江苏省无锡市普通高中2018届高三上学期期中基础性检测考数学试题 Word版含解析
- 格式:doc
- 大小:785.50 KB
- 文档页数:12
江苏省无锡市2024-2025学年高三上学期期中教学质量调研测试数学试题(答案在最后)2024.11命题单位:注意事项及说明:本卷考试时间为120分钟,全卷满分为150分一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1.若集合{}2{11},20A x xB x x x =-<<=-+≤∣∣,则A B = ()A.[0,1)B.(1,1)- C.(1,2]- D.(1,0]-【答案】D 【解析】【分析】解一元二次不等式可得集合B ,根据集合的交集运算,即可求得答案.【详解】由题意知(){}2{11}1,1,20(,0][2,)A xx B x x x =-<<=-=-+≤=-∞+∞ ∣∣,故(1,0]A B =- ,故选:D 2.若复数12i34iz +=-(i 为虚数单位),则在复平面内z 所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】根据复数除法化简12i 55z =-+,进而可得点的坐标,即可求解.【详解】复数2212i (12i)(34i)386i 4i 510i 12i 34i (34i)(34i)342555z +++-++-+=====---++,对应点为12,55⎛⎫- ⎪⎝⎭,位于第二象限,故选:B3.已知函数1sin 25y x ⎛⎫=+⎪⎝⎭的图象为C ,为了得到函数1sin 25y x ⎛⎫=- ⎪⎝⎭的图象,只要把C 上所有的点()A.向右平行移动15个单位长度 B.向左平行移动15个单位长度C.向右平行移动25个单位长度 D.向左平行移动25个单位长度【答案】A 【解析】【分析】根据三角函数的图象变换计算即可.【详解】易知1sin 25y x ⎛⎫=+⎪⎝⎭向右平行移动15个单位长度可得111sin 2sin 2555y x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.故选:A4.一家货物公司计划租地建造仓库储存货物,经过市场调查了解到下列信息:每月土地占地费1y (单位:元)与仓库到车站的距离x (单位:km )成反比,每月库存货物费2y (单位:元)与x 成正比;若在距离车站6km 处建仓库,则214y y =.要使这家公司的两项费用之和最小,则应该把仓库建在距离车站()A.2kmB.3kmC.4kmD.5km【答案】B 【解析】【分析】设112212,,(0,0)k y y k x k k x==>>,结合题意求出129k k =,从而求出两项费用之和的表达式,利用基本不等式,即可求得答案.【详解】由题意设112212,,(0,0)k y y k x k k x==>>,仓库到车站的距离0x >,由于在距离车站6km 处建仓库,则214y y =,即121246,96kk k k =∴=,两项费用之和为2122296k y y y k x k x =+=+≥=,当且仅当229k k x x=,即3x =时等号成立,即要使这家公司的两项费用之和最小,则应该把仓库建在距离车站3km.故选:B5.若等差数列{}n a 的前n 项和为n S ,则“20240S >且20250S <”是“101210130a a <”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据等差数列的单调性以及等差数列的性质即可判断101210130,0a a ><,说明充分性,由101210130,0a a <>时,即可说明不必要性.【详解】因为20240S >且20250S <,所以等差数列{}n a 单调递减,且公差小于0,故20230S >,()()120231202520232025202320250,022S a a a S a +⨯+⨯=>=<,则12023101212025101320,20a a a a a a +=>+=<,即101210130,0a a ><,所以101210130a a <,由101210130a a <,当101210130,0a a <>时,等差数列{}n a 单调递增,则不可能满足20240S >且20250S <,因此“20240S >且20250S <”是“101210130a a <”的充分不必要条件.故选:A.6.已知函数2()ln 1x xf x x x -=+-,则下列函数是奇函数的是()A.(1)1f x ++B.(1)1f x -+C.(1)1f x --D.(1)1f x +-【答案】D 【解析】【分析】利用函数的奇偶性计算即可.【详解】易知()21111(1)ln ln 111x x x f x x x x x-++-+=+=++++,所以()()()()1111ln1,00,11x f x x x x-+-=+∈-+ ,令()11ln1x g x x x -=++,则()11ln 1x g x x x+-=--,显然()()0g x g x +-=,所以()g x 为奇函数,即D 正确.故选:D7.若π3ππsin 24322θθ⎛⎫⎛⎫+=-<<⎪ ⎪⎝⎭⎝⎭,则tan 2θ的值为()A .5-B.5C.7-D.7【答案】C 【解析】【分析】利用倍角公式可求πcos 2θ⎛⎫+ ⎪⎝⎭,根据诱导公式得到sin θ,利用同角三角函数的基本关系求出cos θ和tan θ,进而求出tan 2θ.【详解】∵π3sin 243θ⎛⎫+=⎪⎝⎭,∴22πππ31cos cos 212sin 122242433θθθ⎛⎡⎤⎛⎫⎛⎫⎛⎫+=+=-+=-⨯= ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭,∵πcos sin 2θθ⎛⎫+=- ⎪⎝⎭,∴1sin 3θ=-,∵ππ22θ-<<,∴cos 3θ==,∴sin tan cos 4θθθ==-,∴22tan 42tan 21tan 7θθθ==--.故选:C.8.在ABC V 中,已知3,1,60BC AC ACB ︒==∠=,点D 是BC 的中点,点E 是线段AD 上一点,且13AE AD =,连接CE 并延长交边AB 于点P ,则线段CP 的长度为()A.75B.375C.65D.5【答案】B【解析】【分析】首先根据平面向量基本定理的推论求得AB 与AP的关系,即可利用基底CA CB ,表示CP ,再两边平方,利用平面向量数量积公式,即可求解.【详解】11111332266AE AD AB AC AP AC λ⎛⎫==+=+ ⎪⎝⎭ ,因为点,,P E C 三点共线,所以1166λ+=,得5λ=,即5AB AP =,4155CP CA CB =+ ,两边平方2221618252525CP CA CB CA CB =++⋅ ,169817413252525250=++⨯⨯⨯=,所以5CP =.故选:B二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列函数中,在区间π3π,24⎛⎫⎪⎝⎭上单调递增的函数是()A.πsin 24y x ⎛⎫=- ⎪⎝⎭B.2πcos 3y x ⎛⎫=+ ⎪⎝⎭C.|sin 2|y x =D.2sin y x=【答案】BC 【解析】【分析】利用正弦函数和余弦函数的性质判断;【详解】A.因为π3π,24x ⎛⎫∈⎪⎝⎭,所以π3π5π2,444x ⎛⎫-∈ ⎪⎝⎭,sin y t =在3π5π,44⎛⎫⎪⎝⎭上递减,故错误;B.因为π3π,24x ⎛⎫∈⎪⎝⎭,所以2π7π17π,3612x ⎛⎫+∈ ⎪⎝⎭,cos y t =在7π17π,612⎛⎫ ⎪⎝⎭上递增,故正确;C.因为π3π,24x ⎛⎫∈⎪⎝⎭,所以3π2π,2x ⎛⎫∈ ⎪⎝⎭,sin y t =在3ππ,2⎛⎫⎪⎝⎭上递增,故正确;D.21cos 2sin 2x y x -==,因为π3π,24x ⎛⎫∈ ⎪⎝⎭,所以3π2π,2x ⎛⎫∈ ⎪⎝⎭,cos 2y x =在3ππ,2⎛⎫⎪⎝⎭上递增,则2sin y x =在3ππ,2⎛⎫⎪⎝⎭上递减,故错误;故选:BC10.下列说法中正确的有()A.若0a b >>,0c d <<,则ac bd <B.若0a b >>,0c <,则c c a b>C.若13a <<,10b -<<,则23a b <-<D .若0a <,2ab a >,则22b a >【答案】ABD 【解析】【分析】利用不等式的基本性质逐项判断,可得出合适的选项.【详解】对于A 选项,因为0a b >>,0c d <<,则0c d ->->,由不等式的基本性质可得ac bd ->-,则ac bd <,A 对;对于B 选项,因为0a b >>,不等式的两边同时除以ab 可得11a b<,因为0c <,由不等式的基本性质可得c ca b>,B 对;对于C 选项,因为13a <<,10b -<<,则01b <-<,由不等式的基本性质可得14a b <-<,C 错;对于D 选项,因为0a <,2ab a >,由不等式的基本性质可得0b a <<,则0b a ->->,由不等式的基本性质可得22a b <,D 对.故选:ABD.11.函数32()1f x x ax bx =++-.下列说法中正确的有()A.当3,1a b ==时,有(2)()0f x f x --+=恒成立B.,a b ∃∈R ,使()f x 在(,1)-∞上单调递减C.当0b =时,存在唯一的实数a ,使()f x 恰有两个零点D.当0,[2,0]b x =∈-时,6()x f x x -≤≤恒成立,则1,14a ⎡⎤∈⎢⎥⎣⎦【答案】ACD 【解析】【分析】利用函数表达式计算(2)f x --,可得选项A 正确;求()f x ',可知()f x '为开口向上的二次函数,在(,1)-∞上()0f x '≤不可能恒成立,选项B 错误;零点问题转化为函数图象交点个数问题可得选项C 正确;分离参数a ,恒成立问题转化为a 大于等于函数的最大值或小于等于函数的最小值,分析函数即可得到选项D 正确.【详解】A.当3,1a b ==时,32()31f x x x x =++-,32(2)31f x x x x --=---+,∴(2)()0f x f x --+=,选项A 正确.B.由题意得,2()32f x x ax b '=++,为开口向上的二次函数,故0x ∃∈R ,使得0(,)x x ∈-∞时,()0f x '>,此时()f x 为增函数,所以不存在,a b ∈R ,使()f x 在(,1)-∞上单调递减.C.当0b =时,32()1f x x ax =+-,由(0)1f =-得,0不是函数()f x 的零点.当0x ≠时,由3210x ax +-=得,21a x x =-,令21()(0)g x x x x =-≠,则332()x g x x +'=-,由()0g x '=得x =当(,x ∈-∞时,330,20,()0x x g x '<+<<,()g x 为减函数,当(x ∈时,330,20,()0x x g x '<+>>,()g x 为增函数,当(0,)x ∈+∞时,330,20,()0x x g x '>+><,()g x 为减函数,()g x 图象如图所示:由图象可知,存在唯一的实数a ,使直线y a =与()g x 图象恰有两个交点,即()f x 恰有两个零点,选项C 正确.D.当0b =时,32()1f x x ax =+-,∵[2,0]x ∈-,6()x f x x -≤≤恒成立,∴3250x ax x +-+≥恒成立且3210x ax x +--≤.对于不等式325[2,00,]x a x x x ≥∈-+-+,当0x =时,不等式成立,当[2,0)x ∈-时,215a x x x ≥-+-恒成立,即2max 15a x x x ⎛⎫≥-+- ⎪⎝⎭,令2)15(2,0)[,h x x x x x ∈-=-+-,则3310()x x h x x--+'=,∵[2,0)x ∈-,∴33100,0x x x --+><,∴()0h x '<,∴()h x 在[2,0)-上为减函数,max 1()(2)4h x h =-=,∴1a 4≥.对于不等式321[2,00,]x a x x x ≤∈-+--,当0x =时,不等式成立,当[2,0)x ∈-时,211a x x x ≤-++恒成立,即2min 11a x x x ⎛⎫≤-++⎪⎝⎭,令2)11[2(,),0x x x xx ϕ∈-=-++,则332()x x x xϕ---'=,当(2,1)x ∈--时,3(2,10)x x --∈,3320,0x x x ---><,()0x ϕ'<,当(1,0)x ∈-时,3(0,2)x x --∈,3320,0x x x ---<<,()0x ϕ'>,∴()ϕx 在(2,1)--上为减函数,在(1,0)-上为增函数,∴min ()(1)1x ϕϕ=-=,∴1a ≤.综上得,1,14a ⎡⎤∈⎢⎥⎣⎦,选项D 正确.故选:ACD.【点睛】思路点睛:本题考查函数零点、函数与不等式综合问题,具体思路如下:(1)对于函数零点个数问题,先说明0不是函数()f x 的零点,再根据0x ≠时,由()0f x =分离出参数21a x x =-,问题转化为“存在唯一的实数a ,使得直线y a =与21()g x x x =-恰有两个交点”,通过求导分析单调性画出函数图象,通过图象即可得到结果.(2)对于不等式恒成立问题,分离参数a ,问题转化为max ()a h x ≥且min ()a x ϕ≤,对两个函数分别求导分析单调性,即可得到a 的取值集合.三、填空题:本题共3小题,每小题5分,共15分.请把答案填写在答题卡相应位置上.12.已知(0,2),a b == ,则向量a 在向量b上的投影向量的坐标为______.【答案】1,22⎛⎫⎪ ⎪⎝⎭【解析】【分析】根据投影向量的定义计算即可求解.【详解】向量a 在向量b上的投影向量为)31,22a b b b b⎛⎫⋅⋅== ⎪ ⎪⎝⎭.故答案为:1,22⎛⎫⎪ ⎪⎝⎭13.已知实数,,a b c 满足924a b c ==且113a b+=,则c =__________.【答案】6【解析】【分析】利用指数与对数的换算结合换底公式计算即可.【详解】由924a b c ==可知9240,log ,log c a c b c >==,所以11log 9log 24log 2163c c c a b+=+==,即332166c ==,所以6c =.故答案为:614.任何有理数mn都可以化为有限小数或无限循环小数;反之,任一有限小数或无限循环小数也可以化为m n 的形式,从而是有理数.则1.4=__________(写成m n的形式,m 与n 为互质的具体正整数);若1.4,1.44,1.444, 构成了数列{}n a ,设数列()()111011n n nb a +=-⋅-,求数列{}n b 的前n 项和n S =__________.【答案】①.139②.()111364101n +--【解析】【分析】利用无限循环小数的性质设0.04t = ,然后建立等式求解即可;利用题中给出的规律先求出{}n a 的通项公式,然后得到{}n b 的通项公式,然后列项相消求解即可.【详解】令0.04t = ,则1.4110 1.4t t =+=+,解得245t =,所以131.41109t =+=易知()()()23410.1410.1410.11 1.4,1 1.44,1 1.444,999---+=+=+=所以()410.11341199910n nna -=+=-⨯所以()()()111191114101101410111013419910110110n n n n n n n n b +++⨯⎛⎫===- ⎪--⎛⎫--⎝⎭-⋅- ⎪-⎝⎭⨯所以1211231111111110110110110110110110110141n n n n n S -+-+-++-+---------⎛⎫=⎪⎝⎭()111111101101414601113n n ++⎛⎫==-⎪⎝⎭----所以答案为:139;()114113601n +--【点睛】关键点点睛:若0.04t = ,则0.410t = ,借此建立等式;()()244440.40.910.1;0.440.9910.19999=⨯=⨯-=⨯=⨯- ,借此求得{}n a 的通项公式;同样的道理()()2444449101;44991019999=⨯=⨯-=⨯=⨯- .