'=√2CE.∴BEB′E=B′B+B′EB′E=BB′B′E+1=√2CEB′E+1=√2B′DB′E+1=√2×√2+1=3.若CD为平行四边形的一边,如图3,点E与点A重合,∴BEB′E=1.综合以上可得BEB′E=3或1.。
机密★启用前[考试时间:6 月13 日上午9:00~11:00]2016 年高中阶段教育学校招生统一考试数学本试题卷分第一部分(选择题)和第二部分(非选择题).第一部分1 至2 页,第二部分3 至6 页,共6 页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分120 分.考试时间120 分钟.考试结束后,将本试题卷和答题卡一并交回.第一部分(选择题共 30 分)注意事项:1.选择题必须使用 2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上.2.本部分共10 小题,每小题3 分,共30 分.一、选择题:本大题共10 个小题,每小题3 分,共30 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,不是负数的是()A. -2B. 3C. -58D.-0.102.计算(ab2)3的结果,正确的是()A.a3b6B. a3b5C. ab6D. ab53.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列说法中正确的是( )A.“打开电视,正在播放《新闻联播》”是必然事件B.“x2< 0 (x 是实数)”是随机事件C.掷一枚质地均匀的硬币10 次,可能有 5 次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查5.化简m2+n2的结果是()m -n n -mA.m +n B.n -m C.m -n D.-m -n6.下列关于矩形的说法中正确的是(A.对角线相等的四边形是矩形)B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分形 7. 若 x = -2 是关于 x 的一元二次方程 x 2 +3ax - a 2 = 0 的一个根,则 a 的值为( )2A . -1或 4B . -1 或-4C .1或-4D . 1或48. 如图 1,点 D (0, 3) , O (0, 0) , C (4, 0) 在 A 上, BD 是 A 的一条弦,则sin ∠OBD = ( )13A.B . 24 43C .D .5 59. 如图2 ,二次函数 y = ax 2 + bx + c (a > 0) 图象的顶点为 D ,其图象与 x 轴的交点 A 、B 的横坐标分别为-1和3 ,则下列结论正确的是( ) A. 2a - b = 0 B. a + b + c > 01C. 3a - c = 0D. 当 a = 时, ∆ABD 是等腰直角三角210. 如图 3,正方形纸片 ABCD 中,对角线 AC 、 BD 交于点O ,折叠正方形纸片 ABCD ,使 AD 落在 BD 上,点 A 恰好与 BD 上的点 F 重合,展开后折痕 DE 分别交 AB 、 AC 于 点 E 、G ,连结GF .给出下列结论:① ∠ADG = 22.5 ;② tan ∠AED = 2 ;③S ∆AGD = S ∆OGD ;④四边形 AEFG 是菱形;⑤ BE = 2OG ;⑥若 S ∆OGF = 1 ,则正方形ABCD 的面积是6 + 4 2 .其中正确的结论个数为()A .2B .3C .4D .5注意事项:第二部分(非选择题 共 90 分)1. 必须使用 0.5 毫米的黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作 图题可先用铅笔绘出,确认后再用 0.5 毫米的黑色墨迹签字笔描清楚.答在试题卷上无效.2. 本部分共 14 小题,共 90 分.二、填空题:本大题共 6 小题,每小题 4 分,共 24 分.y DA xOCB图2图1图33 4 x O图511. 月球的半径约为 1 738 000 米,1 738 000 这个数用科学记数法表示为 .12. 对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如表:年龄 13 14 15 16 17 18人数4 56 6 72则这些学生年龄的众数是.13. 如果一个正多边形的每个外角都是30 ,那么这个多边形的内角和为 . 14. 设 x 、x 是方程5x 2 - 3x - 2 = 0 的两个实数根,则1+1的值为.121 215. 已知关于 x 的分式方程.kx +1 + x + k= 1 的解为负数,则 k 的取值范围是x -1A16. 如图 4, ∆ABC 中, ∠C = 90 , AC = 3 , AB = 5 ,D 为 BC 边的中点,以 AD 上一点O 为圆心的 OBD C和 AB 、 BC 均相切,则 O 的半径为.三、解答题:本大题共 8 小题,共 66 分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分 6 分)计算: + 20160- - 2 +118.