广东省中山市普通高中2020届高考数学三轮复习冲刺模拟试题(10)
- 格式:doc
- 大小:326.50 KB
- 文档页数:7
广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题(10) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题(10))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题(10)的全部内容。
高考数学三轮复习冲刺模拟试题10立体几何01一、选择题1 .已知正四棱柱ABCD-A 1B 1C l D 1中,AA 1=2AB ,E 是AA 1的中点,则异面直线DC 1与BE 所成角的余弦值为( )A .15B .1010C .31010 D .352 .某几何体的三视图如图所示,则它的体积是( )A .283π-B .83π- C .82π-D .23π3 .几何体的三视图如图所示,则该几何体的体积为( )A .223π+B .423π+C .2323π+D .2343π+4 .已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为 ( )A .26B .36C .23D 225 .设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是( )A .βαβα⊥⊥,//,b aB .βαβα//,,⊥⊥b aC .βαβα//,,⊥⊂b aD .βαβα⊥⊂,//,b a6 .如图,E 、F 分别是三棱锥P —ABC 的棱AP 、BC 的中点,PC=10,AB=6,EF=7,则异面直线AB 与PC 所成的角为( ) ( )A .90°B .60°C .45°D .30°二、填空题7 .某几何体的三视图如图所示,则该几何体的体积为__________.8 .一个几何体的三视图如上图所示,且其侧视图为正三角形,则这个几何体的体积为。
2020高考数学模拟试题(13套)数学10数学〔文科〕本试卷共4页,21小题,总分值150分.考试用时120分钟. 本卷须知:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自已的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型〔A 〕填涂在答题卡相应位置上.将条形码横贴在答题卡右上角〝条形码粘贴处〞. 2. 选择题每题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦洁净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,选划掉原先的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4. 作答选做题时,请先用2B 铅笔填涂选做题的题号〔或题组号〕对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5. 考生必须保持答题卡的整洁.考试终止后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式13V Sh =,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每题5分,总分值50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.设集合{}1|<=x x P ,集合⎭⎬⎫⎩⎨⎧<=01|x x Q ,那么=Q P A.{}0<x x B.{}1>x x C.{}10><x x x 或 D.空集φ2.假设复数)(12R a iai∈+-是纯虚数〔i 是虚数单位〕,那么=a 〔 〕 A .2-B .12-C .12D .23.假设函数)(2sin )(2R x x x f ∈=是〔 〕A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数4.某校共有学生2000名,各年级男、女生人数如下表;在全校学生中随机抽取1名,抽到二年级女生的概率是0.19 .现用分层抽样的方法在全校抽取64名学生, 那么应在三年级抽取的学生人数为( ) A .245.在边长为1的等边∆ABC 中,设=,=,那么=⋅〔 〕 A.12B.21-C.23 D.23-6.几何体的三视图如图1所示,它的表面积 是〔 〕 A.24+ B. 22+ C.23+D.67.以下命题错误的选项是〔 〕A.命题〝假设0=xy ,那么y x ,中至少有一个为零〞的否定是:〝假设0≠xy ,那么y x ,都不为零〞B.关于命题p :R x ∈∃,使得012<++x x ;那么p ⌝:R x ∈∀,均有012≥++x x C.命题〝假设0>m ,那么方程02=-+m x x 有实根〞的逆否命题为〝假设方程02=-+m x x 无实根,那么0≤mD.〝1=x 〞是〝0232=+-x x 〞的充分不必要条件8.函数1)(2--=x mx x f 在)1,0(内恰有一个零点,那么实数m 的取值范畴是( ) A.]2,(--∞ B. )2,(--∞ C.),2[+∞ D. ),2(+∞9.设有直线m 、n 和平面α、β.以下四个命题中,正确的选项是( )A.假设m ∥α,n ∥α,那么m ∥nB.假设m ⊂α,n ⊂α,m ∥β,n ∥β,那么α∥βC.假设α⊥β,m ⊂α,那么m ⊥βD.假设α⊥β,m ⊥β,m ⊄α,那么m ∥α10.关于函数xe xf =)(定义域中任意)(,2121x x x x ≠有如下结论:①)()()(2121x f x f x x f ⋅=+ ②)()()(2121x f x f x x f +=⋅ ③0)()(2121>--x x x f x f ④2)()()2(2121x f x f x x f +<+主视图侧视图俯视图图1上述结论中正确的结论个数是〔 〕A.1 B.2 C.3 D.4二、填空题:本大题共5小题,每题5分,总分值20分.其中14、15题是选做题,考生只能选做一题,两题全答的,只运算前一题得分。