四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答,解答应写出必要的文字说明、证明过程或演算步骤.15.已知向量a 与b 的夹角为135︒,且||1,||a b == (1),c a b λλλ=+-∈R .(1)当b c ⊥时,求实数λ的值;(2)当||c 取最小值时,求向量b 与c夹角的余弦值.【答案】(1)23(2)10【解析】【分析】(1)由b c ⊥ ,所以0b c ⋅= ,将(1)c a b λλ=+- 代入可得()210a b b λλ⋅+-=,再由数量积的定义求得1a b ⋅=-,代回即可求解;(2)根据向量的模和二次函数求最值的方法求出λ的值,再根据向量的夹角公式计算即可.【小问1详解】因为b c ⊥ ,所以0b c ⋅=,即(1)0b a b λλ⎡⎤⋅+-=⎣⎦ ,所以()210a b b λλ⋅+-=,因为向量a 与b的夹角为135︒,且||1,||a b ==所以2cos135112a b a b ⎛⎫⋅=⋅⋅︒=⨯-=- ⎪ ⎪⎝⎭,所以()210λλ-+-=,所以23λ=.【小问2详解】因为(1)c a b λλ=+-,所以222222(1)2(1)(1)c a b a a b b λλλλλλ=+-=+-⋅+- ,由(1)知1a b ⋅=-,且||1,||a b == 所以222222(1)(1)562a a b b λλλλλλ+-⋅+-=-+ ,则2231562555λλλ⎛⎫-+=-+ ⎪⎝⎭,故当35λ=时,c 最小为55,此时3255c a b =+ ,则232323415555555b c b a b a b b ⎛⎫⋅=⋅+=⋅+=-+= ⎪⎝⎭ ,又55c b ⋅==,所以15cos ,105c b c b c b⋅===,所以向量b与c夹角的余弦值为10.16.已知函数2()ln(1),f x x a x a =++∈R .(1)若函数()f x 有两个不同的极值点,求a 的取值范围;(2)求函数()()22a g x f x x ⎛⎫=-+⎪⎝⎭的单调递减区间.【答案】(1)10,2⎛⎫⎪⎝⎭(2)答案见解析【解析】【分析】(1)求导222()1x x af x x '++=+,可得2220x x a ++=有两个大于1-的不等实根,进而可得222122212(1)0Δ2420a a ⎧->-⎪⨯⎪⨯+⨯-+>⎨⎪=-⨯>⎪⎩,求解即可;(2)求导数,对a 分类讨论可求得单减区间.【小问1详解】函数2()ln(1)f x x a x =++的定义域为{|1}x x >-,求导得222()211a x x af x x x x ++'=+=++,令()0f x '=,可得2220x x a ++=,因为函数()f x 有两个不同的极值点,所以2220x x a ++=有两个大于1-的不等实根,所以222122212(1)0Δ2420a a ⎧->-⎪⨯⎪⨯+⨯-+>⎨⎪=-⨯>⎪⎩,解得102a <<.所以a 的取值范围为1(0,2;【小问2详解】2()()2ln(1)222a a g x f x x x a x x ⎛⎫⎛⎫=-+=++-+ ⎪ ⎪⎝⎭⎝⎭,求导得2442(1)4(1)()22122(1)a a x x a a x x g x x x x '++-+-+⎛⎫=+-+= ⎪++⎝⎭244(44)(1)2(1)2(1)x ax a x a x x x -+-+--==++,令()0g x '=,解得14ax =-或1x =,当8a >时,114a ->,由()0g x '<,可得114ax <<-,函数()g x 在(1,1)4a-上单调递减,当8a =,114a-=,由()0g x '<,可得x ∈∅,函数()g x 无单调递减区间,当08a <<,1114a -<-<,由()0g x '<,可得114ax -<<,函数()g x 在(1,1)4a-上单调递减,当0a ≤时,114a-≤,由()0g x '<,可得11x -<<,函数()g x 在(1,1)-上单调递减,综上所述:当8a >时,函数()g x 在(1,1)4a-上单调递减,当8a =时,函数()g x 无单调递减区间,当08a <<时,函数()g x 在(1,1)4a-上单调递减,当0a ≤时,函数()g x 在(1,1)-上单调递减.17.在ABC V 中,已知)114A B --=.(1)若ABC V 为锐角三角形,求角C 的值,并求22sin cos A B -的取值范围;(2)若AB =,线段AB 的中垂线交边AC 于点D ,且1CD =,求A 的值.【答案】(1)π3C =;11,42⎛⎤ ⎥⎝⎦;(2)π18A =【解析】【分析】(1)利用正切的和角公式可得C ,再利用余弦的差角公式,辅助角公式结合三角函数的性质计算范围即可;(2)设AB 中点为E ,由正弦定理解三角形结合诱导公式计算即可.【小问1详解】由题意))113tan tan tan tan 14A B A B A B --=-++=,)tan tan 1tan tan A B A B -=+,所以()()tan tan tan tan π1tan tan A BA B C A B++===--,所以tan C =易知()0,πC ∈,所以π3C =,则2π3A B +=,因为ABC V 为锐角三角形,所以π2ππ0,,0,232A B A ⎛⎫⎛⎫∈=-∈ ⎪ ⎪⎝⎭⎝⎭,即ππ,62A ⎛⎫∈ ⎪⎝⎭,所以2222222π1sin cos sin cos sin cos sin 322A B A A A A A ⎛⎫⎛⎫-=--=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭22111sin sin cos cos cos 2sin 242444A A A A A A =+-=-+1πsin 226A ⎛⎫=- ⎪⎝⎭,由ππ,62A ⎛⎫∈⎪⎝⎭知ππ5π2,666A ⎛⎫-∈ ⎪⎝⎭,所以1π11sin 2,2642A ⎛⎫⎛⎤-∈ ⎪ ⎥⎝⎭⎝⎦,即22sin cos A B -的取值范围为11,42⎛⎤⎥⎝⎦;【小问2详解】设AB 中点为E,则2π,2,3cos 2cos AE DBA A CBD A DB AD A A∠=∴∠=-===,在CBD △中,由正弦定理得π2πsin sin 233DB CD A =⎛⎫- ⎪⎝⎭,即112πcos sin 23A A =⎛⎫- ⎪⎝⎭,所以2ππsin 2cos sin 32A A A ⎛⎫⎛⎫-==-⎪ ⎪⎝⎭⎝⎭,因为线段AB 的中垂线交边AC 于点D ,可知A B <,所以π02A <<,则2ππ232A A -=-,解之得π6A =,此时π2B =,正切不存在,舍去;或2ππ2π32A A -+-=,解之得π18A =;综上π18A =.18.已知函数()e xf x =.(1)若x ∀∈R ,不等式()0mf x x ->恒成立,求实数m 的取值范围;(2)过点(,1)T t 可以作曲线()y f x =的两条切线,切点分别为()(),e ,,e abA aB b .①求实数t 的取值范围;②证明:若a b >,则||||AT BT >.【答案】(1)1,e⎛⎫+∞ ⎪⎝⎭;(2)()0,∞+;证明见解析.【解析】【分析】(1)分离参数结合导数研究函数的单调性与最值计算即可;(2)①利用导数的几何意义,统一设切点()00,ex x ,将问题转化为0011e x t x =+-有两个解,构造函数利用导数研究函数的单调性计算即可;②利用①的结论得出e e a b a b --+=+,根据极值点偏移证得0a b >->,再根据弦长公式得))1e e 1a bAT BT --⎧=-⎪⎨=-⎪⎩,构造函数())()1e 0x m x x -=->判定其单调性即可证明.【小问1详解】易知e 0e xx x m x m ->⇔>,令()e x x g x =,则()1e xxg x ='-,显然1x <时,()0g x '>,1x >时,()0g x '<,即()ex xg x =在(),1-∞上单调递增,在()1,+∞上单调递减,则()()max 11e g x g m ==<,即1,e m ⎛⎫∈+∞ ⎪⎝⎭;【小问2详解】①设切点()0,e x x ,易知0x t ≠,()e xf x '=,则有000e 1e x x x t-=-,即0011e x t x =+-,令()e 1xh x x -=+-,则(),y t y h x ==有两个交点,横坐标即分别为,a b ,易知()1e xh x -=-',显然0x >时,()0h x '>,0x <时,()0h x '<,则()h x 在(),0-∞上单调递减,在()0,∞+上单调递增,且x →-∞时有()h x →+∞,x →+∞时也有()h x →+∞,()()00h x h ≥=,则要满足题意需0t >,即()0,t ∈+∞;②由上可知:()e 10e 1a b a tb a b t --⎧+-=<<⎨+-=⎩,作差可得e e 0a b a b ---+-=,即e e a b a b --+=+,由①知:()h x 在(),0-∞上单调递减,在()0,∞+上单调递增,令()()()()()ee 22e e 0xx x x H x h x h x x H x --'=--=-+⇒=-+≤,则()H x 始终单调递减,所以()()()()00H a h a h a H =--<=,即()()()h a h b h a =<-,所以b a >-,所以0a b >->,不难发现e 11e a aa t a t t --+-=⇒=+->,e e aAT bBTk k ⎧=⎨=⎩,所以由弦长公式可知))AT a t BT t b ⎧=-⎪⎨=-⎪⎩,所以))1e e 1abAT BT --⎧=-⎪⎨=-⎪⎩,设())()()21e 0ex xxm x x m x --'=->⇒=⋅所以由))01e1e aba b ->->⇒--=)1e e 1ebb b --=+,即AT BT >,证毕.【点睛】思路点睛:对于切线个数问题,可设切点利用导数的几何意义建立方程,将问题转化为解的个数问题;对于最后一问,弦长的大小含有双变量,常有的想法是找到两者的等量关系,抑或是不等关系,结合图形容易想到化为极值点偏移来处理.19.在下面n 行、n 列()*Nn ∈的表格内填数:第一列所填各数自上而下构成首项为1,公差为2的等差数列;第一行所填各数自左向右构成首项为1,公比为2的等比数列;其余空格按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写.设第2行的数自左向右依次记为123,,,,n c c c c .第1列第2列第3列…第n 列第1行1222…12n -第2行359第3行510……第n 行21n -(1)求数列{}n c 通项公式;(2)对任意的m *∈N ,将数列中落入区间[],m m b c 内项的个数记为m d ,①求1d 和10d 的值;②设数列{}m m a d ⋅的前m 项和m T ;是否存在*m ∈N ,使得()19253m m T m -+=⋅,若存在,求出所有m 的值,若不存在,请说明理由.【答案】(1)21nn c =+;(2)①12d =,10257d =;②4m =.【解析】【分析】(1)移项得12nn n c c +-=,运用累加法即可得到{}n c 通项公式;(2)①令m n m b a c ≤≤,解得1212222m m n -++≤≤,代入1m =得12d =,当2m ≥时,作差得221m m d -=+,代入即可得到10d ;②()22,1(21)21,2m m m m a d m m +=⎧⎪=⎨-+≥⎪⎩,利用错位相减法得12(23)22m m T m m -=-⋅++,再验证m 值即可.【小问1详解】由题意知112,3nn n c c c +=+=,12nn n c c +∴-=,当2n ≥时,()()()1211122112223n n n n n n n c c c c c c c c -----=-+-++-+=++++ ()121232112n n--=+=+-,而13c =也满足上式,21nn c ∴=+.【小问2详解】①111122,12(1)21,2,21n n m m n n m m b a n n b c ---=⋅==+-=-==+,令1121222212122m m m mm n m b a c n n --++≤≤⇒≤-≤+⇒≤≤,当1m =时,12n ≤≤,此时12d =,当2m ≥时,212121m m n --+≤≤+,此时1228102212121257m m m m d d ---=-+=+∴=+=,.②()22,1(21)21,2m m m m a d m m +=⎧⎪=⎨-+≥⎪⎩,记{}12m m -⋅从第2项到第m 项的和为m S ,12321223242(1)22m m m S m m --∴=⋅+⋅+⋅++-⋅+⋅ ,232122232(2)2(1)22m m m m S m m m --=⋅+⋅++-⋅+-⋅+⋅ ,上述两式作差得214222m mm S m --=+++-⋅ ()241242(1)212m mm m m --=+-⋅=-⋅-,(1)2m m S m ∴=-,当1m =时,2m T =;当2m ≥时,()1112(321)(1)2(1)2212m m mm m T m -⋅-+--=+-⋅+--12(23)22m m m -=-⋅++,1m =也满足上式,12(23)22m m T m m -∴=-⋅++,1211239(23)2453(23)2453m m m m m m m m m m ----⎡⎤∴-⋅++=⋅⇒-⋅++=⋅⎣⎦,()3125323240m m m m m --⇒⋅-+⋅--=,当1,2,3m =时,左边0<,舍去,当4m =时,经检验符合;当5m ≥时,左边恒0>,无解,综上:4m =.【点睛】关键点点睛:本题第二问的第二小问关键是利用错位相减法得(1)2mm S m =-,再计算得12(23)22m m T m m -=-⋅++.。