(本小题满分 6 分)如图 5,在平面直角坐标系中,直角∆ABC 的三个顶点分别是A (-3,1) ,B (0, 3) ,C (0,1) .(1) 将∆ABC 以点C 为旋转中心旋转180 ,画出旋转后对应的∆A 1B 1C 1; y(2) 分别连结 AB 1 、 BA 1后,求四边形 AB 1A 1B 的面积.xCAB图4x喜爱月饼情况 扇形统计图很喜欢” 月饼的同学最爱 吃的月饼品种条形统计图比较喜欢 25%不喜欢很喜欢40%19.(本小题满分 6 分)中秋佳节我国有赏月和吃月饼的传统,某校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了 60 名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(图 6).(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1) 在扇形统计图中,“很喜欢”的部分所对应的扇形圆心角为 度;在条形统计图中,喜欢“豆沙”月饼的学生有 人;(2) 若该校共有学生 900 人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”月饼的共有人;(3) 甲同学最爱吃云腿月饼,乙同学最爱吃豆沙月饼.现有重量、包装完全一样的云腿、豆沙、莲蓉、蛋黄四种月饼各一个,让甲、乙每人各选一个,请用画树状图法或列表法求出甲、乙两人中有且只有一人选中自己最爱吃的月饼的概率.20.(本小题满分 8 分)如图 7,在平面直角坐标系中, O 为坐标原点, ∆ABO 的边 AB 垂直于x k轴,垂足为点 B ,反比例函数 y =OB = 4 , AD = 3 .(x > 0) 的图象经过 AO 的中点C ,且与 AB 相交于点 D ,x(1) 求反比例函数 y =k 的解析式;x(2) 求cos ∠OAB 的值;(3) 求经过C 、 D 两点的一次函数解析式.8品种其他豆沙 莲蓉 云腿 36人数图6yACDxBO图7BCPOQD A图9图821. (本小题满分 8 分)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过 14 吨(含 14 吨),则每吨按政府补贴优惠价 m 元收费;若每月用水量超过 14 吨,则超过部分每吨按市场价 n 元收费.小明家 3 月份用水 20 吨,交水费 49 元;4 月份用水 18 吨,交水费 42 元.(1) 求每吨水的政府补贴优惠价和市场价分别是多少?(2) 设每月用水量为 x 吨,应交水费为 y 元,请写出 y 与 x 之间的函数关系式; (3) 小明家 5 月份用水 26 吨,则他家应交水费多少元?22.(本小题满分 8 分)如图 8,在矩形 ABCD 中,点 F 点 D 作 DE ⊥ AF ,垂足为点 E .(1) 求证: DE = AB ;(2) 以 A 为圆心, AB 长为半径作圆弧交 AF 于点G .若 BF = FC = 1,求扇形 ABG 的面积.(结果保留)23.(本小题满分 12 分)如图 9, 在∆AOB 中, ∠AOB 为直角, OA = 6 , OB = 8 .半径为2 的动圆圆心Q 从点O 出发,沿着OA 方向以 1 个单位长度/秒的速度匀速运动,同时动点 P 从点 A 出发,沿着 AB 方向也以 1 个单位长度/秒的速度匀速运动,设运动时间为t 秒(0 < t ≤ 5) .以 P 为圆心, PA 长为半径的 P 与 AB 、OA 的另一个交点分别为C 、 D ,连结CD 、QC .(1) 当t 为何值时,点Q 与点 D 重合?(2) 当 Q 经过点 A 时,求 P 被OB 截得的弦长;(3) 若 P 与线段QC 只有一个公共点,求t 的取值范围.ADEGBF CymA OQ PCx B 图10l24. (本小题满分 12 分)如图 10,抛物线 y = x 2 + bx + c 与 x 轴交于 A 、 B 两点, B 点坐标为(3, 0) ,与 y 轴交于点C (0, -3) .(1) 求抛物线的解析式;(2) 点 P 在抛物线位于第四象限的部分上运动,当四边形 ABPC 的面积最大时,求点P 的坐标和四边形 ABPC 的最大面积;(3) 直线l 经过 A 、C 两点,点Q 在抛物线位于 y 轴左侧的部分上运动,直线 m 经过点B 和点Q .是否存在直线 m ,使得直线l 、 m 与 x 轴围成的三角形和直线l 、 m 与 y 轴围成的三角形相似?若存在,求出直线 m 的解析式;若不存在,请说明理由.2016 年高中阶段教育学校招生统一考试数学参考答案及评分意见一、选择题(每题 3 分,共 30 分) 1、B 2、A 3、D 4、C 5、A 6、B 7、C 8、D 9、D 10、B二、填空题(每小题 4 分,共 24 分)316、11 、1.738⨯106 ;12 、 17 ; 13、 1800 ; 14 、 - ;1 6215 、 k > - 且k ≠ 0 ; 2 7三、解答题(本大题共 8 个小题,共 66 分)以下各题只提供参考解法,使用其它方法求解,按步骤相应给分.17、(6 分)解:原式= 2 +1- (2 - 3) +1 ................................ 