一、单选题二、多选题1. 复数-i 的一个立方根是i ,它的另外两个立方根是( )A.B.C.D.2. 设集合,若,则( )A.B.C.D.3. 如图,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为()A.B.C.D.4. 复数的虚部是A .B.C.D.5. 袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为( )A.B.C.D.6. 已知,则( )A.B.C.D.7. 已知抛物线x 2=4y 上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为( )A.B.C .1D .28.已知随机变量满足,若,则A .有最大值,有最小值;有最大值,有最小值B.有最大值,无最小值;有最大值,无最小值C .无最大值,有最小值;无最大值,有最小值D .无最大值,无最小值;无最大值,无最小值9. 已知函数,满足,则下列结论正确的是( )A .的值域为B .的最小值为2C.的图象关于直线对称D .是偶函数10. 已知函数,,若存在,使得对任意,恒成立,则下列结论正确的是( )A .对任意,广东省中山市中山纪念中学2024届高三上学期第三次模拟测试数学试题广东省中山市中山纪念中学2024届高三上学期第三次模拟测试数学试题三、填空题四、解答题B .存在,使得C .存在,使得在上有且仅有1个零点D .存在,使得在上单调递减11. 如图,一个半径为3m 的筒车,按逆时针方向匀速旋转1周.已知盛水筒Р离水面的最大距离为5.2m ,旋转一周需要60s.以P 刚浮出水面时开始计算时间,Р到水面的距离d (单位:m )(在水面下则d 为负数)与时间t (单位:s )之间的关系为,,下列说法正确的是()A.B.C.D .离水面的距离不小于3.7m 的时长为20s12.(多选)已知,,则下列结论正确的是( )A.B.C.D.13. 口袋中有个黑球、个白球,个红球,从中任取个球,每取到一个黑球记分,每取到一个白球记分,每取到一个红球记分,用表示得分数,则________,________.14.抛物线的准线方程是______.焦点坐标是______.15. 不等式的解集是__________.16. 已知函数有如下性质:如果常数,那么该函数在区间上是减函数,在上是增函数.(1)如果函数()的值域为,求b 的值;(2)研究函数(常数)在定义域上的单调性,并说明理由;(3)对函数和(常数)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数(n 是正整数)在区间上的最大值和最小值(可利用你的研究结论).17.已知函数,其图象在点处的切线斜率为.(1)证明:当时,;(2)若函数在定义域上无极值,求正整数的最大值.18. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin B =b sin (A).(1)求A ;(2)D 是线段BC 上的点,若AD =BD =2,CD =3,求△ADC 的面积.19.已知数列的前项和.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.20. 已知数列的前n 项和为,,且().(1)求的通项公式;(2)若,数列的前n 项和为,求证:.21. 如图1,在四边形中,,.将四边形沿折起,使得,得到如图2所示的几何体.(1)若为的中点,证明:平面;(2)若为上一动点,且二面角的余弦值为,求的值.。
高考数学三轮复习冲刺模拟试题13解析几何02三、解答题1.已知中心在坐标原点,焦点在x 轴上的椭圆过点3)P ,且它的离心率21=e. (Ⅰ)求椭圆的标准方程;(Ⅱ)与圆22(1)1x y -+=相切的直线t kx y l +=:交椭圆于N M ,两点,若椭圆上一点C 满足OM λ=+,求实数λ的取值范围.2.椭圆E:22a x +22by =1(a>b>0)离心率为23,且过P(6,22).(1)求椭圆E 的方程; (2)已知直线l 过点M(-21,0),且与开口朝上,顶点在原点的抛物线C 切于第二象限的一点N,直线l 与椭圆E 交于A,B 两点,与y 轴交与D 点,若→AD =λ→AN ,→BD =μ→BN ,且λ+μ=25,求抛物线C 的标准方程.OxyMN3.已知一条曲线C 在y 轴右边,C 上每一点到点F(1,0)的距离减去它到y 轴的距离的差都是1.(Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C 有两个交点A,B 的任一直线,都有FA FB ⋅u u u r u u u r﹤0?若存在,求出m 的取值范围;若不存在,请说明理由.4.设点P 是曲线C:)0(22>=p py x 上的动点,点P 到点(0,1)的距离和它到焦点F 的距离之和的最小值为45 (1)求曲线C 的方程(2)若点P 的横坐标为1,过P 作斜率为)0(≠k k 的直线交C 与另一点Q,交x 轴于点M,过点Q 且与PQ 垂直的直线与C 交于另一点N,问是否存在实数k,使得直线MN 与曲线C 相切?若存在,求出k 的值,若不存在,说明理由.5.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,直线l 过点(4,0)A ,(0,2)B ,且与椭圆C 相切于点P .(Ⅰ)求椭圆C 的方程;(Ⅱ)是否存在过点(4,0)A 的直线m 与椭圆C 相交于不同的两点M 、N ,使得23635AP AM AN =⋅?若存在,试求出直线m 的方程;若不存在,请说明理由.6.设椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别为12,F F ,上顶点为A ,在x 轴负半轴上有一点B ,满足112BF F F =u u u r u u u u r,且2AF AB ⊥.(Ⅰ)求椭圆C 的离心率;(Ⅱ)D 是过2F B A 、、三点的圆上的点,D 到直线033:=--y x l 的最大距离等于 椭圆长轴的长,求椭圆C 的方程;(Ⅲ)在(Ⅱ)的条件下,过右焦点2F 作斜率为k 的直线l 与椭圆C 交于N M 、两点,线段MN 的中垂线 与x 轴相交于点)0,(m P ,求实数m 的取值范围.1F 2F xy AOB7.已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为x y34=,右焦点)0,5(F ,双曲线的实轴为21A A ,P 为双曲线上一点(不同于21,A A ),直线P A 1,P A 2分别与直线59:=x l 交于N M ,两点 (1)求双曲线的方程;(2)FN FM ⋅是否为定值,若为定值,求出该值;若不为定值,说明理由.8.