【最新整理,下载后即可编辑】苏州市2018届高三第一学期期中调研试卷数 学一、填空题(本大题共14小题,每小题5分,共70分,请把答案直接填写在答卷纸...相应的位置) 1.已知集合{1,2,3,4,5},{1,3},{2,3}U A B ===,则()U A B = ▲ .2.函数1ln(1)y x =-的定义域为 ▲ .3.设命题:4p x >;命题2:540q x x -+≥,那么p 是q 的 ▲ 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”). 4.已知幂函数22*()m m y x m -=∈N 在(0,)+∞是增函数,则实数m 的值是 ▲ .5.已知曲线3()ln f x ax x =+在(1,(1))f 处的切线的斜率为2,则实数a 的值是▲ .6.已知等比数列{}n a 中,32a =,4616a a =,则7935a a a a -=- ▲ .7.函数sin(2)(0)2y x ϕϕπ=+<<图象的一条对称轴是12x π=,则ϕ的值是 ▲ .8.已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,则不等式()01f x x >-的解集为 ▲ .9.已知tan()24απ-=,则cos2α的值是 ▲ .10.若函数8,2()log 5,2ax x f x x x -+⎧=⎨+>⎩≤(01)a a >≠且的值域为[6,)+∞,则实数a 的取值范围是 ▲ .11.已知数列{},{}n n a b 满足1111,1,(*)21n n n n a a b b n a +=+==∈+N ,则122017b b b ⋅⋅=▲ .12.设ABC △的内角,,A B C 的对边分别是,,a b c ,D 为AB 的中点,若cos sin b a C c A=+且CD =ABC △面积的最大值是▲ .13.已知函数()sin()6f x x π=-,若对任意的实数5[,]62αππ∈--,都存在唯一的实数[0,]m β∈,使()()0f f αβ+=,则实数m 的最小值是 ▲ . 14.已知函数ln ,0()21,0x x f x x x >⎧=⎨+⎩≤,若直线y ax =与()y f x =交于三个不同的点(,()),(,()),A m f m B n f n(,())C t f t (其中m n t <<),则12n m++的取值范围是 ▲ .二、解答题(本大题共6个小题,共90分,请在答题卷区域内作答,解答时应写出文字说明、证明过程或演算步骤) 15.(本题满分14分)已知函数1())(0,0)42f x ax b a b π=+++>>的图象与x 轴相切,且图象上相邻两个最高点之间的距离为2π.(1)求,a b 的值;(2)求()f x 在[0,]4π上的最大值和最小值.16.(本题满分14分)在ABC △中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin sin sin ()B C m A m +=∈R ,且240a bc -=.(1)当52,4a m ==时,求,bc 的值;(2)若角A 为锐角,求m 的取值范围.17.(本题满分15分)已知数列{}n a 的前n 项和是n S ,且满足11a =,*131()n n S S n +=+∈N . (1)求数列{}n a 的通项公式;(2)在数列{}n b 中,13b =,*11()n n n na b b n a ++-=∈N ,若不等式2n n a b n λ+≤对*n ∈N 有解,求实数λ的取值范围.如图所示的自动通风设施.该设施的下部ABCD 是等腰梯形,其中AB 为2米,梯形的高为1米,CD 为3米,上部CmD 是个半圆,固定点E 为CD 的中点.MN 是由电脑控制可以上下滑动的伸缩横杆(横杆面积可忽略不计),且滑动过程中始终保持和CD 平行.当MN 位于CD 下方和上方时,通风窗的形状均为矩形MNGH (阴影部分均不通风). (1)设MN 与AB 之间的距离为5(02x x <≤且1)x ≠米,试将通风窗的通风面积S (平方米)表示成关于x 的函数()y S x =;(2)当MN 与AB 之间的距离为多少米时,通风窗的通风面积S 取得最大值?19.(本题满分16分)已知函数2()ln ,()f x x g x x x m ==--. (1)求过点(0,1)P -的()f x 的切线方程;(2)当0=m 时,求函数()()()F x f x g x =-在],0(a 的最大值;(3)证明:当3m ≥-时,不等式2()()(2)e x f x g x x x +<--对任意1[,1]2x ∈均成立(其中e 为自然对数的底数,e 2.718...=).已知数列{}n a 各项均为正数,11a =,22a =,且312n n n n a a a a +++=对任意*n ∈N 恒成立,记{}n a 的前n 项和为n S . (1)若33a =,求5a 的值;(2)证明:对任意正实数p ,221{}n n a pa -+成等比数列;(3)是否存在正实数t ,使得数列{}n S t +为等比数列.若存在,求出此时n a 和n S 的表达式;若不存在,说明理由.2017—2018学年第一学期高三期中调研试卷数学(附加题部分)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相..........应的答题区域内作答..........若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲)(本小题满分10分)如图,AB 为圆O 的直径,C 在圆O 上,CF AB ⊥于F ,点D 为线段CF 上任意一点,延长AD 交圆O于E ,030AEC ∠=. (1)求证:AF FO =; (2)若CF =,求AD AE ⋅的值.BB .(矩阵与变换)(本小题满分10分)已知矩阵1221⎡⎤=⎢⎥⎣⎦A ,42α⎡⎤=⎢⎥⎣⎦,求49αA 的值.C .(极坐标与参数方程)(本小题满分10分)在平面直角坐标系中,直线l 的参数方程为42525x t y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为cos()(0)4a ρθπ-≠.(1)求直线l 和圆C 的直角坐标方程;(2)若圆C 任意一条直径的两个端点到直线l,求a的值.D .(不等式选讲)(本小题满分10分)设,x y 均为正数,且x y >,求证:2212232x y x xy y ++-+≥.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏. (1)求甲拿到礼物的概率;(2)设ξ表示甲参加游戏的轮数..,求ξ的概率分布和数学期望()E ξ.23.(本小题满分10分)(1)若不等式(1)ln(1)x x ax ++≥对任意[0,)x ∈+∞恒成立,求实数a 的取值范围;(2)设*n ∈N ,试比较111231n ++++与ln(1)n +的大小,并证明你的结论.2017—2018学年第一学期高三期中调研试卷数 学 参 考 答 案一、填空题(本大题共14小题,每小题5分,共70分) 1.{1} 2.(1,2)(2,)+∞3.充分不必要 4.15.136.4 7.3π 8.(2,0)(1,2)-9.45-10.(1,2] 11.12018 12.113.2π14.1(1,e )e+二、解答题(本大题共6个小题,共90分) 15.(本题满分14分)解:(1)∵()f x 图象上相邻两个最高点之间的距离为2π,∴()f x 的周期为2π,∴202||2a a ππ=>且,······································································2分∴2a =,··················································································································4分此时1())42f x x b π=+++, 又∵()f x 的图象与x 轴相切,∴1||02b b +=>,·······················································6分∴122b =-;··········································································································8分(2)由(1)可得())4f x x π=+∵[0,]4x π∈,∴4[,]444x ππ5π+∈, ∴当444x π5π+=,即4x π=时,()f x 有最大值为;·················································11分当442x ππ+=,即16x π=时,()f x 有最小值为0.························································14分 16.(本题满分14分) 解:由题意得b c ma+=,240a bc -=.···············································································2分(1)当52,4a m ==时,5,12b c bc +==,解得212b c =⎧⎪⎨=⎪⎩或122b c ⎧=⎪⎨⎪=⎩;································································································6分(2)2222222222()()22cos 23222a ma abc a b c bc a A m a bc bc--+-+--====-,····························8分∵A 为锐角,∴2cos 23(0,1)A m =-∈,∴2322m <<,····················································11分又由b c ma +=可得0m >,·························································································13分∴m <<···········································································14分 17.(本题满分15分)解:(1)∵*131()n n S S n +=+∈N ,∴*131(,2)n n S S n n -=+∈N ≥,∴*13(,2)n n a a n n +=∈N ≥,·························································································2分又当1n =时,由2131S S =+得23a =符合213a a =,∴*13()n n a a n +=∈N ,······························3分∴数列{}n a 是以1为首项,3为公比的等比数列,通项公式为1*3()n n a n -=∈N ; (5)分(2)∵*113()n n n na b b n a ++-==∈N ,∴{}n b 是以3为首项,3为公差的等差数列,····················7分∴*33(1)3()n b n n n =+-=∈N ,·····················································································9分∴2n n a b nλ+≤,即1233n n nλ-⋅+≤,即2133n n n λ--≤对*n ∈N 有解,··································10分设2*13()()3n n nf n n --=∈N ,∵2221(1)3(1)32(41)(1)()333n n nn n n n n n f n f n -+-+---++-=-=, ∴当4n ≥时,(1)()f n f n +<,当4n <时,(1)()f n f n +>, ∴(1)(2)(3)(4)(5)(6)f f f f f f <<<>>>, ∴max 4[()](4)27f n f ==,···························································································14分∴427λ≤.·············································································································15分 18.(本题满分15分)解:(1)当01x <≤时,过A 作AK CD ⊥于K (如上图),则1AK =,122CD AB DK -==,1HM x =-,由2AKMH DKDH ==,得122HM xDH -==,∴322HG DH x =-=+, ∴2()(1)(2)2S x HM HG x x x x =⋅=-+=--+;·······························································4分当512x <<时,过E 作ET MN ⊥于T ,连结EN (如下图),则1ET x =-,22239(1)(1)224MN TN x x ⎛⎫==---- ⎪⎝⎭∴292(1)4MN x =--∴29()2(1)(1)4S x MN ET x x =⋅=---,······································································8分综上:222,01()952(1)(1)142x x x S x x x x ⎧--+<⎪=⎨---<<⎪⎩≤;·································································9分(2)当01x <≤时,2219()2()24S x x x x =--+=-++在[0,1)上递减,∴max ()(0)2S x S ==;································································································11分2︒当512x <<时,229(1)(1)94()2(224x x S x x -+--=-⋅=,当且仅当(1)x -=51(1,)2x +∈时取“=”, ∴max 9()4S x =,此时max 9()24S x =>,∴()S x 的最大值为94,············································14分答:当MN 与AB1+米时,通风窗的通风面积S 取得最大值.····················15分 19.(本题满分16分)解:(1)设切点坐标为00(,ln )x x ,则切线方程为0001ln ()y x x x x -=-, 将(0,1)P -代入上式,得0ln 0x =,01x =, ∴切线方程为1y x =-;·······························································································2分(2)当0m =时,2()ln ,(0,)F x x x x x =-+∈+∞, ∴(21)(1)(),(0,)x x F x x x+-'=-∈+∞,············································································3分当01x <<时,()0F x '>,当1x >时,()0F x '<, ∴()F x 在(0,1)递增,在(1,)+∞递减,·············································································5分∴当01a <≤时,()F x 的最大值为2()ln F a a a a =-+; 当1a >时,()F x 的最大值为(1)0F =;········································································7分(3)2()()(2)e x f x g x x x +<--可化为(2)e ln x m x x x >-+-,设1()(2)e ln ,[,1]2x h x x x x x =-+-∈,要证3m ≥-时()m h x >对任意1[,1]2x ∈均成立,只要证max ()3h x <-,下证此结论成立. ∵1()(1)(e )x h x x x'=--,∴当112x <<时,10x -<,·······················································8分设1()e x u x x=-,则21()e 0x u x x '=+>,∴()u x 在1(,1)2递增, 又∵()u x 在区间1[,1]2上的图象是一条不间断的曲线,且1()202u =<,(1)e 10u =->,∴01(,1)2x ∃∈使得0()0u x =,即01e xx =,00ln x x =-,····················································11分当01(,)2x x ∈时,()0u x <,()0h x '>;当0(,1)x x ∈时,()0u x >,()0h x '<;∴函数()h x 在01[,]2x 递增,在0[,1]x 递减,∴0max 00000000012()()(2)e ln (2)212x h x h x x x x x x x x x ==-+-=-⋅-=--,····························14分∵212y x x=--在1(,1)2x ∈递增,∴0002()121223h x x x =--<--=-,即max ()3h x <-, ∴当3m ≥-时,不等式2()()(2)e xf xg x x x +<--对任意1[,1]2x ∈均成立.