3 分(注:分项给分)1 1O图5= 4 - 2 + = 2 +18、( 6 分)解:(1)…………………………5 分 …………………………………6 分yx (3)分1 1(2) S 四AB A B = 2 ⋅AA 1 ⋅ BB 1 = ⨯ 6 ⨯ 4 212 . (6)分19、(6 分)解:(1) 126, 4 .…………………………………………2 分 (2) 675…………………………………………3 分 (3) 甲 云腿 莲蓉豆沙蛋黄乙 莲 蓉 豆 沙 蛋 黄 云 腿 豆 沙 蛋 黄 云 腿 莲 蓉 蛋 黄 云 腿 莲 蓉 豆沙 .......................... 5 分P = 4 = 1 .............................................................................................................. 12 3分yA20、(8 分)解:(1)设 D (4, a ) , AB = 3 + a过点C 作CE ⊥ x 轴,垂足为 E , ∵ C 是 AO 的中点, C∴ CE 是∆AOB 的中位线, ……………1 分D 3 + a ∴点C (2, ) , ......................................................................................... 2 分 23 + a 由点C 和点 D 都在反比例函数图象上得: 2 ⨯ = 4a 2解得: a = 1 ,点 D (4,1) 反比例函数: y = 4 x(2) 由OB = AB = 4 得,……………3 分……………4 分B 1B 3 3 图7 xBE O A 11 ) C (C A6⎩ 1⎩∴ ∠OAB = 45 , cos ∠OAB =2……………5 分(3) 设直线CD 的函数关系式: y = k 1x + b (k 1 ≠ 0)⎧2 = 2k 1 + b∵ C (2, 2) , D (4,1) 在直线上,得⎨1 = 4k + b ..................................................... 6 分 ⎧k = - 1 ⎪ 1解得: ⎨ 2 .............................................................................................. 7 分⎪ b = 3 1 直线CD 的函数关系式: y = - 2x + 3 .............................................................. 8 分⎧14m + (20 -14)n = 49 21、(8 分)解:(1)由题意得: ⎨ ⎩14m + (18 -14)n = 42………………………2 分⎧ m = 2 解得: ⎨n = 3.5(2)当0 < x ≤ 14 时, y = 2x ;………………………4 分当 x > 14 时, y = 28 + (x -14) ⨯ 3.5 = 3.5x - 21⎧ 所以 y = ⎨⎩ 2x , 0 < x ≤ 14……………………7 分3.5x - 21, x > 14(3)当 x = 26 时, y = 3.5⨯ 26 - 21 = 70 (元) ...................................................... 8 分22、(8 分)(1)证明:∵ DE ⊥ AF ,∴ ∠AED = 90 ,又∵四边形 ABCD 是矩形, ∴ ∠ABF = 90 ,∴ ∠ABF = ∠AED = 90 , ......................................................................................... 1 分 又∵ AD // BC ∴ ∠DAE = ∠AFB , ……………………2 分E又∵ AF = AD ,G∴ ∆ADE ≌ ∆FAB ( A AS ) , ……………………3 分 BF ∴ DE = AB(2) ∵ BF = FC = 1, ∴ AD = BC = BF + FC = 2 ,……………………4 分又∵ ∆ADE ≌ ∆FAB ,∴ AF = AD = 2 , ........................................................... 5 分 ∴在 Rt ∆ABF 中, BF = 1AF ,∴ ∠BAF = 30 , ........................................... 6 分22A图8AF 2 - BF 2 22 -12 4 - ( )2 18 2 5 又∵ AB = = =3 , ............................................................... 