(本小题满分13分)如图F 1、F 2为椭圆1:2222=+by a x C 的左、右焦点,D 、E 是椭圆的两个顶点,椭圆的离心率23=e ,2312-=∆DEF S .若点),(00y x M 在椭圆C 上,则点),(0by a x N 称为点M 的一个“椭点”,直线l 与椭圆交于A 、B 两点,A 、B 两点的“椭点”分别为P 、Q.(1)求椭圆C 的标准方程;(2)问是否存在过左焦点F 1的直线l ,使得以PQ 为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.参考答案三、解答题1.解:(Ⅰ) 设椭圆的标准方程为)0(12222>>=+b a by a x由已知得:2222243112a b c a c a b ⎧+=⎪⎪⎪=⎨⎪⎪=-⎪⎩解得 2286a b ⎧=⎪⎨=⎪⎩所以椭圆的标准方程为: 22186x y += (Ⅱ) 因为直线l :y kx t =+与圆22(1)1x y -+=相切所以22112(0)1t kt k t t k+-=⇒=≠+把t kx y +=代入22186x y +=并整理得: 222(34)8(424)0k x ktx t +++-=┈7分 设),(,),(2211y x N y x M ,则有 221438k ktx x +-=+ 22121214362)(k tt x x k t kx t kx y y +=++=+++=+ 因为,),(2121y y x x OC ++=λ, 所以,⎪⎪⎭⎫⎝⎛++-λλ)43(6,)43(822k t k ktC 又因为点C 在椭圆上, 所以,222222222861(34)(34)k t t k k λλ+=++ 222222221134()()1t kt tλ⇒==+++ 因为 02>t 所以 11)1()1(222>++tt 所以 202λ<<,所以 λ的取值范围为 (20)(0,2)U2. 【解析】解. (1)2311-22b e e a b a ===∴=Q ,,,222214x y b b+=代入椭圆方程得:,222440x y b +-=化为 Q 点62)在椭圆E 上222624028b b a +-=∴==,,22182x y ∴+=椭圆E 方程为,(2)设抛物线C 的方程为20y ax a =>(),直线与抛物线C 切点为 200(,)x ax ,200002,2,2()y ax l ax l ax ax x x '=∴=-Q 直线的斜率为的方程为y- 0000002211(,0),2(),(,)022l ax ax x N x ax x -∴-=--∴<Q Q 直线过在第二象限,解得01x =-,(1,)N a ∴-,l 直线的方程为:2y ax a =--代入椭圆方程并整理得:2222(116)16480(1)a x a x a +++-=L1122(,)(,)A x y B x y 设、则12x x 、是方程(1)的两个根,221212224816116116a a x x x x a a --=+=++则,由λ=,μ=,111x x +=λ,221x x +=μ 21212122121212281611174x x x x x x a x x x x x x a λμ++++===+++++-+ 52λμ+=∴Q ,228165742a a +=-,解得330,a a a =>∴=Q223,23y x x ∴==抛物线C 的方程为其标准方程为3.本题主要考查直线与抛物线的位置关系,抛物线的性质等基础知识,同时考查推理运算的能力.解:(I)设P ),(y x 是直线C 上任意一点,那么点P(y x ,)满足:)0(1)1(22>=-+-x x y x化简得)0(42>=x x y(II)设过点M(m,0))0(>m 的直线l 与曲线C 的交点为A(11,y x ),B(22,y x )设l 的方程为m ty x +=,由⎩⎨⎧=+=x42y m ty x 得0442=--m ty y ,0)(162>+=∆m t .于是⎩⎨⎧-==+my y ty y 442121 ①又),1(),,1(2211y x y x -=-=01)()1)(1(021********<+++-=+--⇔<⋅y y x x x x y y x x②又42y x =,于是不等式②等价于⋅421y 01)44(422212122<++-+y y y y y 01]2)[(4116)(2122121221<+-+-+⇔y y y y y y y y ③由①式,不等式③等价于22416t m m <+- ④对任意实数t,24t 的最小值为0,所以不等式④对于一切t 成立等价于0162<+-m m ,即223223+<<-m由此可知,存在正数m,对于过点M(m ,0)且与曲线C 有A,B 两个交点的任一直线,都有0<⋅,且m 的取值范围是)223,223(+-4.解:(1)依题意知4521=+p ,解得21=p ,所以曲线C 的方程为2x y = (2)由题意设直线PQ 的方程为:1)1(+-=x k y ,则点⎪⎭⎫ ⎝⎛-0,11k M 由⎩⎨⎧=+-=21)1(xy x k y ,012=-+-k kx x ,得()2)1(,1--k k Q , 所以直线QN 的方程为)1(1)1(2+--=--k x kk y由⎪⎩⎪⎨⎧=+--=--22)1(1)1(x y k x kky ,0)1(11122=--+-+k k x k x 得⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛----211,11k k k k N 所以直线MN 的斜率为k k k k k k k k k MN2211111111⎪⎭⎫ ⎝⎛---=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--= 过点N 的切线的斜率为⎪⎭⎫ ⎝⎛--k k 112 所以⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--k k k k k 112112,解得251±-=k 故存在实数k=251±-使命题成立. 5. (Ⅰ)由题得过两点(4,0)A ,(0,2)B 直线l 的方程为240x y +-=.因为12c a =,所以2a c =,3b c =. 设椭圆方程为2222143x y c c +=,………2分由2222240,1,43x y x y c c+-=⎧⎪⎨+=⎪⎩消去x 得,224121230y y c -+-=.