··························16分 20.(本题满分16分) 解:(1)∵1423a a a a =,∴46a =,又∵2534a a a a =,∴54392a a ==;·······································2分(2)由3121423n n n n n n n n a a a a a a a a +++++++=⎧⎨=⎩,两式相乘得2134123n n n n n n n a a a a a a a ++++++=,∵0n a >,∴2*42()n n n a a a n ++=∈N , 从而{}n a 的奇数项和偶数项均构成等比数列,···································································4分设公比分别为12,q q ,则1122222n n n a a q q --==,1121111n n n a a q q ---==,······································5分又∵312=n n n na a a a +++,∴42231122a a q a a q ===,即12q q =,···························································6分设12q q q ==,则2212223()n n n n a pa q a pa ---+=+,且2210n n a pa -+>恒成立, 数列221{}n n a pa -+是首项为2p+,公比为q的等比数列,问题得证;····································8分(3)法一:在(2)中令1p =,则数列221{}n n a a -+是首项为3,公比为q 的等比数列,∴22212223213 ,1()()()3(1),11k k k k k k k q S a a a a a a q q q---=⎧⎪=++++++=-⎨≠⎪-⎩, 12122132 ,13(1)2,11k k k k k k k q q S S a q q q q ---⎧-=⎪=-=⎨--≠⎪-⎩,·····································································10分且12341,3,3,33S S S q S q ===+=+,∵数列{}n S t +为等比数列,∴22132324()()(),()()(),S t S t S t S t S t S t ⎧+=++⎪⎨+=++⎪⎩ 即22(3)(1)(3),(3)(3)(33),t t q t q t t q t ⎧+=+++⎪⎨++=+++⎪⎩,即26(1),3,t q t t q +=+⎧⎨=-⎩ 解得14t q =⎧⎨=⎩(3t =-舍去),·························································································13分∴224121k k k S =-=-,212121k k S --=-, 从而对任意*n ∈N 有21n n S =-, 此时2n n S t +=,12n n S tS t-+=+为常数,满足{}n S t +成等比数列, 当2n ≥时,111222n n n n n n a S S ---=-=-=,又11a =,∴1*2()n n a n -=∈N , 综上,存在1t =使数列{}n S t +为等比数列,此时1*2,21()n n n n a S n -==-∈N . (16)分法二:由(2)知,则122n n a q -=,121n n a q --=,且12341,3,3,33S S S q S q ===+=+,∵数列{}n S t +为等比数列,∴22132324()()(),()()(),S t S t S t S t S t S t ⎧+=++⎪⎨+=++⎪⎩ 即22(3)(1)(3),(3)(3)(33),t t q t q t t q t ⎧+=+++⎪⎨++=+++⎪⎩,即26(1),3,t q t t q +=+⎧⎨=-⎩ 解得14t q =⎧⎨=⎩(3t =-舍去),·······················································································11分∴121222n n n a q --==,22212n n a --=,从而对任意*n ∈N 有12n n a -=,····································13分∴01211222222112n n n n S --=++++==--, 此时2n n S t +=,12n n S tS t-+=+为常数,满足{}n S t +成等比数列, 综上,存在1t =使数列{}n S t +为等比数列,此时1*2,21()n n n n a S n -==-∈N . (16)分21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相..........应的答题区域内作答..........若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲,本小题满分10分) 解:(1)证明 :连接,OC AC ,∵030AEC ∠=,∴0260AOC AEC ∠=∠=,又OA OC =,∴AOC ∆为等边三角形, ∵CF AB ⊥,∴CF 为AOC ∆中AO 边上的中线, ∴AF FO =;····························B··········································5分(2)解:连接BE , ∵CF =,AOC ∆是等边三角形,∴可求得1AF =,4AB =,∵AB 为圆O 的直径,∴90AEB ∠=,∴AEB AFD ∠=∠, 又∵BAE DFA ∠=∠,∴AEB ∆∽AFD ∆,∴AD AF ABAE=,即414AD AE AB AF ⋅=⋅=⨯=.··················································································10分 B .(矩阵与变换,本小题满分10分) 解:矩阵A 的特征多项式为212()2321f λλλλλ--==----, 令()0f λ=,解得矩阵A 的特征值121,3λλ=-=,····························································2分当11λ=-时特征向量为111α⎡⎤=⎢⎥-⎣⎦,当23λ=时特征向量为211α⎡⎤=⎢⎥⎣⎦,·····································6分又∵12432ααα⎡⎤==+⎢⎥⎣⎦,·························································································。
无锡市2014年秋学期高三期中考试试卷数 学命题单位:宜兴市教研室 制卷单位:无锡市教育科学研究院注意事项及说明: 本卷考试时间为120分钟, 全卷满分为160分.一.填空题(本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上...) 1.已知复数i(1i)(i z =-为虚数单位),则复数z 在复平面上对应的点位于第 ▲ 象限. 2.已知全集{}1,3,5,7,9U =,{}{}1,5,9,3,5,9A B ==,则()U A B ð的子集个数为▲ .3.若()f x 是定义在R 上的函数,则“(0)0f =”是“函数()f x 为奇函数”的 ▲ 条件(从“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中选一个).4.某班要选1名学生做代表,每个学生当选是等可能的,若“选出代表是男生”的概率是“选出代表是女生”的概率的23,则这个班的女生人数占全班人数的百分比为 ▲ . 5.执行如图所示的程序框图,若输出s 的值为11,则输入自然数n 的值是 ▲ .6. 直线x a =和函数21y x x =+-的图象公共点的个数为▲ .7.已知向量12,e e 是两个不共线的向量,若122a e e =-与12b e e λ=+共线,则λ= ▲ .8.若一直角三角形的三边长构成公差为2的等差数列,则该直角三角形的周长为 ▲ .9.将函数sin 2y x =的图象向左平移(0)ϕϕ>个单位,可得到函数sin(2)4y x π=+的图象,则ϕ的最小值为 ▲ .10.已知函数2()1f x x ax a =-+-在区间(0,1)上有两个零点,则实数a 的取值范围为 ▲ .11. 已知函数2,0,1()3,0,4x x x x x f x e x ⎧>⎪⎪++=⎨⎪-⎪⎩≤ 则函数()f x 的值域为 ▲ .12.若点(,)P x y 满足约束条件0,2,2,x x y a x y ⎧⎪-⎨⎪+⎩≥≤≤ 且点(,)P x y 所形成区域的面积为12,则实数a 的值为 ▲ .13.若函数1()sin()4f x x π=与函数3()g x x bx c =++的定义域为[0,2],它们在同一点有相同的最小值,则b c += ▲ .14.已知实数0y x >>,若以x y x λ+为三边长能构成一个三角形,则实数λ的范围为 ▲ .二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.) 15.已知2,1a b ==,a 与b 的夹角为135.(1)求()(2)a b a b +⋅-的值; (2)若k 为实数,求a kb +的最小值.16.在正四面体ABCD 中,点F 在CD 上,点E 在AD 上,且DF ∶FC =DE ∶EA =2∶3. 证明:(1)EF ∥平面ABC ;(2)直线BD ⊥直线EF .17.已知函数22()sin cos sin cos f x x x a x a x b =+-+,(,)a b ∈R .(1)若0a >,求函数()f x 的单调增区间;(2)若[,]44x ππ∈-时,函数()f x 的最大值为3,最小值为1,a b 的值.18.在等差数列{}n a 中,13a =,其前n 项和为n S ,等比数列{}n b 的各项均为正数,11b =,其前n 项和为n T ,且223311,29b S S b +==. (1)求数列{}n a 和数列{}n b 的通项;(2)问是否存在正整数,,m n r ,使得n m n T a r b =+⋅成立?如果存在,请求出,,m n r 的关系式;如果不存在,请说明理由.19.如图,ABC 为一直角三角形草坪,其中90,2C BC ∠==米,4AB =米,为了重建草坪,设计师准备了两套方案:方案一:扩大为一个直角三角形,其中斜边DE 过点B ,且与AC 平行,DF 过点A ,EF 过点C ;方案二:扩大为一个等边三角形,其中DE 过点B ,DF 过点A ,EF 过点C . (1)求方案一中三角形DEF 面积1S 的最小值; (2)求方案二中三角形DEF 面积2S 的最大值.20.已知函数312()ln ,()23f x x x g x ax x e=⋅=--. (1)求()f x 的单调增区间和最小值;(2)若函数()y f x =与函数()y g x =在交点处存在公共切线,求实数a 的值; (3)若2(0,]x e ∈时,函数()y f x =的图象恰好位于两条平行直线1:l y kx =;2:l y kx m =+之间,当1l 与2l 间的距离最小时,求实数m 的值.方案二无锡市2014年秋学期高三期中考试数学答案一、填空题:(本大题共14小题,每小题5分,共70分.)1.一 2.2 3.必要不充分 4.60% 5.4 6.17.12-8.24 9.8π10.2,1) 11.31(,]43-12.16a =- 13.14- 14.12λ<<二、解答题:(本大题共6小题,共90分.)15.解:因为22()(2)2a b a b a b a b +⋅-=-+⋅…………………………………………3分411(22=-+⨯-=. ………………………………………………6分 (2)22222a kb a k b ka b +=++⋅ ……………………………………………………8分2222(1)1k k k =-+=-+.…………………………………………………………10分 当1k =时,2a kb +的最小值为1,………………………………………………………12分 即a kb +的最小值为1. …………………………………………………………14分 16.证:(1)因为点F 在CD 上,点E 在AD 上,且DF ∶FC =DH ∶HA =2∶3, ……1分 所以EF ∥AC , ………………………………………………………………………………3分 又EF ⊄平面ABC , AC ⊂平面ABC ,所以EF ∥平面ABC .…………………………………………………………………………6分 (2)取BD 的中点M ,连AM ,CM ,因为ABCD 为正四面体,所以AM ⊥BD ,CM ⊥BD , ……………………………………8分 又AM CM =M ,所以BD ⊥平面AMC , ………………………………………………10分 又AC ⊂平面AMC ,所以BD ⊥AC , ……………………………………………………12分 又HF ∥AC ,所以直线BD ⊥直线HF .……………………………………………………………………14分17.解:(1)因为22()sin cos sin cos f x x x a x a x b =+-+sin 2cos 2x a x b =-+ …………………………………………2分 2sin(2)6a xb π=-+. …………………………………………………… 4分且0a >,所以函数()f x 的单调增区间为[,],63k k k ππππ-++∈Z . ………………6分(2)当[,]44x ππ∈-时,22[,]633x πππ-∈-,2sin(2)[4x π-∈-, ……8分则当0a >时,函数()f xb +,最小值为2a b -+.所以3,21b a b ⎧+=⎪⎨-+=⎪⎩解得1,3a b == …………………………………10分当0a <时,函数()f x 的最大值为2a b -+b +.所以123,b a b +=--+=⎪⎩ 解得1,1a b =-=. ……………………………………12分综上,1,3a b ==1,1a b =-=.……………………………………………14分 18.