7 分n r 230⨯3 1 ∴扇形 ABG 的面积= = =360 360 4……………………8 分23、(12 分)解:(1)在直角∆ABO 中, AO = 6 , BO = 8 ,∴ AB = 10cos ∠BAO =AO = 6 = 3 .......................................................................................1 分 AB 10 5∵ AC 是 P 的直径, ∴ ∠CDA = 90AD 3在直角∆ACD 中, cos ∠CAD = =AC 5∵ OQ = AP = t , AC = 2t , ∴ AD = 6 t 5∵点Q 与点 D 重合,∴ OQ + AD = OA = 6 t + 6 t = 6 ,解得: t = 30……………………2 分5当t = 11 30时,点Q 与点 D 重合 ............................................................................................. 3 分 11(2) ∵ Q 经过点 A , Q 的半径是2∴ AQ = 2 , OQ = 6 - 2 = 4 , t = 4 ∴ AP = 4 , BP = 10 - 4 = 6设 P 被OB 截得的弦为线段 EF ,过点 P 作 P M BP PM PM // OA , ∆BPM ∽ ∆BAO , =BA OA……………………4 分⊥ EF 于点M ,∴ 6 = PM , PM = 18 ............................................................................................. 5 分 10 6 5 连结 PE , PE = 4在直角∆PEM 中, EM =∴ EF = 2EM = 45(3) 当QC 与相 切P 时, AC ⊥ Q C3在直角∆ACQ 中, cos ∠CAQ == = .2..1.9 .................................................. 6 分 5……………………7 分5 10 5AC = 2t , AQ = AC = t , ....................................................................................... 8 分3 3∵ AQ = OA - OQ = 6 - tPE 2 - PM 2 19⎩ ⎩ ∴ 10 t = 6 - t ,得: t = 18 ..................................................................................... 9 分 3 13∴当0 < t ≤ 18时, P 与线段QC 只有一个公共点 (10)13分 又∵当t = 30 时,点Q 与点 D 重合, P 与线段QC 有两个公共点11∴当 30 < t ≤ 5 时, P 与线段QC 只有一个公共点 (11)11分综上,当0 < t ≤18 30 或< t ≤ 5 时, P 与线段QC 只有一个公共点1311……………………12 分24、(12 分)解:(1)∵抛物线 y = x 2 + bx + c 与 x 轴交于 B 点(3, 0) ,与 y 轴交于C (0, -3) .⎧9 + 3b + c = 0∴ ⎨c = -3分,∴ b = -2 ............................................................................................ 1 ∴抛物线的解析式: y = x 2 - 2x - 3 ................................................................................. 2 分(2) 抛物线 y = x 2 - 2x - 3 与 x 轴的交点 A (-1, 0) , AB = 41 1连结 BC , S 四ABPC = S ∆ABC + S ∆BCP , S ∆ABC = 2 AB ⋅ OC = 4 ⨯ 3⨯ 2= 6当 S ∆BCP 最大时,四边形 ABPC 的面积最大求出直线 BC 的函数关系式: y = x - 3 .......................................................................... 3 分平移直线 BC ,当平移后直线与抛物线 y = x 2 - 2x - 3 相切时,BC 边上的高最大, S ∆BCP 最大.