又因为直线l 与椭圆C 相切,所以 ………4分………6分………8分又直线:240l x y +-=与椭圆22:143x y C +=相切, 由22240,1,43x y x y +-=⎧⎪⎨+=⎪⎩解得31,2x y ==,所以3(1,)2P …………10分则2454AP =. 所以3645813547AM AN ⋅=⨯=. 又22221122(4)(4)AM AN x y x y ⋅=-+-+2222221122(4)(4)(4)(4)x k x x k x =-+--+-212(1)(4)(4)k x x =+--21212(1)(4()16)k x x x x =+-++22222641232(1)(416)3434k k k k k -=+-⨯+++2236(1).34k k =++ 所以223681(1)347k k +=+,解得24k =±经检验成立. 所以直线m 的方程为24)4y x =±-.………14分 6. 【解】(Ⅰ)连接1AF ,因为2AF AB⊥,211F F BF =,所以112AF F F =,即2a c =,故椭圆的离心率21=e (其他方法参考给分) (Ⅱ)由(1)知,21=a c 得a c 21=于是21(,0)2F a , 3(,0)2a B -,Rt ABC ∆的外接圆圆心为11(,0)2F a -),半径21||2r F B a ==D 到直线033:=--y x l 的最大距离等于2a ,所以圆心到直线的距离为a ,所以a a =--2|321|,解得2,1,3a c b =∴==所求椭圆方程为13422=+y x . (Ⅲ)由(Ⅱ)知)0,1(2F , l :)1(-=x k y⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 代入消y 得 01248)43(2222=-+-+k x k x k 因为l 过点2F ,所以0∆>恒成立设),(11y x M ,),(22y x N 则2221438k k x x +=+,121226(2)34ky y k x x k -+=+-=+ MN 中点22243(,)3434k kk k -++ 当0k =时,MN 为长轴,中点为原点,则0m =当0k ≠时MN 中垂线方程222314()3434k k y x k k k +=--++. 令0y =,43143222+=+=∴k k k m 230k >Q,2144k +>, 可得410<<∴m 综上可知实数m 的取值范围是1[0,)47. (1)221916x y -= (2)1209(3,0),(3,0),(5,0)(,),(,)5A A F P x y M y -设11024(3,),(,)5A P x y A M y ∴=+u u u r u u u u r因为1,,A P M 三点共线002424(3)05515yx y y y x ∴+-=∴=+ 924(,)5515y M x ∴+,同理96(,)5515yN x --1624166(,),(,)55155515y y FM FN x x ∴=-=--+-u u u u r u u u r2225614425259y FM FN x ⋅=-⋅-u u u u r u u u r 221699y x =-Q 0FM FN ∴⋅=u u u u r u u u r8.解:(1)由题意得23==a c e ,故ab ac 21,23==,31)31(1)3(1)(12-=-⨯=⨯-=⨯-⨯=∆aaaabcaSDEF,故42=a,即a=2,所以b=1,c=3,故椭圆C的标准方程为1422=+yx.(2)①当直线l的斜率不存在时,直线l的方程为3-=x联立⎪⎩⎪⎨⎧=+-=14322yxx解得⎪⎩⎪⎨⎧=-=213yx或⎪⎩⎪⎨⎧-=-=213yx,不妨令)21,3(),21,3(---BA,所以对应的“椭点”坐标)21,23(),21,23(---QP.而021≠=⋅.所以此时以PQ为直径的圆不过坐标原点.②当直线l的斜率存在时,设直线l的方程为)3(+=xky联立⎪⎩⎪⎨⎧=++=14)3(22yxxky,消去y得:041238)14(2222=-+++kxkxk设),(),,(2211yxByxA,则这两点的“椭点”坐标分别为),2(),,2(2211yxQyxP,由根与系数的关系可得:14382221+-=+kkxx,144122221+-=kkxx若使得以PQ为直径的圆经过坐标原点,则OP⊥OQ,而),2(),,2(2211yxOQyxOP==,因此0=⋅OQOP,即042221212121=+=+⨯yyxxyyxx即141222+-kk=0,解得22±=k所以直线方程为2622+=xy或2622--=xy。
高考数学三轮复习冲刺模拟试题12解析几何01一、选择题1.若直线1l :280ax y +-=与直线2l :(1)40x a y +++=平行 ,则a 的值为( )A .1B .1或2C .-2D .1或-22.倾斜角为135︒,在y 轴上的截距为1-的直线方程是( )A .01=+-y xB .01=--y xC .01=-+y xD .01=++y x3.若抛物线y 2=a x 上恒有关于直线x +y-1=0对称的两点A ,B ,则a 的取值范围是( )A .(43-,0) B .(0,34) C .(0,43) D .403(,)(,)-∞+∞U 4.己知抛物线方程为2=2y px (>0p ),焦点为F ,O 是坐标原点, A 是抛物线上的一点,FAu u u r 与x 轴正方向的夹角为60°,若OAF ∆3,则p 的值为 ( )A .2B .3C .2或23D .225.已知椭圆2222:1(0)x y C a b a b+=>>的离心率为32.双曲线221x y -=的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )A .22182x y += B .221126x y += C .221164x y += D .221205x y += 6.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为12,F F ,在双曲线右支上存在一点P 满足12PF PF ⊥且126PF F π∠=,那么双曲线的离心率是( )A 2B 3C 31D 517.设F 是抛物线)0(2:21>=p px y C 的焦点,点A 是抛物线与双曲线22222:by a x C -=1)0,0(>>b a 的一条渐近线的一个公共点,且x AF ⊥轴,则双曲线的离心率为( )A .2B .3C .25 D .5二、填空题 8.若⊙5:221=+y x O 与⊙)(20)(:222R m y m x O ∈=+-相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是____________________;9.已知双曲线)0,0(12222>>=-b a by a x 的左右焦点为21,F F ,P 为双曲线右支上的任意一点,若||||221PF PF 的最小值为8a,则双曲线的离心率的取值范围是_________. 10.已知抛物线的参数方程为⎩⎨⎧==ty t x 882(t 为参数),焦点为F ,准线为l ,P 为抛物线上一点,l PA ⊥,A 为垂足,如果直线AF 的斜率为3-,那么=PF _________ .参考答案一、选择题 1. 【答案】A【解析】直线1l 的方程为42ay x =-+,若1a =-,则两直线不平行,所以1a ≠-,要使两直线平行,则有282114a a -=≠=-+,由211a a =+,解得1a =或2a =-。