解:设等差数列{}n a 的公差为d ,则23311,2(3332)9,q d d d q +++=⎧⎨++++=⎩ ………………………………………………………2分 解得3,2d q ==. …………………………………………………………………4分所以13,2n n n a n b -==. …………………………………………………………6分(2)因为112221n n n T -=+++=-, ………………………………………7分所以有12132nn m r --=+⋅.………(*)若2r ≥,则1221n nr -⋅>-,(*)不成立,所以1r =,1213n m --=.………9分 若n 为奇数,①当1n =时,0m =,不成立, …………………………………10分②当1n ≥时,设*21,n t t =+∈N ,则12212141333n t t m ----===∈Z ……12分 若n 为偶数,设*2,n t t =∈N ,则121112121241411233333n t t t m ------⋅--====⋅+, 因为1413t --∈Z ,所以m ∉Z .……………………………………………………14分 综上所述,只有当n 为大于1的奇数时,1211,3n r m --==.当n 为偶数时,不存在. …………………………………………………………16分 19.解:(1)在方案一:在三角形AFC 中,设,(0,90)ACF αα∠=∈,则,AF FC αα==, …………………………………………2分 因为DE ∥AC ,所以E α∠=,2sin EC α=, 且FA FCAD CE=,即2sin AD ααα=, …………………………………4分 解得2cos AD α=, ………………………………………………………………6分所以11224)3(sin 2)2cos sin 3sin 2S αααααα=++=++所以当sin 21α=,即45α=时,1S有最小值7+. …………………………8分 (2)在方案二:在三角形DBA 中,设,(0,120)DBA ββ∠=∈,则si n (120)s i n 60D B A Bβ=-,解得)DB β=-, ……………………………………………………10分 三角形CBE 中,有sin sin 60EB CB β=,解得EB β=, ……………………12分))ββββ-=,…14分,所以面积2S的最大值为243=.……16分 20.解(1)因为()ln 1f x x '=+,由()0f x '>,得1x e>, 所以()f x 的单调增区间为1(,)e+∞,……………………………………………………2分 又当1(0,)x e ∈时,()0f x '<,则()f x 在1(0,)e上单调减, 当1(,)x e ∈+∞时,()0f x '>,则()f x 在1(,)e+∞上单调增,所以()f x 的最小值为11()f e e=-. …………………………………………………5分 (2)因为()ln 1f x x '=+,21()32g x ax '=-, 设公切点处的横坐标为x ,则与()f x 相切的直线方程为:(ln 1)y x x x =+-,与()g x 相切的直线方程为:2312(3)223y ax x ax e=---, 所以231ln 13,222,3x ax x ax e ⎧+=-⎪⎪⎨⎪-=--⎪⎩…………………………………………………………8分解之得1ln x x e =-,由(1)知1x e=,所以26e a =. …………………………10分(3)若直线1l 过22(,2)e e ,则2k =,此时有ln 12x +=(x 为切点处的横坐标), 所以x e =,m e =-, ………………………………………………………………11分 当2k >时,有2:l (ln 1)y x xx =+-,1:l (ln 1)y xx =+,且2x >, 所以两平行线间的距离d =,………………………………………12分令()ln (ln 1)h x x x x x x =-+-,因为()ln 1ln 1ln ln h x x x x x '=+--=-, 所以当x x <时,()0h x '<,则()h x 在(0,)x 上单调减;当x x >时,()0h x '>,则()h x 在2(,)x e 上单调增,所以()h x 有最小值()0h x =,即函数()f x 的图象均在2l 的上方,………………13分令22()ln 2ln 2x t x x x =++,则2222222ln 4ln 42ln 22ln 2ln 2()0(ln 2ln 2)(ln 2ln 2)x x x x x x x x x x x x x t x x x x x ++--++'==>++++,所以当x x >时,()()t x t x>,………………………………………………………15分 所以当d 最小时,x e =,m e =-.…………………………………………………16分。
2018届江苏省南京市高三上学期期中考试数学理一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={2,3,5},B ={x|2≤x ≤4},则A ∩B =________.2. 若复数z 满足z(1-i )=2i ,其中i 是虚数单位,则复数z =________.3. 从1,2,3,4,5这5个数中,随机抽取2个不同的数,则这2个数的和为奇数的概率是________________________________________________________________________.4. 某中学共有学生2 000人,其中高一年级共有学生650人,高二男生有370人.现在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19,则该校高三学生共有________人.5. 下面是一个算法的伪代码.如果输出的y 值是30,那么输入的x 值是________.6. 已知等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6的值为________.7. 若曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +3=0垂直,则实数a 的值为________.8. 已知函数f(x)=2sin ⎝⎛⎭⎫2x -π4,x ∈R ,若f (x )在区间⎣⎡⎦⎤π8,3π4上的最大值和最小值分别为a ,b ,则a +b 的值为________.9. 已知奇函数f (x )的图象关于直线x =-2对称,当x ∈[0,2]时,f (x )=2x ,那么f (6)的值为________.10. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b -c =14a ,2sin B =3sin C ,则cos A 的值为________.11. 已知a >b >0,a +b =1,则4a -b +12b的最小值等于________.12. 在△ABC 中,已知AB =4,AC =10,BC =2,M 为边AB 的中点,P 是△ABC 内(包括边界)一点,则AP →·CM →的最小值是________.13. 设函数y =⎩⎪⎨⎪⎧-x 3+x 2,x <e ,a ln x , x ≥e 的图象上存在两点P ,Q ,使得△POQ 是以O 为直角顶点的直角三角形(其中O 为坐标原点),且斜边的中点恰好在y 轴上,则实数a 的取值范围是______________.(e 为自然对数的底数)14. 在平面直角坐标系中,已知⊙O 1与⊙O 2交于P (3,2),Q 两点,两圆半径之积为132.若两圆均与直线l :y =kx 和x 轴相切,则直线l 的方程为________.二、 解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)设向量a =(sin x ,3cos x ),b =(-1,1),c =(1,1),其中x ∈[0,π]. (1) 若(a +b )∥c ,求实数x 的值; (2) 若a ·b =12,求函数sin ⎝⎛⎭⎫x +π6的值.16. (本小题满分14分)如图,在四棱锥P ABCD 中,底面ABCD 是正方形,AC 与BD 交于点O ,PC ⊥底面ABCD ,E 为PB 上一点,G 为PO 的中点.(1) 若PD ∥平面ACE ,求证:E 为PB 的中点;(2) 若AB =2PC ,求证:CG ⊥平面PBD .如图,把一块边长为30cm的正六边形铁皮剪去阴影部分,制成一个正六棱柱形的无盖容器.设容器的底面边长为x cm,棱柱的高为h cm,容积为V cm3.(1) 求出V关于x的函数关系式V(x);(2) 当容器的底面边长为多大时,无盖容器的容积最大?最大是多少?已知椭圆C :x 2a 2+y 2=1(a >1)的左、右焦点分别为F 1,F 2,A ,B 为椭圆上关于原点对称的两点,椭圆C 的离心率为e .(1) 若点A 的坐标为⎝⎛⎭⎫2e ,12,求椭圆C 的方程; (2) 记AF 1的中点为M ,BF 1的中点为N ,若原点O 在以线段MN 为直径的圆上. ①证明AF 1→·AF 2→为定值; ②设直线AB 的斜率为k ,若k ≥33,求e 的取值范围.设函数f (x )=x 3-ax ,a ∈R ,g (x )=x e x,h (x )=⎩⎪⎨⎪⎧f (x ), f (x )>g (x ),g (x ), f (x )≤g (x )(e 为自然对数的底数).(1) 当a >0时,求函数f (x )的极值;(2) 若函数h (x )的最小值为-1e ,求实数a 的取值范围;(3) 当h (x )=g (x )时,求实数a 的值.已知函数f (x )=ax -3,g (x )=bx -1+cx -2(a ,b ,c 是实数)且g ⎝⎛⎭⎫-12-g (1)=f (0). (1) 试求b ,c 所满足的关系式;(2) 若b =0,方程f (x )=g (x )在(0,+∞)有唯一解,求实数a 的取值范围; (3) 若b =1,集合A ={x |f (x )>g (x )且g (x )<0},试求集合A .(这是边文,请据需要手工删加)数学附加题21. 【限选题】共2小题,每小题10分,共计20分.解答应写出文字说明、证明过程或演算步骤.B. 选修42:矩阵与变换若点A (2,1)在矩阵M =⎣⎢⎡⎦⎥⎤1a b -1对应变换的作用下得到点B (4,5),求矩阵M 的逆矩阵M -1.C. 选修44:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程是⎩⎨⎧x =22t ,y =22t +42(t 是参数).以坐标原点O 为极点,x 轴正半轴为极轴,选取相同的单位长度,建立极坐标系,圆C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ+π4.由直线l 上的点向圆C 引切线,求切线长的最小值.。
江苏苏州市2018届高三上学期数学期中试卷(含解析)2017-2018学年江苏省苏州市高三上学期期中调研一、填空题:共14题1.已知集合,则_____.【答案】【解析】由题意,得2.函数的定义域为_____.【答案】【解析】x应该满足:,解得:∴函数的定义域为故答案为:3.设命题;命题,那么p是q的____条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).【答案】充分不必要【解析】命题q:x2﹣5x+4≥0⇔x≤1,或x≥4,∵命题p:x>4;故p是q的:充分不必要条件,故答案为:充分不必要4.已知幂函数在是增函数,则实数m的值是_____.【答案】1【解析】∵幂函数在是增函数∴,解得:故答案为:15.已知曲线在处的切线的斜率为2,则实数a的值是_____.【答案】【解析】f′(x)=3ax2+,则f′(1)=3a+1=2,解得:a=,故答案为:.点睛:与导数几何意义有关问题的常见类型及解题策略(1)已知切点求切线方程.解决此类问题的步骤为:①求出函数在点处的导数,即曲线在点处切线的斜率;②由点斜式求得切线方程为.(2)已知斜率求切点.已知斜率,求切点,即解方程.(3)求切线倾斜角的取值范围.先求导数的范围,即确定切线斜率的范围,然后利用正切函数的单调性解决.6.已知等比数列中,,则_____.【答案】4【解析】设等比数列的公比是q,由a3=2,a4a6=16得,a1q2=2,a1q3a1q5=16,则a1=1,q2=2,∴,故答案为:4.7.函数图象的一条对称轴是,则的值是_____.【答案】【解析】因为函数图象的一条对称轴是,所以,又因为,则,即,解得8.已知奇函数在上单调递减,且,则不等式的解集为_____.【答案】【解析】∵函数f(x)为奇函数且在(﹣∞,0)上单调递减,∴f(x)在(0,+∞)上也单调递减,又∵函数f(x)为奇函数且f(2)=0,∴f(﹣2)=﹣f (2)=0∴不等式等价于①或②解得:x∈(﹣2,0)∪(1,2),故答案为:(﹣2,0)∪(1,2).9.已知,则的值是_____.【答案】【解析】因为,所以====10.若函数的值域为,则实数a的取值范围是_____.【答案】【解析】当时,,则由题意,得当时,成立,则为增函数,且,即11.已知数列满足,则_____.【答案】【解析】∵,,∴,,∴,,归纳猜想:∴故答案为:12.设的内角的对边分别是,D为的中点,若且,则面积的最大值是_____.【答案】【解析】因为,所以,即,即,即,又因为D为的中点,且,所以,即,即,则,则面积的最大值是点睛:三角形中最值问题,一般转化为条件最值问题:先根据正、余弦定理及三角形面积公式结合已知条件灵活转化边和角之间的关系,利用基本不等式或函数方法求最值.在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.13.已知函数,若对任意的实数,都存在唯一的实数,使,则实数的最小值是___.【答案】【解析】因为,所以,则,因为对任意的实数,都存在唯一的实数,使,所以在上单调,且,则,则,所以,即实数的最小值是点睛:对于方程任意或存在性问题,一般转化为对应函数值域包含关系,即的值域包含于的值域;的值域与的值域交集非空。