设平移后直线关系式为: y = x - 3 - m⎧ y = x - 3 - m 2联立⎨ y = x 2- 2x - 3, x - 2x - 3 = x - 3 - m9 当∆ = 0 时, m =4∴平移后直线关系式为: y = x -21 4 ……………………4 分⎧ y = x - 21 ⎨⎪ 4 ⎧ , 解得: ⎨ x = 3 215 ⎩ y = x 2 - 2x - 3 ∴ 点 P ( 3 , - 15 2 4 ⎪ y = - ⎩ 4……………………5 分 过点 P 向 x 轴作垂线,与线段 BC 交于点 D 3 3 3 15 9 点 D ( , - ) , PD = - - (- ) =2 2 2 4 4 ∴ S ∆BCP 最大值= 9 ⨯ 3⨯ 1 = 27 , 4 2 8 ∴四边形 ABPC 的最大面积= 27 + 6 = 758 8 ……………………6 分(3) 存在,设直线 m 与 y 轴交于点 N ,与直线l 交于点 M ,设点 N 的坐标为(0, t )① 当l ⊥ m 时, ∠NOB = ∠NMC = 90∴ ∠MCN + ∠MNC = 90 , 又∵ ∠ONB = ∠MNC∴ ∠MCN = ∠OBN∵ ∠AMB = ∠NMC = 90∴ ∆AMB ∽ ∆NMC∠ONB + ∠OBN = 90求出直线l 的函数关系式: y l = -3x - 3∵ l ⊥ m ,设直线 m 的函数关系式: y m = 1 x + b 3∵直线 m 经过点 B (3, 0) ∴直线 m 的函数关系式: y m ……………………7 分= 1 x -1 ,此时 t = -1 3② 当-3 < t < -1时, ∠AMB < 90 , ∠CMB > 90∆AMB 是一个锐角三角形, ∆CMN 却是一个钝角三角形∴ ∆AMB 与∆CMN 不相似∴符合条件的直线 m 不存在)……………………8 分③ 当-1 < t < 0 时, ∠AMB > 90 , ∠CMB < 90∆AMB 是一个钝角三角形, ∆CMN 却是一个锐角三角形∴ ∆AMB 与∆CMN 不相似∴符合条件的直线 m 不存在……………………9 分④当0 < t < 1 时, ON < 1∴ OA > ON , OC OB∠MCN > ∠MBA 又∵ ∠CMN = ∠BMA (公共角)∴ ∆AMB 与∆CMN 不相似∴符合条件的直线 m 不存在 (10)分⑤当t = 1时, ON = 1∴OA = ON = 1 , ∠MCN = ∠MBA OC OB 3又∵ ∠CMN = ∠BMA (公共角)∴ ∆AMB ∽∆NMC ∵直线 m 经过点 B (3, 0) 和 N (0,1)∴直线 m 分的函数关系式: y = - 1 x +1 m 3……………………11 ⑥当t > 1时, ON > 1∴ OA < ON , OC OB∠MCN < ∠MBA 又∵ ∠CMN = ∠BMA (公共角)∴ ∆AMB 与∆CMN 不相似∴符合条件的直线 m 不存在 (12)分1 1综上,直线 m 的函数关系式为: y m = - 3 x +1或 y m = 3x -1“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2018年7月23日数学试卷一、选择题(共8小题;共24分)1. 的相反数是A. B. C. D.2. 某种细胞的直径是米,将用科学记数法表示为A. B. C. D.3. 下面几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是A. B.C. D.4. 下列计算正确的是A. B. C. D.5. 如图,过反比例函数的图象上一点作轴于点,连接,若,则的值为A. B. C. D.6. 如图,在中,,,,垂直平分交于点,则的长是A. B. C. D.7. 下面记录了甲、乙、丙、丁四名跳高运动员最好几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择A. 甲B. 乙C. 丙D. 丁8. 如图,已知菱形的顶点,,若菱形绕点逆时针旋转,每秒旋转,则第秒时,菱形的对角线交点的坐标为A. B. C. D.二、填空题(共7小题;共21分)9. 计算:.10. 如图,在平行四边形中,交对角线于点,若,则的度数为.11. 若关于的一元二次方程有两个不相等的实数根,则的取值范围是.12. 在“阳光体育”活动时间,班主任将全班同学随机分成了四组进行活动,该班小明和小亮同学被分在同一组的概率是.13. 已知,是抛物线上两点,该抛物线的顶点坐标是.14. 如图,在扇形中,,以点为圆心,的长为半径作交于点,若,则阴影部分的面积是.15. 如图,已知,,,点为射线上的一个动点,连接,将沿折叠,点落在点处,过点作的垂线,分别交,于点,,当点为线段的三等份点时,的长为.三、解答题(共8小题;共75分)16. 先化简,再求值.,其中的值从不等式组的整数解中选取.17. 在一次社会调查活动中,小华收集到某“健步走运动”团队中名成员一天行走的步数,记录如下:对这名数据按组距进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分布统计图根据以上信息解答下列问题.(1)填空:,.(2)请补全条形统计图.(3)这名“健步走运动”团队成员一天行走的步数的中位数落在组.(4)若该团队共有人,请估计其中一天行走步数不少于步的人数.18. 如图,小东在教学楼距地面米高的窗口处,测得正前方旗杆顶部点的仰角为,旗杆底部的俯角为,升旗时,国旗上端悬挂在距地面米处,若国旗随国歌声冉冉升起,并在国歌播放秒结束时到达旗杆顶端,则国旗应以多少米秒的速度匀速上升?(参考数据:,,)19. 学校准备购进一批节能灯,已知只A型节能灯和只B型节能灯共需元,只A型节能灯和只B型节能灯共需元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种节能灯共只,并且A型节能灯的数量不多于B型节能灯数量的倍,请设计出最省钱的购买方案,并说明理由.20. 