广东省中山市2019-2020学年高考第三次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记()0.5log 3a f =,()2log 5b f =,(2)c f m =+则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B 【解析】 【分析】根据f (x )为偶函数便可求出m =0,从而f (x )=2x ﹣1,根据此函数的奇偶性与单调性即可作出判断. 【详解】解:∵f (x )为偶函数; ∴f (﹣x )=f (x ); ∴2x m --﹣1=2x m -﹣1; ∴|﹣x ﹣m|=|x ﹣m|; (﹣x ﹣m )2=(x ﹣m )2; ∴mx =0; ∴m =0;∴f (x )=2x ﹣1;∴f (x )在[0,+∞)上单调递增,并且a =f (|0.5log 3|)=f (2log 3), b =f (2log 5),c =f (2); ∵0<2log 3<2<2log 5; ∴a<c<b . 故选B . 【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.2.复数z 满足()12(i i z +=为虚数单位),则z 的虚部为( ) A .i B .i -C .1-D .1【答案】C 【解析】【分析】21iz =+,分子分母同乘以分母的共轭复数即可. 【详解】 由已知,22(1i)1i 1i (1i)(1i)z -===-++-,故z 的虚部为1-. 故选:C. 【点睛】本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题. 3.函数f(x)=sin(wx +φ)(w >0,φ<2π)的最小正周期是π,若将该函数的图象向右平移6π个单位后得到的函数图象关于直线x =2π对称,则函数f(x)的解析式为( ) A .f(x)=sin(2x +3π) B .f(x)=sin(2x -3π) C .f(x)=sin(2x +6π) D .f(x)=sin(2x -6π) 【答案】D 【解析】 【分析】由函数的周期求得2w =,再由平移后的函数图像关于直线2x π=对称,得到223ππϕ⨯+-2k ππ=+,由此求得满足条件的ϕ的值,即可求得答案. 【详解】分析:由函数的周期求得ω2=,再由平移后的函数图像关于直线πx 2=对称,得到πππ2φk π232⨯+-=+,由此求得满足条件的φ的值,即可求得答案. 详解:因为函数()()f x sin ωx φ=+的最小正周期是π,所以2ππω=,解得ω2=,所以()()f x sin 2x φ=+, 将该函数的图像向右平移π6个单位后,得到图像所对应的函数解析式为ππy sin 2x φsin 2x φ63⎡⎤⎛⎫⎛⎫=-+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由此函数图像关于直线πx 2=对称,得: πππ2φk π232⨯+-=+,即πφk π,k Z 6=-∈,取k 0=,得πφ6=-,满足πφ2<,所以函数()f x 的解析式为()πf x sin 2x 6⎛⎫=- ⎪⎝⎭,故选D. 【点睛】本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到sin(2)3y x πϕ=+-,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.4.若()f x 是定义域为R 的奇函数,且()()2f x f x +=-,则 A .()f x 的值域为RB .()f x 为周期函数,且6为其一个周期C .()f x 的图像关于2x =对称D .函数()f x 的零点有无穷多个【答案】D 【解析】 【分析】运用函数的奇偶性定义,周期性定义,根据表达式判断即可. 【详解】()f x 是定义域为R 的奇函数,则()()f x f x -=-,(0)0f =,又(2)()f x f x +=-,(4)(2)()f x f x f x +=-+=, 即()f x 是以4为周期的函数,(4)(0)0()f k f k Z ==∈, 所以函数()f x 的零点有无穷多个;因为(2)()f x f x +=-,[(1)1]()f x f x ++=-,令1t x =+,则(1)(1)f t f t +=-, 即(1)(1)f x f x +=-,所以()f x 的图象关于1x =对称, 由题意无法求出()f x 的值域, 所以本题答案为D. 【点睛】本题综合考查了函数的性质,主要是抽象函数的性质,运用数学式子判断得出结论是关键.5.已知双曲线的中心在原点且一个焦点为F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是 A .22134x y -= B .22143x y -= C .22152x y -=D .22125x y -=【答案】D【解析】 【分析】 根据点差法得2225a b=,再根据焦点坐标得227a b +=,解方程组得22a =,25b =,即得结果. 【详解】设双曲线的方程为22221(0,0)x y a b a b-=>>,由题意可得227a b +=,设()11,M x y ,()22,N x y ,则MN的中点为25,33⎛⎫-- ⎪⎝⎭,由2211221x y a b -=且2222221x y a b-=,得()()12122x x x x a +-= ()()12122y y y y b +-,2223a ⨯-=() 2523b ⨯-(),即2225a b=,联立227a b +=,解得22a =,25b =,故所求双曲线的方程为22125x y -=.