无锡市普通高中2017年秋学期高三期终调研考试试卷数学一、填空题:(本大题共14小题,每小题5分,共计70分.请把答案填写在答.题卡相应位置上........) 1.已知集合{1,3}A =,{1,2,}B m =,若A B B = ,则实数m = . 2.若复数312a ii+-(a R ∈,i 为虚数单位)是纯虚数,则实数a = . 3.某高中共有学生2800人,其中高一年级960人,高三年级900人,现采用分层抽样的方法,抽取140人进行体育达标检测,则抽取高二年级学生人数为 .4.已知,{1,2,3,4,5,6}a b ∈,直线1:210l x y +-=,2:30l ax by -+=,则直线12l l ⊥的概率为 .5.根据如图所示的伪代码,当输入a 的值为3时,最后输出的S 的值为 .6.直三棱柱111ABC A B C -中,已知AB BC ⊥,3AB =,4BC =,15AA =,若三棱柱的所有顶点都在同一球面上,则该球的表面积为 .7.已知变量,x y 满足242x x y x y c ≥⎧⎪+≤⎨⎪-≤⎩,目标函数3z x y =+的最小值为5,则c 的值为 .8.函数cos(2)(0)y x ϕϕπ=+<<的图像向右平移2π个单位后,与函数sin(2)3y x π=-的图像重合,则ϕ= .9.已知等比数列{}n a 满足2532a a a =,且4a ,54,72a 成等差数列,则12n a a a ⋅⋅⋅ 的最大值为 .10.过圆2216x y +=内一点(2,3)P -作两条相互垂直的弦AB 和CD ,且AB CD =,则四边形ACBD 的面积为 .11.已知双曲线2222:1(0,0)x y C a b a b -=>>与椭圆2211612x y +=的焦点重合,离心率互为倒数,设12,F F 分别为双曲线C 的左,右焦点,P 为右支上任意一点,则212PF PF 的最小值为 .12.在平行四边形ABCD 中,4AB =,2AD =,3A π∠=,M 为DC 的中点,N 为平面ABCD 内一点,若||||AB NB AM AN -=-,则AM AN ⋅= .13.已知函数()f x =2212211,211log (),22x x x x x x ⎧+-≤-⎪⎪⎨+⎪>-⎪⎩,2()22g x x x =---.若存在a R ∈,使得()()0f a g b +=,则实数b 的取值范围是 .14.若函数2()(1)||f x x x a =+-在区间[1,2]-上单调递增,则实数a 的取值范围是 .二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15.如图,ABCD 是菱形,DE ⊥平面ABCD ,//AF DE ,2DE AF =.(1)求证:AC ⊥平面BDE ; (2)求证://AC 平面BEF .16.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,3cos 4A =,2C A =. (1)求cosB 的值;(2)若24ac =,求ABC ∆的周长.17.如图,点C 为某沿海城市的高速公路出入口,直线BD 为海岸线,3CAB π∠=,AB BD ⊥, BC是以A 为圆心,半径为1km 的圆弧型小路.该市拟修建一条从C 通往海岸的观光专线 CP PQ -,其中P 为 BC 上异于,B C 的一点,PQ 与AB 平行,设PAB θ∠=.(1)证明:观光专线 CPPQ -的总长度随θ的增大而减小; (2)已知新建道路PQ 的单位成本是翻新道路 CP的单位成本的2倍.当θ取何值时,观光专线 CPPQ -的修建总成本最低?请说明理由.18.已知椭圆2222:1(0,0)x y E a b a b +=>>,12,F F 分别为左,右焦点,,A B分别为左,右顶点,原点O 到直线BD 的距离为3设点P 在第一象限,且PB x ⊥轴,连接PA 交椭圆于点C .(1)求椭圆E 的方程;(2)若三角形ABC 的面积等于四边形OBPC 的面积,求直线PA 的方程; (3)求过点,,B C P 的圆方程(结果用t 表示). 19.已知数列{}n a 满足121111(1)(1)(1)n na a a a ---= ,*n N ∈,n S 是数列{}n a 的前n 项的和.(1)求数列{}n a 的通项公式;(2)若p a ,30,q S 成等差数列,p a ,18,q S 成等比数列,求正整数,p q 的值; (3)是否存在*k N ∈,{}n a 中的项?若存在,求出所有满足条件的k 的值;若不存在,请说明理由.20.已知函数()(32)x f x e x =-,()(2)g x a x =-,其中,a x R ∈. (1)求过点(2,0)和函数()y f x =的图像相切的直线方程; (2)若对任意x R ∈,有()()f x g x ≥恒成立,求a 的取值范围; (3)若存在唯一的整数0x ,使得00()()f x g x <,求a 的取值范围.数学(加试题)说明:解答时应写出文字说明、证明过程或演算步骤.21.选修4-2:矩阵与变换已知矩阵34A a b ⎡⎤=⎢⎥⎣⎦,若矩阵A 属于特征值1λ的一个特征向量为112α⎡⎤=⎢⎥-⎣⎦,属于特征值2λ的一个特征向量为23α⎡⎤=⎢⎥-⎣⎦.求矩阵A . 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程是122x t y m ⎧=⎪⎪⎨⎪=+⎪⎩(t 是参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,若圆C 的极坐标方程是4sin ρθ=,且直线l 与圆C 相交,求实数m 的取值范围.23.某公司有,,,A B C D 四辆汽车,其中A 车的车牌尾号为0,,B C 两辆车的车牌尾号为6,D 车的车牌尾号为5,已知在非限行日,每辆车都有可能出车或不出车.已知,A D 两辆汽车每天出车的概率为34,,B C 两辆汽车每天出车的概率为12,且四辆汽车是否出车是相互独立的.该公司所在地区汽车限行规定如下:(1)求该公司在星期四至少有2辆汽车出车的概率;(2)设ξ表示该公司在星期一和星期二两天出车的车辆数之和,求ξ的分布列和数学期望.24.在四棱锥P ABCD -中,ABP ∆是等边三角形,底面ABCD 是直角梯形,90DAB ∠=︒,//AD BC ,E 是线段AB 的中点,PE ⊥底面ABCD ,已知22DA AB BC ===.(1)求二面角P CD AB --的正弦值;(2)试在平面PCD 上找一点M ,使得EM ⊥平面PCD .试卷答案一、填空题1.32.63.474.1125.216. 50π7.58.6π9.1024 10.19 11.8 12.6 13. (2,0)- 14. 7(,1][,)2-∞-+∞二、简答题(本大题共6小题,共90分.解答题应写出文字说明、证明过程或演算步骤.)15.解:(1)证明:因为DE ⊥平面ABCD ,所以DE AC ⊥. 因为ABCD 是菱形,所以AC BD ⊥, 因为DE BD D ⋂= 所以AC ⊥平面BDE .(2)证明:设AC BD O = ,取BE 中点G ,连结,FG OG , 所以,1//2OG DE 且12OG DE =. 因为//AF DE ,2DE AF =,所以//AF OG 且AF OG =, 从而四边形AFGO 是平行四边形,//FG AO . 因为FG ⊂平面BEF ,AO ⊄平面BEF , 所以//AO 平面BEF ,即//AC 平面BEF .16.解:(1)因为3cos 4A =, 所以2cos cos 22cos 1C A A ==-2312()148=⨯-=.在ABC ∆中,因为3cos 4A =,所以sin A =,因为1cos 8C =,所以sin C ==, 所以9cos cos()sin sin cos cos 16B A B A B A B =-+=-=. (2)根据正弦定理sin sin a c A C =,所以23a c =, 又24ac =,所以4a =,6c =.2222cos 25b a c ac B =+-=,5b =.所以ABC ∆的周长为15. 17.解:(1)由题意,3CAP πθ∠=-,所以 3CPπθ=-,又cos 1cos PQ AB AP θθ=-=-, 所以观光专线的总长度()1cos 3f πθθθ=-+-cos 13πθθ=--++,03πθ<<,因为当03πθ<<时,'()1sin 0f θθ=-+<,所以()f θ在(0,)3π上单调递减,即观光专线 CPPQ -的总长度随θ的增大而减小. (2)设翻新道路的单位成本为(0)a a >, 则总成本()(22cos )3g a πθθθ=-+-(2cos 2)3a πθθ=--++,03πθ<<,'()(12sin )g a θθ=-+,令'()0g θ=,得1sin 2θ=,因为03πθ<<,所以6πθ=, 当06πθ<<时,'()0g θ<,当63ππθ<<时,'()0g θ>.所以,当6πθ=时,()g θ最小.答:当6πθ=时,观光专线 CPPQ -的修建总成本最低. 18.解:(1)因为椭圆2222:1(0)x y E a b a b +=>>的离心率为2,所以222a c =,b c =, 所以直线DB的方程为2y x b =-+, 又O 到直线BD=, 所以1b =,a =所以椭圆E 的方程为2212x y +=. (2)设)P t ,0t >, 直线PA的方程为y x =+,由2212x y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得2222(4)280t x x t +++-=,解得:224C x t =+,则点C 的坐标是2224(,)44tt t++, 因为三角形ABC 的面积等于四边形OBPC 的面积,所以三角形AOC 的面积等于三角形BPC 的面积,2214244AOC t S t t ∆==++,12PBCS t ∆=⨯⨯=,=t =.所以直线PA 的方程为20x y -=.(3)因为B ,)P t ,24)4t C t +,所以BP 的垂直平分线2ty =,BC 的垂直平分线为224ty x t =-+, 所以过,,B C P 三点的圆的圆心为2)2t, 则过,,B C P 三点的圆方程为222(()2t x y +-42222(4)4t t t =++,即所求圆方程为22224x x y t +-++2804ty t -+=+.19.解:(1)因为121111(1)(1)(1)n na a a a ---= ,*n N ∈, 所以当1n =时,11111a a -=,12a =, 当2n ≥时, 由1211(1)(1)a a -- 11(1)n n a a -=和12111111(1)(1)(1)n n a a a a -----=, 两式相除可得,111n n na a a --=,即11(2)n n a a n --=≥ 所以,数列{}n a 是首项为2,公差为1的等差数列. 于是,1n a n =+.(2)因为p a ,30,q S 成等差数列,p a ,18,q S 成等比数列,所以26018p q p q a S a S +=⎧⎪⎨=⎪⎩,于是654p q a S =⎧⎪⎨=⎪⎩,或546p q a S =⎧⎪⎨=⎪⎩. 当654p qa S =⎧⎪⎨=⎪⎩时,16(3)542p q q +=⎧⎪⎨+=⎪⎩,解得59p q =⎧⎨=⎩,当546p q a S =⎧⎪⎨=⎪⎩时,154(3)62p q q +=⎧⎪⎨+=⎪⎩,无正整数解,所以5p =,9q =.(3)假设存在满足条件的正整数k*()m a m N =∈,1m =+,平方并化简得,22(22)(23)63m k +-+=, 则(225)(221)63m k m k ++--=,所以225632211m k m k ++=⎧⎨--=⎩,或225212213m k m k ++=⎧⎨--=⎩,或22592217m k m k ++=⎧⎨--=⎩,解得:15m =,14k =或5m =,3k =,3m =,1k =-(舍去),综上所述,3k =或14.20.(1)设切点为00(,)x y ,'()(31)x f x e x =+,则切线斜率为00(31)x e x +,所以切线方程为0000(31)()x y y e x x x -=+-,因为切线过(2,0),所以00000(32)(31)(2)x x e x e x x --=+-,化简得200380x x -=,解得080,3x =.当00x =时,切线方程为2y x =-, 当083x =时,切线方程为8833918y e x e =-. (2)由题意,对任意x R ∈有e (32)(2)x x a x -≥-恒成立,①当(,2)x ∈-∞时,max (32)(32)[]22x x e x e x a a x x --≥⇒≥--, 令(32)()2x e x F x x -=-,则22(38)'()(2)x e x x F x x -=-,令'()0F x =得0x =,max ()(0)1F x F ==,故此时1a ≥.②当2x =时,恒成立,故此时a R ∈.③当(2,)x ∈+∞时,min (32)(32)[]22x x e x e x a a x x --≤⇒≤--, 令8'()03F x x =⇒=,83min 8()()93F x F e ==,故此时839a e ≤.综上:8319a e ≤≤. (3)因为()()f x g x <,即(32)(2)x e x a x -<-,由(2)知83(,1)(9,)a e ∈-∞+∞ , 令(32)()2x e x F x x -=-,则当(,2)x ∈-∞,存在唯一的整数0x 使得00()()f x g x <, 等价于(32)2x e x a x -<-存在唯一的整数0x 成立, 因为(0)1F =最大,5(1)3F e -=,1(1)F e =-,所以当53a e <时,至少有两个整数成立, 所以5[,1)3a e∈. 当(2,)x ∈+∞,存在唯一的整数0x 使得00()()f x g x <, 等价于(32)2x e x a x ->-存在唯一的整数0x 成立, 因为838()93F e =最小,且3(3)7F e =,4(4)5F e =,所以当45a e >时,至少有两个整数成立,所以当37a e ≤时,没有整数成立,所有34(7,5]a e e ∈.综上:345[,1)(7,5]3a e e e∈ . 数学Ⅱ(附加题)21.解:由矩阵A 属于特征值1λ的一个特征向量为112α⎡⎤=⎢⎥-⎣⎦可得, 1341122a b λ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,即113822a b λλ-=⎧⎨-=-⎩; 得210a b ==,由矩阵A 属于特征值2λ的一个特征向量为223α⎡⎤=⎢⎥-⎣⎦,可得23423a b λ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦23⎡⎤⎢⎥-⎣⎦,即226122233a b λλ-=⎧⎨-=-⎩; 得239a b -=,解得1211a b =-⎧⎨=-⎩.即341211A ⎡⎤=⎢⎥--⎣⎦, 22.解:由4sin ρθ=,得24sin ρρθ=,所以224x y x +=, 即圆C 的方程为22(2)4x y +-=,又由122x t y m ⎧=⎪⎪⎨⎪=+⎪⎩,消t0y m -+=,由直线l 与圆C 相交, 所以|2|22m -<,即26m -<<. 23.解:(1)记该公司在星期四至少有两辆汽车出车为事件A , 则A :该公司在星期四最多有一辆汽车出车2211()()()42P A =122311()()()442C +1221119()()()22464C +=. ∴55()1()64P A P A =-=. 答:该公司在星期四至少有两辆汽车出行的概率为5564.(2)由题意,ξ的可能值为0,1,2,3,422111(0)()()2464P ξ===; 122111(1)()()()224P C ξ==1223111()()()4428C +=; 2211(2)()()24P ξ==22122311()()()422C ++123()4C 111()432=; 212131(3)()C ()()244P ξ==2122313()()428C +=; 22319(4)()()4264P ξ===.111395()2348328642E ξ=+⨯+⨯+⨯=. 答:ξ的数学期望为52. 24.解:(1)因为PE ⊥底面ABCD ,过E 作//ES BC ,则ES AB ⊥, 以E 为坐标原点,EB 方向为x 轴的正半轴,ES 方向为y 轴的正半轴,EP 方向为z 轴的正半轴建立空间直角坐标系, 则(0,0,0)E ,(1,0,0)B ,(1,1,0)C ,(1,0,0)A -,(1,2,0)D -,P ,(2,1,0)CD =-,(1,1,PC =设平面PCD 的法向量为(,,)n x y z ,则20n CD x y ⋅=-+= ,0n PC x y ⋅=+=,解得=(1n ,又平面ABCD 的法向量为(0,0,1)m = ,所以cos ,4||||n m n m n m ⋅<>=== ,所以sin ,4n m <>= . (2)设M 点的坐标为111(,,)x y z ,因为EM ⊥平面PCD ,所以//EM n ,即1112x y ==,也即112y x =,11z =,又111(,,PM x y z = ,(1,2,PD =- ,(1,1,PC = ,所以PM PC PD λμ=+= (,2,)λμλμ-+, 所以得1x λμ=-,11222()y x λμλμ=+==-,即9λμ=,1z =,12λ=,所以16μ=,所以M 点的坐标为15(,36.。