某班“数学兴趣小组”对函数的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量的取值范围是全体实数,与的几组对应数值如下表:其中.(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出来函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与轴有个交点,所以对应的方程有个实数根;②方程有个实数根;③关于的方程有个实数根,的取值范围是.21. 如图,在中,,点是的中点,以为直径作分别交,于点,.(1)求证:.(2)填空:①若,当时,;②连接,,当的度数为时,四边形是菱形.22. (1)问题如图1,点为线段外一动点,且,.填空:当点位于时线段的长取得最大值,且最大值为.(用含,的式子表示)(2)应用:点为线段外一动点,且,.如图2所示,分别以,为边,作等边三角形和等边三角形,连接,.①请找出图中与相等的线段,并说明理由;②直接写出线段长的最大值.(3)拓展:如图3,在平面直角坐标系中,点的坐标为,点的坐标为,点为线段外一动点,且,,.请直接写出线段长的最大值及此时点的坐标.23. 如图1,直线交轴于点,交轴于点,抛物线经过点,交轴于点.点为抛物线上的一个动点,过点作轴的垂线,过点作于点,连接.(1)求抛物线的解析式. (2)当为等腰直角三角形时,求线段的长.(3)如图2,将 绕点 逆时针旋转,得到,且,当点 的对应点 落在坐标轴上时,请直接写出 点的坐标.答案第一部分1. A2. A3. C 【解析】本题考查了三视图的知识,主视图是从物体的前面看得到的视图,左视图是从物体的左面看得到的视图,找到主视图和左视图相同的是.4. A 【解析】本题考查有理数的乘方、整式的加减、幂的乘方、二次根式的加减.,选项A正确;,选项B错误;与不是同类项,无法合并,选项C错误;,选项D错误.5. C【解析】本题考查了反比例函数的图象上一点作轴于点,连接,已知的面积求的方法是:,.6. D 【解析】本题考查了直角三角形中勾股定理的应用及垂直平分线的性质,先求,再得到,且等于的一半,即.7. A 【解析】本题考查了平均数与方差对运动员发挥稳定性的因素,方差越小越稳定.8. B 【解析】四边形为菱形,为的中点,点,点,在第一象限夹角的角平分线上,点,.当时,菱形绕点逆时针旋转,点在轴上,;当时,菱形绕点逆时针旋转,点在第二象限夹角的角平分线上,;当时,菱形绕点逆时针旋转,点在轴上,;当时,菱形绕点逆时针旋转,点在第三象限夹角的角平分线上,;当时,菱形绕点逆时针旋转,点在轴上,;当时,菱形绕点逆时针旋转,点在第四象限夹角的角平分线上,;当时,菱形绕点逆时针旋转,点在轴上,;当时,菱形绕点逆时针旋转,点在第一象限夹角的角平分线上,.由此可知,每秒一循环,.故第秒时点的坐标与第秒时点的坐标相同,故点的坐标为.第二部分9.10.【解析】本题考查平行四边形的性质,三角形外角的性质.四边形为平行四边形,..,..掌握平行四边形的性质及三角形外角的性质是解题的关键.三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和.平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等,邻角互补;④平行四边形的对角线互相平分.11.【解析】本题考查了一元二次方程根的判别式,,因为方程有两个不相等的实数根,所以,即,解得.12.【解析】.13.【解析】函数,顶点坐标是.14.【解析】连接, .是等边三角形,扇形的圆心角是,阴影部分的面积等于扇形的面积减去弓形的面积;扇形的面积是,弓形的面积是,.15. 或【解析】本题分两种情况:(1)若,因为,为线段的三等分点,则,,;,可证,,设,,解得.(2)若,因为,为线段的三等分点,则,,;,可证,,设,,解得,解得.第三部分16.解得.不等式组的整数解为,,,.若分式有意义,只能取.原式.17. (1);(2)(3) B(4)(人)答:该团队一天行走步数不少于步的人数为人.18. 过点作于,则,在中,,.在,,,,(米秒).国旗以米秒的速度匀速上升.19. (1)设一只A型节能灯售价元,一只B型节能灯售价元.由题意解得所以一只A型节能灯售价元,一只B型节能灯售价元.(2)设购进A型节能灯只,总费用为元..,随的增大而减小,当取最大值时,最小.又,解得:,又为正整数,当最大时,最小.此时.所以最省钱的购买方案是购进只A型节能灯,只B型节能灯.20. (1)(2)正确补全图象.(3)由函数图象知:①函数的图象关于轴对称;②当时,随的增大而增大;(可从函数的最值,增减性,图象对称性等方面阐述,答案不唯一,合理即可)(4)①;②③21. (1)在中,点是的中点,,.四边形是圆内接四边形,,又,.同理可证:,,.(2);【解析】①由,又,,,又,,,.②当时,是等边三角形,这时,和都是等边三角形,且全等.四边形是菱形.22. (1)的延长线上;(2)①,理由如下.和都是等边三角形,,,,,即,..②长的最大值是.(3)的最大值为,点的坐标为.【解析】如图3,构造,则.由(1)知,当点在的延长线上时,有最大值(如备用图).易得是等腰直角三角形,,,.过点作轴于点,,又,.23. (1)由过点,得,则.当时,得,解得:,点坐标是经过点,.解得:抛物线的解析式是.(2)点的横坐标为,,若为等腰直角三角形时,则.①当点在直线上方时,,(ⅰ)若在轴左侧,则,.,解得:或(舍去).(ⅱ)若在轴右侧,则,.,解得:或(舍去).②当点在直线下方时,,则,.,解得:或(舍去).综上:或.即当为等腰直角三角形时,的长为或.(3)或或.【解析】,,,,,.①当点落在轴上时,过点作轴于,交于点,,如图①,,即.如图②,,即解得:或.②当点落在轴上时,如图③,过点作轴交于点,过点作轴,交的延长线于点,,,即,.。