故选D . 【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.6.若双曲线()22210x y a a-=>的一条渐近线与圆()2222x y +-=至多有一个交点,则双曲线的离心率的取值范围是( ) A.)+∞ B .[)2,+∞C.(D .(]1,2【答案】C 【解析】 【分析】求得双曲线的渐近线方程,可得圆心()0,2到渐近线的距离d ≥,由点到直线的距离公式可得a 的范围,再由离心率公式计算即可得到所求范围. 【详解】双曲线()22210x y a a-=>的一条渐近线为1y x a =,即0x ay -=,由题意知,直线0x ay -=与圆()2222x y +-=相切或相离,则d =≥,解得1a ≥,因此,双曲线的离心率(c e a ==.故选:C. 【点睛】本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题.7.已知双曲线221x y a+=的一条渐近线倾斜角为56π,则a =( )A .3B .3-C .3-D .3-【答案】D 【解析】 【分析】由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果. 【详解】由双曲线方程可知:0a <,渐近线方程为:y x a=±-, Q 一条渐近线的倾斜角为56π,53tan 6aπ∴-==--,解得:3a =-. 故选:D . 【点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于a 的范围的要求. 8.抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( )A .B .C .D .【答案】A 【解析】 【分析】先由题和抛物线的性质求得点P 的坐标和双曲线的半焦距c 的值,再利用双曲线的定义可求得a 的值,即可求得离心率. 【详解】由题意知,抛物线焦点,准线与x 轴交点,双曲线半焦距,设点是以点为直角顶点的等腰直角三角形,即,结合点在抛物线上, 所以抛物线的准线,从而轴,所以,即故双曲线的离心率为故选A 【点睛】本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.9.设复数z 满足21z i z -=+,z 在复平面内对应的点为(,)x y ,则( ) A .2430x y --= B .2430x y +-= C .4230x y +-= D .2430x y -+=【答案】B 【解析】 【分析】设z x yi =+,根据复数的几何意义得到x 、y 的关系式,即可得解; 【详解】 解:设z x yi =+∵|2||1|z i z -=+,∴2222(2)(1)x y x y +-=++,解得2430x y +-=. 故选:B 【点睛】本题考查复数的几何意义的应用,属于基础题.10.已知集合{2,0,1,3}A =-,{53}B x x =<<,则集合A B I 子集的个数为( ) A .4 B .8C .16D .32【答案】B 【解析】 【分析】首先求出A B I ,再根据含有n 个元素的集合有2n 个子集,计算可得. 【详解】解:{2,0,1,3}A =-Q ,{53}B x x =<<,{2,0,1}A B ∴=-I ,A B ∴I 子集的个数为328=.考查列举法、描述法的定义,以及交集的运算,集合子集个数的计算公式,属于基础题.11.过抛物线C 的焦点且与C 的对称轴垂直的直线l 与C 交于A ,B 两点,||4AB =,P 为C 的准线上的一点,则ABP ∆的面积为( ) A .1 B .2 C .4 D .8【答案】C 【解析】 【分析】设抛物线的解析式22(0)y px p =>,得焦点为,02p F ⎛⎫⎪⎝⎭,对称轴为x 轴,准线为2p x =-,这样可设A点坐标为,22p ⎛⎫⎪⎝⎭,代入抛物线方程可求得p ,而P 到直线AB 的距离为p ,从而可求得三角形面积. 【详解】设抛物线的解析式22(0)y px p =>, 则焦点为,02p F ⎛⎫⎪⎝⎭,对称轴为x 轴,准线为2p x =-,∵ 直线l 经过抛物线的焦点,A ,B 是l 与C 的交点, 又AB x ⊥轴,∴可设A 点坐标为,22p ⎛⎫⎪⎝⎭, 代入22y px =,解得2p =,又∵点P 在准线上,设过点P 的AB 的垂线与AB 交于点D ,||222p pDP p =+-==, ∴11||||24422ABP S DP AB ∆=⋅=⨯⨯=. 故应选C. 【点睛】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出A 点坐标,从而求得参数p 的值.本题难度一般.12.在ABC V 中,点P 为BC 中点,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM AB λ=u u u u r u u u r ,(0,0)AN AC μλμ=>>u u ur u u u r ,则λμ+的最小值为( )A .54B .2C .3D .72【分析】由M ,P ,N 三点共线,可得11122λμ+=,转化11()22λμλμλμ⎛⎫+=++ ⎪⎝⎭,利用均值不等式,即得解. 【详解】因为点P 为BC 中点,所以1122AP AB AC =+u u u r u u u r u u u r,又因为AM AB λ=u u u u r u u u r ,AN AC μ=u u ur u u u r ,所以1122AP AM AN λμ=+u u u r u u u ur u u u r . 因为M ,P ,N 三点共线,所以11122λμ+=,所以111111()12222222λμλμλμλμμλ⎛⎫⎛⎫+=++=++++⨯=⎪ ⎪⎝⎭⎝⎭…, 当且仅当,11122λμμλλμ⎧=⎪⎪⎨⎪+=⎪⎩即1λμ==时等号成立,所以λμ+的最小值为1. 故选:B 【点睛】本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