无锡市普通高中2018年秋学期高三期中基础性检测考试卷 物理 2018.11命题单位:锡山区教育局教研室 制卷单位:无锡市教育科学研究院说明:本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试时间100分钟第I 卷(选择题,共31分)一、单项选择题:本题共5小题,每小题3分,共计15分。
每小题只有一个选项符合题意。
1.我国的高铁技术在世界处于领先地位,高铁(如图甲所示)在行驶过程中非常平稳,放在桌上的水杯几乎感觉不到晃动.图乙为高铁车厢示意图,A 、B 两物块相互接触放在车厢里的水平桌面上,物块与桌面间的动摩擦因数相同。
A 的质量比B 的质量大,车在平直的铁轨上向右做匀速直线运动相对于桌面始终保持静止,下列说法正确的是A.A 受到2个力的作用B.B 受到3个力的作用C.A 受到桌面对它向右的摩擦力D.B 受到A 对它向右的弹力2.如图所示,晾晒衣服的绳子两端分别固定在两根竖直杆上的A 、B 两点,绳子的质量及绳与衣架挂钩间摩擦均忽略不计,衣服处于静止状态。
如果保持绳子A 端、B 端在杆上位置不变,将右侧杆平移到虚线位置(绳仍为绷直状态),稳定后衣服仍处于静止状态,则 A.绳中张力变大B.绳中张力不变C.绳对挂钩作用力不变D.绳对挂钩作用力变小3.如图所示,楔形木块固定在水平面上,斜面AB 、BC 与水平面的夹角分别为53°、37°。
质量分别为2m 、m 的两滑块P 、Q 通过不可伸长的轻绳跨过轻质定滑轮连接,轻绳与斜面平行。
已知滑块P 与AB 间的动摩擦因数为31,其它摩擦不计,在两滑块运动的过程中 A. Q 动能的增加量等于轻绳对Q 做的功B. Q 机械能的增加量等于P 机械能的减少量C. P 机械能的减少量等于系统摩擦产生的热量D. P 克服绳子拉力做的功等于绳子拉力对Q 做的功4.如图甲所示为一运动员(可视为质点)进行三米板跳水训练的场景,某次跳水过程的竖直速度-时间图象 (t y -υ)如图乙所示(向下为正),t =0是其向上跳起的 瞬间。
无锡市一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 若实数x ,y 满足不等式组则2x+4y 的最小值是( )A .6B .﹣6C .4D .22. 关于函数2()ln f x x x=+,下列说法错误的是( ) (A )2x =是()f x 的极小值点( B ) 函数()y f x x =-有且只有1个零点 (C )存在正实数k ,使得()f x kx >恒成立(D )对任意两个正实数12,x x ,且21x x >,若12()()f x f x =,则124x x +>3. 若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为,则这个圆的方程是( ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++=4. 复数i iiz (21+=是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力. 5. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2xy -=6. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .47. 已知f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,则f (x )g (x )>0的解集为( )A.(﹣,﹣a 2)∪(a 2,) B.(﹣,a 2)∪(﹣a 2,) C.(﹣,﹣a 2)∪(a 2,b )D .(﹣b ,﹣a 2)∪(a 2,)8. 设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=( ) A .{x|x <﹣2或x >4} B .{x|x <0或x >4} C .{x|x <0或x >6} D .{x|0<x <4}9. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( ) A .为直角三角形 B .为锐角三角形C .为钝角三角形D .前三种形状都有可能班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.已知偶函数f (x )=log a |x ﹣b|在(﹣∞,0)上单调递增,则f (a+1)与f (b+2)的大小关系是( ) A .f (a+1)≥f (b+2) B .f (a+1)>f (b+2) C .f (a+1)≤f (b+2) D .f (a+1)<f (b+2)11.已知直线a ,b 都与平面α相交,则a ,b 的位置关系是( )A .平行B .相交C .异面D .以上都有可能12.已知集合M={x|x 2<1},N={x|x >0},则M ∩N=( ) A .∅ B .{x|x >0} C .{x|x <1} D .{x|0<x <1}可.二、填空题13.对于集合M,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 .14.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 . 15.给出下列四个命题: ①函数y=|x|与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3x 2+1的图象可由y=3x 2的图象向上平移1个单位得到; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域为[0,4];⑤设函数f (x )是在区间[a ,b]上图象连续的函数,且f (a )•f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根;其中正确命题的序号是 .(填上所有正确命题的序号)16.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .17.已知点M (x ,y)满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .18.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤02x -y -1≥0x -2y +1≤0,若z =2x +by (b >0)的最小值为3,则b =________.三、解答题19.已知f (x )=x 2﹣(a+b )x+3a .(1)若不等式f (x )≤0的解集为[1,3],求实数a ,b 的值; (2)若b=3,求不等式f (x )>0的解集.20.已知命题p:x2﹣3x+2>0;命题q:0<x<a.若p是q的必要而不充分条件,求实数a的取值范围.21.已知椭圆的离心率,且点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)直线与椭圆交于、两点,且线段的垂直平分线经过点.求(为坐标原点)面积的最大值.22.已知函数f(x)=|x﹣5|+|x﹣3|.(Ⅰ)求函数f(x)的最小值m;(Ⅱ)若正实数a,b足+=,求证:+≥m.23.(本小题满分10分)选修4-4:坐标系与参数方程已知椭圆C 的极坐标方程为222123cos 4sin ρθθ=+,点12,F F为其左、右焦点,直线的参数方程为222x y ⎧=+⎪⎪⎨⎪=⎪⎩(为参数,t R ∈). (1)求直线和曲线C 的普通方程;(2)求点12,F F 到直线的距离之和.24.(本小题满分13分)如图,已知椭圆22:14x C y +=的上、下顶点分别为,A B ,点P 在椭圆上,且异于点,A B ,直线,AP BP 与直线:2l y =-分别交于点,M N ,(1)设直线,AP BP 的斜率分别为12,k k ,求证:12k k ⋅为定值; (2)求线段MN 的长的最小值;(3)当点P 运动时,以MN 为直径的圆是否经过某定点?请证明你的结论.【命题意图】本题主要考查椭圆的标准方程及性质、直线与椭圆的位置关系,考查考生运算求解能力,分析问题与解决问题的能力,是中档题.无锡市一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题13. {1,6,10,12} .14. (3,1) . 15. ③⑤16. 3 .17. 4 .18.三、解答题19. 20. 21. 22.23.(1)直线的普通方程为2y x =-,曲线C 的普通方程为22143x y +=;(2) 24.。
无锡市普通高中2018年春学期期终教学质量抽测建议卷高二数学(文)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应.....的位置上.)1. 复数(为虚数单位)的实部为__________.【答案】-1【解析】分析:根据复数的综合运算,化简即可得到实部。
详解:根据共轭复数的概念,化简得所以实部为-1点睛:本题考查了复数的混合运算,共轭复数的应用,属于简单题。
2. 函数的定义域为__________.【答案】【解析】分析:根据根式、分母有意义的条件,求函数定义域的定义。
详解:函数有意义,则所以,即定义域为点睛:本题考查了根式、分母有意义的条件,函数定义域的定义,是基础题。
3. 若函数在上单调递减,则的最小值为__________.【答案】2【解析】分析:二次函数单调递减,满足对称轴大于等于1即可。
详解:二次函数在上单调递减,则对称轴大于等于1,即所以所以m的最小值为2点睛:本题考查了二次函数单调性问题,关键是分析对称轴与单调区间的关系,属于基础题。
4. 某班共有人,有围棋爱好者人,有足球爱好者人,同时爱好这两项的人数为,则所有的可能值构成的集合__________.【答案】【解析】分析:根据集合的交集、补集关系,确定同时两项运动都喜欢的最多人数,两项运动都不喜欢的最少人数,即可通过交集判断m构成的集合。
详解:因为足球爱好者比围棋爱好者人数多,所以同时爱好这两项的人数最多有22人既不爱好足球,也不爱好围棋的人最多有2人,最少0人所以同时爱好足球和围棋的人数最少为20人,所以所有m可能值组成的集合为点睛:本题考查了集合的交集、补集在实际问题中的综合应用,对分析问题、解决问题需要很强的条理性,属于中档题。
5. 若函数的图象相邻最高点与最低点横坐标之差为,且图象过点,则其解析式为__________.【答案】【解析】分析:根据相邻最高点与最低点横坐标之差,可求得周期;根据过定点,即可求得的值,进而得到函数表达式。
2017-2018学年第一学期高三期中调研试卷数学第Ⅰ卷(共60分)一、填空题:(本大题共14个小题,每小题5分,共70分.将答案填在答题纸上.)1. 已知集合,,,则__________.【答案】【解析】∵,,∴,又∴故答案为:点睛:在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2. 函数的定义域为__________.【答案】【解析】x应该满足:,解得:∴函数的定义域为故答案为:3. 设命题;命题,那么是的__________条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).【答案】充分不必要【解析】命题q:x2﹣5x+4≥0⇔x≤1,或x≥4,∵命题p:x>4;故p是q的:充分不必要条件,故答案为:充分不必要4. 已知幂函数在是增函数,则实数的值是__________.【答案】1【解析】∵幂函数在是增函数∴,解得:故答案为:15. 已知曲线在处的切线的斜率为2,则实数的取值是__________.【答案】【解析】f′(x)=3ax2+,则f′(1)=3a+1=2,解得:a=,故答案为:.点睛:与导数几何意义有关问题的常见类型及解题策略(1)已知切点求切线方程.解决此类问题的步骤为:①求出函数在点处的导数,即曲线在点处切线的斜率;②由点斜式求得切线方程为.(2)已知斜率求切点.已知斜率,求切点,即解方程.(3)求切线倾斜角的取值范围.先求导数的范围,即确定切线斜率的范围,然后利用正切函数的单调性解决.6. 已知等比数列中,,,则__________.【答案】4【解析】设等比数列{a n}的公比是q,由a3=2,a4a6=16得,a1q2=2,a1q3a1q5=16,则a1=1,q2=2,∴,故答案为:4.7. 函数图象的一条对称轴是,则的值是__________.【答案】【解析】∵函数图象的一条对称轴是,∴即,又∴故答案为:8. 已知奇函数在上单调递减,且,则不等式的解集是__________.【答案】【解析】∵函数f(x)为奇函数且在(﹣∞,0)上单调递减,∴f(x)在(0,+∞)上也单调递减,又∵函数f(x)为奇函数且f(2)=0,∴f(﹣2)=﹣f(2)=0∴不等式等价于①或②解得:x∈(﹣2,0)∪(1,2),故答案为:(﹣2,0)∪(1,2).9. 已知,则的值是__________.【答案】【解析】∵,∴而故答案为:10. 若函数(且)的值域为,则实数的取值范围是__________.【答案】【解析】当x≤2时,y=﹣x+8≥6,要使函数(a>0且a≠1)的值域为[6,+∞),则有x>2时,函数y=log a x+5≥6,∴,解得1<a≤2.∴实数a的取值范围是(1,2].故答案为:(1,2].11. 已知数列,满足,,,则__________.【答案】【解析】∵,,∴,,∴,,归纳猜想:∴故答案为:12. 设的内角的对边分别是,为的中点,若且,则面积的最大值是__________.【答案】【解析】由b=acosC+csinA,正弦定理:sinB=sinAcosC+sinCsinA即sin(A+C)=sinAcosC+sinCsinA可得:sinAcosC+cosAsinC=sinAcosC+sinCsinA∴cosAsinC=sinCsinA,∵sinC≠0∴cosA=sinA,即tanA=1.0<A<180°,∴A=45°在三角形ADC中:由余弦定理可得:即2bc=4b2+c2﹣8.∵4b2+c2≥4bc,∴bc≤=那么S=bcsinA=.故答案为:.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.13. 已知函数,若对任意的实数,都存在唯一的实数,使,则实数的最小值是__________.【答案】【解析】函数,若对任意的实数,则:f(α)∈[﹣,0],由于使f(α)+f(β)=0,则:f(β)∈[0,].,,β=,所以:实数m的最小值是.故答案为:14. 已知函数,若直线与交于三个不同的点,,(其中),则的取值范围是__________.【答案】【解析】作出函数,的图象如图:设直线y=ax与y=lnx相切于(x0,lnx0),则,∴曲线y=lnx在切点处的切线方程为y﹣lnx0=(x﹣x0),把原点(0,0)代入可得:﹣lnx0=﹣1,得x0=e.要使直线y=ax与y=f(x)交于三个不同的点,则n∈(1,e),联立,解得x=.∴m∈(,),(﹣2,),∴的取值范围是(1,).故答案为:(1,).点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.第Ⅱ卷(共90分)二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15. 已知函数()的图象与轴相切,且图象上相邻两个最高点之间的距离为.(1)求的值;(2)求在上的最大值和最小值.【答案】(1),(2)时,有最大值为;时,有最小值为0.【解析】试题分析:(1)根据三角函数图象的特征明确的值;(2)在给定的范围上,结合正弦函数的图象求出在上的最大值和最小值.