2016年河南中考数学试卷解析2016年河南中考数学整体趋势较去年平稳。
选择题基本属于简单题,与去年相比题型稍简单,整体变化不大。
第1题,相反数,比较简单。
第2题,科学计数法。
第3题,三视图。
第4题,数与式的简单计算。
第5题,反比例函数,K值的几何意义。
第6题,三角形相似的性质运用。
第7题,平均数与方差意义。
第8题,菱形的性质以及找规律的相关问题。
难度中等。
填空题第9题,立方根与零指数幂的运算,与去年相比,难度相当。
第10题,平行四边形的基本性质和邻补角的基本性质,难度一般。
第11题,一元二次方程的Δ的基本性质,难度一般。
第12题,概率的一般运算,和去年难度相当。
第13题,主要考察待定系数法和抛物线的顶点坐标公式。
第14题,阴影部分的面积、整体与部分(大减小)。
大题第15题,折叠的基本性质、勾股定理的应用、分类讨论的思想,和去年相比,难度有所降低。
第16题,分数的化简求值与不等式组的计算,其中在选取X值时需要注意分式有意义的条件。
第17题,第18题,主要考察圆、直角三角形以及特殊的平行四边形的综合运用,难度系数一般。
第一问主要考察直角三角形的基本性质以及圆心角、圆周角和弧之间的关系。
第二问稍有难度,主要应用到三角形相似的性质及判定。
第三问考察菱形的性质,多采用逆向思维解题,充分利用菱形的性质。
失分点第一问在证明过程中容易出现问题,第二问在三角形相似的判定及部分等量代换容易出现缺少量半径。
第19题,主要考察三角函数的应用,题目难度系数与去年相比有所降低,是平时练习中经常会遇到的题型。
解题思路应是创造直角、等腰三角形的基本性质。
第23题,第一问考察到待定系数法,难度系数一般。
第二问难度有所增加,直接设P点坐标,根据等腰三角形基本性质直接求值。
失分点可能出现在两个值的情况下,要舍掉不符合题意的一个值。
第三问考察旋转的基本性质,根据旋转的基本性质,利用三角函数求出该值。
此题整体难度不是很大,但是计算量较大。
2016年河南省普通高中招生考试试卷 注意事项: 1.本试卷共8页,三个大题,满分120分,考试时间100分钟,请用蓝、黑色水笔或圆珠笔直接答在试卷上. 2.答卷前请将密封线内的项目填写清楚.
题号 总分 1~8 9~15 16 17 18 19 20 21 22 23
分数
一、选择题(每小题3分,共24分) 下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.
1.31的相反数是( )
(A)31 (B)31 (C)-3 (D)3
2.某种细胞的直径是0.00000095米,将0.00000095用科学计数法表示为 ( ) A.9.5×10-7 B. 9.5×10-8 C.0.95×10-7 D. 95×10-8
3. 下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )
4.下列计算正确的是 ( ) (A) = (B)(-3)2=6 (C)3a4-2a3 = a2 (D)(-a3)2=a5
5. 如图,过反比例函数y= (x> 0)的图象上一点A,作AB⊥x轴于点B,S△AOB=2,则k的值为( ) (A)2 (B)3 (C)4 (D)5
6. 如图,在ABC中,∠ACB=90°,AC=8,AB=10. DE垂直平分AC交AB于点E,则DE的长为( )
(A)6 (B)5 (C)4 (D)3
7、下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差: 甲 乙 丙 丁 平均数(cm) 185 180 185 180 方差 3.6 3.6 7.4 8.1 根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( ) A.甲 B.乙 C.丙 D.丁
8.如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为( ) (A)(1,-1) (B)(-1,-1) (C)(√2,0) (D)(0,√2)
二、填空题(每小题3分,共21分) 9.计算:(-2)0- = .
10.如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是 .
11.关于x的一元二次方程x2+3x-k=0有两个不相等的实数根.则k的取值范围= . 12.在“阳光体育”活动时间,班主任将全班同学随机分成了四组进行活动,该班小明和小亮同学被分在同一组的概率是 .
13.已知A(0,3),B(2,3)抛物线y=-x2+bx+c上两点,则该抛物线的顶点坐标是 .