高考数学三轮复习冲刺模拟试题19导数02三、解答题 1.已知函数(为自然对数的底数). (1)求的最小值;(2)设不等式的解集为,若,且,求实数的取值范围 (3)已知,且,是否存在等差数列和首项为公比大于0的等比 数列,使得?若存在,请求出数列的通项公式.若不存在,请说明理由.2.已知函数(). (1)若,试确定函数的单调区间;(2)若函数在其图象上任意一点处切线的斜率都小于,求实数的取值范围. (3)若,求的取值范围.3.已知函数()()()R a ax x x ax x f ∈--++=2312ln 23(Ⅰ)若2=x 为()x f 的极值点,求实数a 的值;(Ⅱ)若()x f y =在[)+∞,3上为增函数,求实数a 的取值范围;(Ⅲ)当21-=a 时,方程()()x b x x f +-=-3113有实根,求实数b 的最大值.4.已知函数f(x )=2ln x +ax 2-1(a ∈R)(1)求函数f(x)的单调区间; (2)若a=1,分别解答下面两题,(i)若不等式f(1+x)+f(1-x)<m 对任意的0<x<1恒成立,求m 的取值范围; (ii)若x 1,x 2是两个不相等的正数,且f(x 1)+f(x 2)=0,求证x 1+x 2>2.5.已知函数)ln()(a x x x f +-=的最小值为0,其中0>a .(1)求a 的值(2)若对任意的),0[+∞∈x ,有2)(kx x f ≤成立,求实数k 的最小值 (3)证明∑=∈<+--ni N n n i 1*)(2)12ln(1226.已知函数()()2ln f x x a x x =+--在0x =处取得极值.(1)求实数a 的值; (2)若关于x 的方程()52f x x b =-+在区间[]0,2上恰有两个不同的实数根,求实数b 的取值范围;(3)证明:对任意的正整数n ,不等式()23412ln 149n n n+++++>+L 都成立.7. (本小题满分14分)设函数2()=+(+1)f x x bln x ,其中b≠0。
高考数学三轮复习冲刺模拟试题19导数02三、解答题 1.已知函数(为自然对数的底数). (1)求的最小值;(2)设不等式的解集为,若,且,求实数的取值范围 (3)已知,且,是否存在等差数列和首项为公比大于0的等比 数列,使得?若存在,请求出数列的通项公式.若不存在,请说明理由.2.已知函数(). (1)若,试确定函数的单调区间;(2)若函数在其图象上任意一点处切线的斜率都小于,求实数的取值范围. (3)若,求的取值范围.3.已知函数()()()R a ax x x ax x f ∈--++=2312ln 23(Ⅰ)若2=x 为()x f 的极值点,求实数a 的值;(Ⅱ)若()x f y =在[)+∞,3上为增函数,求实数a 的取值范围;(Ⅲ)当21-=a 时,方程()()x b x x f +-=-3113有实根,求实数b 的最大值.4.已知函数f(x )=2ln x +ax 2-1(a ∈R)(1)求函数f(x)的单调区间; (2)若a=1,分别解答下面两题,(i)若不等式f(1+x)+f(1-x)<m 对任意的0<x<1恒成立,求m 的取值范围; (ii)若x 1,x 2是两个不相等的正数,且f(x 1)+f(x 2)=0,求证x 1+x 2>2.5.已知函数)ln()(a x x x f +-=的最小值为0,其中0>a .(1)求a 的值(2)若对任意的),0[+∞∈x ,有2)(kx x f ≤成立,求实数k 的最小值 (3)证明∑=∈<+--ni N n n i 1*)(2)12ln(1226.已知函数()()2ln f x x a x x =+--在0x =处取得极值.(1)求实数a 的值; (2)若关于x 的方程()52f x x b =-+在区间[]0,2上恰有两个不同的实数根,求实数b 的取值范围;(3)证明:对任意的正整数n ,不等式()23412ln 149n n n+++++>+L 都成立.7. (本小题满分14分)设函数2()=+(+1)f x x bln x ,其中b≠0。
2020年广东省第三次高考模拟考试理科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}{}22|22,|log A x Z x B x y x =∈-<<==,则AB =( )A .{}1,1-B .{}1,0,1-C .{}1D .{}0,12. 复数z 满足(1)|1|z +=+,则z 等于( )A .1B .1C .12D 12i -3. 已知实数,满足约束条件,则的最大值为( )A.B.C. D. 24. 在由直线,和轴围成的三角形内任取一点,记事件为,为,则( )A.B. C. D.5. 《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问: 五人各得几何?”其意思为: 有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少个橘子.这个问题中,得到橘子最多的人所得的橘子个数是( ) A. 15B. 16C. 18D. 216. 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有( )A. 4种B. 10种C. 18种D. 20种7. 若1x 是方程4xxe =的解,2x 是方程ln 4x x =的解,则12x x +等于( ) A .4B .2C .eD .18. 已知函数()2()12sin 06f x x πωω⎛⎫=-+> ⎪⎝⎭在区间,62ππ⎡⎤⎢⎥⎣⎦为单调递减函数,则ω的最大值是( ) A .12 B .35 C .23 D .349. 已知三棱锥的底面是以为斜边的等腰直角三角形,且,则该三棱锥的外接球的表面积为 A.B.C.D.10. 函数的图象大致是( )A. B. C. D.11.已知函数a x ax e ex f +--+=)(,若c b a ==3log 3,则( )A.)(a f <)(b f <)(c fB.)(b f <)(c f <)(a fC.)(a f <)(c f <)(b fD.)(c f <)(b f <)(a f12.已知函数1,)21(1,2542{)(≤>-+-=x x x x x x f ,若函数()()g x f x mx m =--的图象与x 轴的交点个数不少于2个,则实数m 的取值范围为( )A.1,64⎡⎢⎣ B.1,64⎡⎢⎣C .][1,2ln2,64⎛-∞-⋃ ⎝ D .][1,2ln2,64e ⎛-∞-⋃ ⎝ 二、填空题:本题共4小题,每小题5分,共20分。
高考数学三轮复习冲刺模拟试题10
立体几何01
一、选择题
1 .已知正四棱柱ABCD —A 1B 1C l D 1中,AA 1=2AB ,E 是AA 1的中点,则异面直线DC 1与BE 所成角
的余弦值为 ( )
A .