试题解析:解:(1)∵图象上相邻两个最高点之间的距离为,∴的周期为,∴且,∴,此时,又∵的图象与轴相切,∴且,∴;(2)由(1)可得,∵,∴,∴当,即时,有最大值为;当,即时,有最小值为0.16. 在中,角所对的边分别是,已知,且. (1)当,时,求的值;(2)若角为锐角,求的取值范围.【答案】(1)或,(2)【解析】试题分析:(1)由正弦定理把已知等式化为即可利用已知条件解方程组.(2)当角为锐角可转化为,从而再由由可得所以..试题解析:由题意得,.(I) 当时,,解得(II)∴,又由可得所以.17. 已知数列的前项和是,且满足,.(1)求数列的通项公式;(2)在数列中,,,若不等式对有解,求实数的取值范围.【答案】(1),(2)【解析】试题分析:(1)利用递推关系式求出数列的通项公式.(2)根据(1)的结论,进一步利用分离参数法的应用求出λ的范围.试题解析:解:(1)∵,∴,∴,又当时,由得符合,∴,∴数列是以1为首项,3为公比的等比数列,∴通项公式为;(2)∵,∴是以3为首项,3为公差的等差数列,∴,∴,即,即对有解,设,∵,∴当时,,当时,,∴,∴,∴.18. 如图所示的自动通风设施.该设施的下部是等腰梯形,其中为2米,梯形的高为1米,为3米,上部是个半圆,固定点为的中点.是由电脑控制可以上下滑动的伸缩横杆(横杆面积可忽略不计),且滑动过程中始终保持和平行.当位于下方和上方时,通风窗的形状均为矩形(阴影部分均不通风).(1)设与之间的距离为(且)米,试将通风窗的通风面积(平方米)表示成关于的函数;(2)当与之间的距离为多少米时,通风窗的通风面积取得最大值?【答案】(1),(2)当与之间的距离为米时,通风窗的通风面积取得最大值.【解析】试题分析:(1)三角形的面积与x的关系是分段函数,所以分类讨论即可.....................................试题解析:解:(1)当时,过作于(如下图),则,,,由,得,∴,∴;当时,过作于,连接(如下图),则,,∴,∴,综上:;(2)当时,在上递减,∴;2°当时,,当且仅当,即时取“=”,∴,此时,∴的最大值为,答:当与之间的距离为米时,通风窗的通风面积取得最大值.19. 已知函数,.(1)求过点的的切线方程;(2)当时,求函数在的最大值;(3)证明:当时,不等式对任意均成立(其中为自然对数的底数,).【答案】(1),(2)当时,的最大值为;当时,的最大值为;(3)见解析【解析】试题分析:(1)设出切点坐标,表示出切线方程,代入点的坐标,求出切线方程即可;(2)求出函数的导数,求出函数的单调区间,求出F(x)的最大值即可;(3)问题可化为m>(x﹣2)e x+lnx﹣x,设,要证m≥﹣3时m >h(x)对任意均成立,只要证h(x)max<﹣3,根据函数的单调性证明即可.试题解析:解:(1)设切点坐标为,则切线方程为,将代入上式,得,,∴切线方程为;(2)当时,,,∴,,当时,,当时,,∴在递增,在递减,∴当时,的最大值为;当时,的最大值为;(3)可化为,设,,要证时对任意均成立,只要证,下证此结论成立.∵,∴当时,,设,则,∴在递增,又∵在区间上的图象是一条不间断的曲线,且,,∴使得,即,,当时,;当时,,;∴函数在递增,在递减,∴,∵在递增,∴,即,∴当时,不等式对任意均成立.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.20. 已知数列各项均为正数,,,且对任意恒成立,记的前项和为.(1)若,求的值;(2)证明:对任意正实数,成等比数列;(3)是否存在正实数,使得数列为等比数列.若存在,求出此时和的表达式;若不存在,说明理由.【答案】(1)(2)见解析(3)存在使数列为等比数列,此时,.【解析】试题分析:(1)根据,,且对任意恒成立,代值计算即可.(2)a1=1,a2=2,且a n a n+3=a n+1a n+2对任意n∈N*恒成立,则可得,从而的奇数项和偶数项均构成等比数列,即可证明,(3)在(2)中令,则数列是首项为3,公比为的等比数列,从而得到,.又数列为等比数列,解得,∴,,∴求出此时和的表达式.试题解析:解:(1)∵,∴,又∵,∴;(2)由,两式相乘得,∵,∴,从而的奇数项和偶数项均构成等比数列,设公比分别为,则,,又∵,∴,即,设,则,且恒成立,数列是首项为,公比为的等比数列,问题得证;(3)在(2)中令,则数列是首项为3,公比为的等比数列,∴,且,,,,∵数列为等比数列,∴即即解得(舍去),∴,,从而对任意有,此时,为常数,满足成等比数列,当时,,又,∴,综上,存在使数列为等比数列,此时,.2017-2018学年第一学期高三期中调研试卷数学(附加)【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.21. A.(几何证明选讲)如图,为圆的直径,在圆上,于,点为线段上任意一点,延长交圆于,.(1)求证:;(2)若,求的值.【答案】(1)见解析,(2)4【解析】试题分析:(1)连接,∵,∴,又,∴为等边三角形,∵,∴为中边上的中线,∴;(2)连接,证明,∴,即.试题解析:(1)证明:连接,∵,∴,又,∴为等边三角形,∵,∴为中边上的中线,∴;.......................................5分(2)解:连接,∵,边等边三角形,可求得,∵为圆的直径,∴,∴,又∵,∴,∴,即.........................10分考点:几何证明选讲.22. B.(矩阵与变换)已知矩阵,,求的值.【答案】【解析】试题分析:矩阵的特征多项式为,令,解得矩阵的特征值,,进而求得:的值.试题解析:矩阵的特征多项式为,令,解得矩阵的特征值,,当时特征向量为,当时特征向量为,又∵,∴.23. C.(极坐标与参数方程)在平面直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)求直线和圆的直角坐标方程;(2)若圆任意一条直径的两个端点到直线的距离之和为,求的值.【答案】(1),(2)或.【解析】试题分析:(1)将t参数消去可得直线l的普通方程,根据ρcosθ=x,ρsinθ=y,ρ2=x2+y2带入圆C可得直角坐标系方程;(2)利用点到直线的距离公式求解即可.试题解析:(1)直线的普通方程为;圆的直角坐标方程为;(2)∵圆任意一条直径的两个端点到直线的距离之和为,∴圆心到直线的距离为,即,解得或.24. D.(不等式选讲)设均为正数,且,求证:.【答案】见解析【解析】试题分析:作差再利用均值不等式得=试题解析:因为x>0,y>0,x-y>0,,=,所以.考点:均值不等式【必做题】每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25. 在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏.(1)求甲拿到礼物的概率;(2)设表示甲参加游戏的轮数,求的概率分布和数学期望.【答案】(1),(2)见解析【解析】试题分析:(1)甲拿到礼物的事件为A,在每一轮游戏中,甲留下的概率和他摸卡片的顺序无关,由此利用相互独立事件概率乘法公式能求出甲拿到礼物的概率.(2)随机变量ξ的所有可能取值是1,2,3,4,分别求出相应的概率,由此能求出随机变量ξ的概率分布列及数学期望.试题解析:(1)甲拿到礼物的事件为,在每一轮游戏中,甲留下的概率和他摸卡片的顺序无关,则,答:甲拿到礼物的概率为;(2)随机变量的所有可能取值是1,2,3,4.,,,,随机变量的概率分布列为:所以.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.26. (1)若不等式对任意恒成立,求实数的取值范围;(2)设,试比较与的大小,并证明你的结论.【答案】(1),(2)见解析【解析】试题分析:(1)利用导函数分类讨论研究其单调性即可求解;(2)在(1)中取a=1,得,令,上式即为,,累加即可证明.试题解析:(1)原问题等价于对任意恒成立,令,则,当时,恒成立,即在上单调递增,∴恒成立;当时,令,则,∴在上单调递减,在上单调递增,∴,即存在使得,不合题意;综上所述,的取值范围是.(2)在(1)中取,得,令,上式即为,即,上述各式相加可得.。
无锡市普通高中2017年秋季学期高三期中基础性检测考试卷
数学试题
一、填空题:(本大题共14小题,每小题5分,共70分)
1. 已知集合,集合,且,则实数___________.
【答案】
【解析】因为,则,
2. 若复数(为正实数)的模为2,则______________.
【答案】
【解析】由题意,,所以
3. 菲波那切数列(Fibonacci,sequence),又称黄金分割数列,因数学家列昂纳多斐波那契
(Leonadoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一
个数列:1,2,3,5,8,13,21,…,则该数列的第10项为______________.
【答案】55
【解析】按要求,将数列列出来:
1,2,3,5,8,13,21,34,55,89,··· 所以第10项为89。
4. 若函数,则______________.
【答案】2
【解析】
5. 已知函数的单调递减区间为,则实数的值为______________.
【答案】
【解析】由题意,,则。
6. 若变量满足,且恒成立,则的最大值为______________.
【答案】
【解析】
所以过时,的最小值为-4,所以的最大值为-4.
7. 将函数的图象向右平移个单位长度,若所得图象过点,则的最小值是
______________.
【答案】
【解析】移动后,过点,
则,所以或,
所以或,
所以的最小值为。
8. 已知函数,则的解为______________.
【答案】
【解析】,,
所以,为奇函数,
又在上单调递减,
所以,
所以,解得,即。
9. 已知,则______________.
【答案】0或
【解析】由题意得,得或,
当时,得,则,
当,得,则,
所以或。
10. 在等差数列中,已知,则数列的前10项和是
______________.
【答案】
【解析】,则;,则,
所以首项,,所以,
,
,
所以,
所以,
所以。
11. 已知实数满足,则的最小值为_________.
【答案】
【解析】,则,
..................
12. 如图所示,在平行四边形中,为垂足,且,则
______________.
【答案】2
【解析】
如图,延长,过作延长线的垂线,
所以在的方向投影为,又,
所以。
点睛:本题中采用向量数量积的几何意义解题,作出在的方向投影,由为中点,
可知,所以根据数量积的几何意义可知,。
13. 关于的方程有3个不同的实数解,则实数的取值范围为______________.
【答案】
【解析】
由题意,则临界情况为与相切的情况,
,则,所以切点坐标为,
则此时,
所以只要图象向左移动,都会产生3个交点,
所以,即。
点睛:解的个数问题我们采用图象法辅助解题,画出图象,我们可以知道在处有一个交
点,则在处必须有两个交点,所以我们先求出临界情况相切的位置,解得,所
以求出答案。
14. 已知正项数列的首项为1,前项和为,对任意正整数,当时,
总成立,若正整数满足,则的最小值为______________.
【答案】
【解析】由题意,,则,
,则,
同理可知,,,
所以,,,
所以最小为。
点睛:由题意,对任意正整数,总成立,则令,可知递推关系
,,由递推关系我们可以求出,求出的最小值即可。
本题的切入点就是由数列定义正确的赋值。
二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.
15. 已知
(1)求与的夹角的大小;
(2)若,求的值.
【答案】(1) (2)
【解析】试题分析:(1)利用数量积公式,求得夹角;(2)利
用平行公式,求出的值.
试题解析:
(1)设 与的夹角为 ,因为, 所以,.
(2) 因为 ,即 , 解得.
16. 如图,在四棱柱中,底面为等腰梯形,为
边的中点,底面.
(1)求证:平面;
(2)平面平面.
【答案】(1)详见解析(2)详见解析
【解析】试题分析:(1)由图得到四边形为平行四边形,所以,所以平
面;(2),,所以平面 ,所以平面 平面 .
试题解析:
证明:因为四棱柱为四棱柱,
所以且,又 为边的中点,
所以 ,即,
又,所以,
即,所以四边形为平行四边形,
则 ,又平面 ,平面 ,
所以平面.
(2)由(1)知四边形为平行四边形,且,所以四边形为菱
形,所以,
又底面 ,所以,
因为 ,所以平面 ,
又平面 ,所以平面 平面 .
17. 在三角形ABC中,角A,B,C的对边分别为a,b,c,若,角为钝角,
(1)求的值;
(2)求边的长.
【答案】(1) (2)
【解析】(1)由,分别求得,得到答案;(2)
利用正弦定理得到,利用余弦定理解出。
试题解析:
(1)因为角 为钝角, ,所以 ,
又 ,所以 ,
且 ,
所以
.
(2)因为 ,且 ,所以 ,
又 ,
则 ,
所以 .
点睛:(1)利用整体思想解决三角函数的求值问题,得到求解;(2)用正
弦定理求得,再利用角度转化求得,最后利用余弦定理解出。
18. 在一块杂草地上有一条小路AB,现在小路的一边围出一个三角形(如图)区域,在三角形
ABC内种植花卉.已知AB长为1千米,设角AC边长为BC边长的倍,三角形ABC的
面积为S(千米2).
试用和表示;
(2)若恰好当时,S取得最大值,求的值.
【答案】(1) (2)
【解析】试题分析:(1)设边 ,则 ,由余弦定理求出,则面
积;(2)对进行求导,得到,则当
时,面积最大,此时解得。
试题解析:
(1)设边 ,则 ,
在三角形中,由余弦定理得:
,
所以 ,
所以 ,
(2)因为 ,
,
令 ,得
且当时, ,,
当时, ,,
所以当时,面积 最大,此时 ,所以,
解得 ,
因为 ,则.
点睛:解三角形的实际应用,首先转化为几何思想,将图形对应到三角形,找到已知条件,
本题中对应知道一个角,一条边,及其余两边的比例关系,利用余弦定理得到函数方程;面
积最值的处理过程中,若函数比较复杂,则借助导数去求解最值。
19. 已知数列满足记数列的前项和为,
(1)求证:数列为等比数列,并求其通项;
(2)求;
(3)问是否存在正整数,使得成立?说明理由.
【答案】(1) (2) (3)当为偶数时, 都成立,
(3)详见解析
【解析】试题分析:(1),所以为等
比数列,又 ,所以;(2) ,所以 ,
分奇偶讨论,当为奇数时,可令,当为偶数时,可令
;(3),当 为偶数时,
成立 .
试题解析:
因为
,
即 ,所以。
(2) ,所以 ,
当为奇数时,可令
则
,
当为偶数时,可令
则
;
(3)假设存在正整数 ,使得 成立,
因为 , ,
所以只要
即只要满足 ①: ,和②: ,
对于①只要 就可以;
对于②,
当 为奇数时,满足 ,不成立,
当 为偶数时,满足,即
令 ,
因为
即 ,且当 时, ,
所以当 为偶数时,②式成立,即当 为偶数时,成立 .
20. 已知函数
(1)当时,求的单调区间;
(2)令,区间,为自然对数的底数。
(ⅰ)若函数在区间上有两个极值,求实数的取值范围;
(ⅱ)设函数在区间上的两个极值分别为和,
求证:.
【答案】(1)增区间,减区间,(2)详见解析
【解析】试题分析:(1)求导写出单调区间;(2)(ⅰ)函数 在区间D上有
两个极值,等价于 在 上有两个不同的零点,令 ,得
,通过求导分析得 的范围为;(ⅱ),得
,由分式恒等变换得,得
,要证明 ,只需证 ,即证
,
令 ,,通过求导得到 恒成立,得证。
试题解析:
(1)当时, ,
所以
若 ,则 所以的单调区增区间为
若则所以的单调区增区间为
(2)(ⅰ)因为 ,
所以 ,,
若函数 在区间D上有两个极值,等价于 在 上有两个不同的零
点,
令 ,得 ,
设 ,令
大于0 0 小于0
0 增 减
所以 的范围为
(ⅱ)由(ⅰ)知,若函数在区间D上有两个极值分别为 和,不妨设 ,
则 ,
所以
即 ,
要证 ,只需证 ,即证,
令 ,即证 ,即证 ,
令 ,因为 ,
所以 在上单调增,,所以 ,
即 所以 ,得证。