14.如图,在扇形AOB中,∠AOB=90°,以点A为圆心,OA的长为半径作 交 于点C. 若OA=2,则阴影部分的面积为______.
15.如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上的一个动点,连接AE,将△ABE沿AE折叠,点B落在点B'处,过点B'作AD的垂线,分别交AD、BC于点M、N,当点B'为线段MN的三等份点时,BE的长为 .
三、解答题(本大题共8个小题,满分75分) 16.(8分)先化简,再求值:)121()1(222xxxxxx,其中x的值从不等式组 的整数解中选取。 17.在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:
对这20名数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计
根据以上信息解答下列问题 (1)填空:m= ,n= ; (2)请补全频数分布直方图. (3)这20名“健步走运动”团队成员一天行走的步数的中位数落在组 ; (4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数。
18.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC、BM于点D、E (1)求证:MD=ME (2)填空:①若AB=6,当AD=2DM时,DE= ; ②连接OD,OE,当∠A的度数为 时,四边形ODME是菱形。 19.(9分)小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,con37°≈0.80,tan37°≈0.75)
20.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元,3只A型节能灯和2只B型节能灯共需29元. (1) 求一只A型节能灯和一只B型节能灯的售价各是多少元; (2) 学校准备购进这两种节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由。 21.某班“数学兴趣小组”对函数y=x2-2 的图象和性质进行了探究,探究过程如下,请补充完整。 (1)自变量x的取值范围是全体实数,x与y的几组对应数值如下表: 其中m= 。
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出来函数图象的一部分,请画出该函数图象的另一部分。 (3)观察函数图象,写出两条函数的性质。 (4)进一步探究函数图象发现: ①函数图象与x轴有 个交点,所以对应的方程x2-2 =0有 个实数根。 ②方程x2-2 =2有 个实数根。 ③关于x的方程x2-2 =a有4个实数根,a的取值范围是 。
22.(10分)发现:如图1,点A为线段BC外一动点,且BC=a, AB=b。 填空:当点A位于 时,线段AC的长取得最大值,且最大值为 (用含a,b的式子表示) (2)应用:点A为线段B外一动点,且BC=3, AB=1.如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD, BE. ①请找出图中与BE相等的线段,并说明理由 ; ②直接写出线段BE长的最大值. (3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标。
23. 如图1,直线y=- x+n交x轴于点A,交y轴于点C(0,4)抛物线y= x2+bx+c经过点A,交y轴于点B(0,-2).点P为抛物线上的
一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m。 (1)求抛物线的解析式. (2)当△BDP为等腰直角三角形时,求线段PD的长. (3)如图2,将△BDP绕点B逆时针旋转,得到△BD'P'且旋转角∠PBP'=∠OAC,当点P的对应点P'落在坐标轴上时,请直接写出点P的坐标。 2016年河南省普通高中招生考试 数学试题参考答案及评分标准 说明: 1.如果考生的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分. 2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半. 3.评分标准中,如无特殊说明,均为累计给分. 4.评分过程中,只给整数分数. 一、选择题(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案 B A C A C D A B 二、填空题(每小题3分,共21分) 题号 9 10 11 12 13 14 15
答案 -1 110° (1,4) 313 553223 三、解答题(本大题共8个小题,满分75分) 16.解:原式=1122xxxxxxx=111xxxx=xx1
解不等式组 得, 25 当x=2时,原式=212=-2 17.解:(1)m=4 , n=1 (3)行走步数的中位数落在B组;
(2)
(4)一天行走步数不少于7500步的人数是:
120╳20134=48(人) 18.证明:(1)∵∠ABC=90°,AM=MC ∴ BM=AM=MC ∴∠A=∠ABM ∵四边形ABED是圆内接四边形 ∴∠ADE+∠ABE = 180° 又∠ADE+∠MDE = 180° ∴∠MBA=∠MDE 同理可证∠MED=∠A ∴∠MED=∠MDE ∴ MD=ME
(2)①由(1)得,∠MDE=∠A ∴DE//AB ∴ = ∵AD=2DM ∴AD=2DM ∴DM:MA=1:3 ∴DE= AB= =2 ② 当∠A= 60°时,四边形ODME是菱形。 ∵OA=OD ∠A= 60°∴△AOD是等边三角形 ∴∠AOD=60° ∵DE//AB ∴∠ODE=∠AOD=60°∴∠MDE=∠MED= ∠A=60° ∴△ODE,△DEM都是等边三角形 ∴OD=OE=EM=DM ∴四边形是菱形
19.
20.
21. 22.
23.