1
5
B .
1010
C .
310
10
D .
35
2 .某几何体的三视图如图所示,则它的体积是
( )
A .283
π-
B .83
π
-
C .82π-
D .
23
π
3 .几何体的三视图如图所示,则该几何体的体积为
( )
A .223π+
B .423π+
C .23
2π+ D .234π+
4 .已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC
为球O 的直径,且2SC =,则此棱锥的体积为 ( )
A .26
B .
36
C .
23
D .
22
5 .设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是
( )
A .βαβα⊥⊥,//,b a
B .βαβα//,,⊥⊥b a
C .βαβα//,,⊥⊂b a
D .βαβα⊥⊂,//,b a
6 .如图,E 、F 分别是三棱锥P-ABC 的棱AP 、BC 的中点,PC=10,AB=6,EF=7,则异面直线
AB 与PC 所成的角为( ) ( ) A .90° B .60° C .45° D .30°
二、填空题
7 .某几何体的三视图如图所示,则该几何体的体积为__________.
正视图
俯视图
1.5
1.5 2
2
3
2
2
2
2 侧视图
第10题图
8.一个几何体的三视图如上图所示,且其侧视图为正三角形,则这个几何体的体积为 .
9 .一个棱锥的三视图如图,则该棱锥的全面积(单位:cm2)为________.
10.一个几何体的三视图如图所示,则该几何体的表面积与体积分别为___________
11.如图为一个几何体的三视图,其中俯视为正三角形,A
1B
1
=2,AA
1
=4,则该几何体的表面
积为_______。
12.右图是一个空间几何体的三视图,则该几何体的体积大小为___________________.
13.已知直线m,n 与平面α,β,给出下列三个命题:
①若m∥α,n∥α,则m∥n; ②若m∥α,n⊥α,则n⊥m; ③若m⊥α,m∥β,则α⊥β. 其中真命题的个数是______个
14.已知某几何体的三视图如图所示,则该几何体的体积为
___________.
15.已知一个几何体的三视图如下图所示(单位:cm),其中正视图是直角梯形,侧视图和俯
视图都是矩形,则这个几何体的体积是________cm 3
.
1
2
1
2
2
2
16.一个几何体的三视图如图所示,则该几何体的体积为____________;
参考答案 一、选择题 1. B 2. A
3. 【答案】C
解:由三视图可知,该几何体下面是半径为1,高为2的圆柱.上面是正四棱锥.真四棱锥的
2213-=2,所以四棱锥的体积为2
13
2)33
3
⨯=
,圆柱的体积为2π,所以该几何体的体积为3
23
π+,选C. 4. 【答案】A
【解析】因为ABC ∆为边长为1的正三角形,且球半径为1,所以四面体O ABC -为正四面体,所以ABC ∆的外接圆的半径为
3
,所以点O 到面ABC 的距离236
1(
)33
d =-=
,所以三棱锥的高623SF OE ==,所以三棱锥的体积为
11326232236
⨯⨯⨯=,选A.
5. 【答案】C
【解析】若b β⊥,//αβ,所以b α⊥,又a α⊂,所以b a ⊥,即a b ⊥,所以选C. 6. 【答案】B
【解析】
,取AC 的中点M,连结EM,MF ,因为E,F 是中
点,所以16//,322MF AB MF AB =
==,110
//,522
ME PC ME PC ===,所以MF 与ME 所成的角即为AB 与PC 所成的角。
在三角形MEF 中,
222537151
cos 253302
EMF +--===-⨯⨯,所以120EMF ∠=o
,所以直线AB 与PC 所成的角为为60o
,选B. 二、填空题 7. π3108+ ; 8.
π6
3
334+
9. 21248+ 10. 2,32
11. 【答案】2324
【解析】由三视图可知,该几何体是一个正三棱柱,底面边长为2,高是 4.所以该三棱
柱的表面积为21322324232422
⨯⨯⨯+⨯⨯=+。
12. 【答案】243
π
-
由三视图可知,该几何体时一个边长为2,2,1的长方体挖去一个半径为1的半球。
所以长方体的体积为2214⨯⨯=,半球的体积为142233
π
π⨯=,所以该几何
体的体积为243
π
-。
13. 【答案】2
解:①平行于同一平面的两直线不一定平行,所以①错误.②根据线面垂直的性质可知②正确.③根据面面垂直的性质和判断定理可知③正确,所以真命题的个数是2个. 14. 【答案】3π
解:
由三视图我们可知原几何体是一个圆柱体的一部分,并且有
正视图知是一个
1
2
的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.
15. 【答案】3
2
【解析】由三视图可知,该几何体为一个放到的四棱柱,以梯形为低,
所以梯形面积为1(12)322⨯+=,四棱柱的高为1,所以该几何体的体积为3
2。
16. 【答案】80
解:解:由三视图可知该几何体为上部是一四棱锥,下部为正方体的组合体.四棱锥的高3,正方体棱长为4,所以正方体的体积为3
464=.四棱锥的体积为1443163
⨯⨯⨯=,所以该组合体的体积之和为641680+=.。