士兵军校考试大纲物理篇:电磁驱动
- 格式:pdf
- 大小:60.26 KB
- 文档页数:2
公安边防消防警卫院校招收士兵学员文化考试物理大纲公安边防、消防、警卫部队院校招收士兵学员统一考试是指公安边防、消防、警卫部队士兵考生参加的选拔性考试。
院校根据考生的成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。
因此,考试应有较高的信度、效度、必要的区分度和适当的难度。
考试范围和能力要求1.考试范围考试范围包括:力学、热学、电磁学、光学和原子物理等五部分。
2.能力要求分为了解、理解、掌握三个层次,其中力学和电磁学是重点,具体体现在章节要求中。
考试形式与试卷结构1.考试方法闭卷,笔试。
满分60分,与政治、化学合并为综合卷(总分满分200分),考试时间共150分钟。
2.试卷内容比例力学……………………………………………………约占40%电磁学…………………………………………………约占40%热学、光学、原子物理和物理实验…………………约占20%3.试卷题型比例选择题…………………………………………………约占30%填空题…………………………………………………约占30%计算题…………………………………………………约占40%4.试题难度比例较易题…………………………………………………约占40%中等难度题……………………………………………约占50%较难题…………………………………………………约占10%考试内容一、力学(一)力、物体的平衡1.理解力的概念,会用力的图示法表示力;2.了解矢量和标量;3.了解重力;4.了解万有引力(万有引力定律不作定量计算要求);5.了解弹力,不要求用F=进行计算;6.了解静摩擦力(静摩擦因数不作要求);7.理解滑动摩擦力和滑动摩擦系因数,会用滑动摩擦力公式进行计算;8.理解力的合成和分解,知道平行四边形法则(计算只限于能用直角三角形知识求解的问题);9.理解物体受力分析,会正确画出物体的受力图;10.理解共点力的平衡条件(限于解决简单的静力学问题);11.了解力矩、力矩的平衡。
军考大纲解读——军校考试大纲[最新版]物理考点119:涡流关键词:军校考试张为臻军校考试试题军校考试培训军考大纲军考考点士兵军考1、涡流当线圈中的电流随时间变化时,由于电磁感应,附近的另一个线圈中会产生感应电流。
实际上这个线圈附近的任何导体中都会产生感应电流。
如果用图表示这样的感应电流,看起来就像水中的旋涡,所以我们把它叫做涡电流引。
2、涡流现象在一根导体外面绕上线圈,并让线圈通入交变电流,那么线圈就产生交变磁场。
由于线圈中间的导体在圆周方向是可以等效成一圈圈的闭合电路,闭合电路中的磁通量在不断发生改变,所以在导体的圆周方向会产生感应电动势和感应电流,电流的方向沿导体的圆周方向转圈,就像一圈圈的漩涡,所以这种在整块导体内部发生电磁感应而产生感应电流的现象称为涡流现象。
(1)导体的外周长越长,交变磁场的频率越高,涡流就越大。
准维教育军队考试网(2)导体内部的涡流也会产生热量,如果导体的电阻率小,则涡流很强,产生的热量就很大。
3、涡流原理电磁感应作用在导体内部感生的电流。
又称为傅科电流。
导体在磁场中运动,或者导体静止但有着随时间变化的磁场,或者两种情况同时出现,都可以造成磁力线与导体的相对切割。
按照电磁感应定律,在导体中就产生感应电动势,从而驱动电流。
这样引起的电流在导体中的分布随着导体的表面形状和磁场的分布而不同,其路径往往有如水中的漩涡,因此称为涡流。
涡流在导体中要产生热量。
所消耗的能量来源于使导体运动的机械功,或者建立时变电磁场的能源。
因此在电工设备中,为了防止涡流的产生或者减少涡流造成的能量损失,将铁心用互相绝缘的薄片或细丝叠成,并且采用电阻率较高的材料如硅钢片或铁粉压结的铁心。
张为臻博客导体在非均匀磁场中移动或处在随时间变化的磁场中时,因涡流而导致能量损耗称为涡流损耗。
涡流损耗的大小与磁场的变化方式、导体的运动、导体的几何形状、导体的磁导率和电导率等因素有关。
涡流损耗的计算需根据导体中的电磁场的方程式,结合具体问题的上述诸因素进行。
士兵军校考试大纲《物理》考点:电场强度(1)关键词:军校考试张为臻军考大纲军考培训士兵军考军考物理考点
描述某点电场特性的物理量,符号是E,E是矢量。
电场强度简称场强,定义为放入电场中某点的电荷所受的电场力F跟它的电荷量q的比值,但场强不与q成反比,只是由比值来反映和测定。
场强的方向与正检验电荷的受力方向相同。
场强的定义是根据电场对电荷有作用力的特点得出的。
对电荷激发的静电场和变化磁场激发的涡旋电场都适用。
场强的单位是牛/库或伏/米,两个单位名称不同,但大小一样。
场强数值上等于单位电荷在该点受的电场力,场强的方向与正电荷受力方向相同。
电场的特性是对电荷有作用力,这种作用力就是电场力,正电荷受力方向与电场方向相同,负电荷受力方向与电场方向相反。
电场是一种物质,具有能量,场强大处电场的能量大。
已知电场强度可判定电场对电荷的作用力,电介质(绝缘体)的电击穿与场强大小有关。
点电荷的电场强度由点电荷决定,与试探电荷无关.
真空中点电荷场强公式:E=k×q/r^2
匀强电场场强公式:E=U/d
任何电场中都适用的定义式:E=F/q
介质中点电荷的场强:k×q/r^2;
注:匀强电场。
在匀强电场中,场强大小相等,方向相同,匀强电场的电场线是一组疏密相同的平行线.
在匀强电场中,有E=U/d(只适用于匀强电场),U为电势差,单位:伏特/米。
电荷在此电场中受到的力为恒力,带电粒子在匀强电场中作匀变速运动。
而此电场的等势面与电场线相垂直。
张为臻博客。
军校考试大纲《物理》考点—电与磁的转化之日光灯原理关键词:军校考试张为臻军考培训军考大纲军考物理考点士兵军考1、日光灯原理日光灯开始点燃时需要一个高电压,正常发光时灯管只允许通过不大的电流,这时要求加在灯管上的电压低于电源电压。
2、日光灯主要部件(1)镇流器镇流器是一个带铁芯的线圈,自感系数很大。
(2)启辉器(即启动器)启辉器主要是一个充有氖气的小氖泡,里面装有两个电极,一个是静触片,一个是由两个膨胀系数不同的金属制成的U型动触片(双金属片——当温度升高时,因两个金属片的膨胀系数不同,导致其向膨胀系数低的一侧弯曲)。
3、日光灯工作原理当开关闭合后,电源把电压加在启辉器的两极之间,使氖气放电而发出辉光,辉光产生的热量使U型动触片膨胀伸长,跟静触片接通,于是镇流器线圈和灯管中的灯丝就有电流通过。
电路接通后,启辉器中的氖气停止放电(启辉器分压少、辉光放电无法进行,不工作),U型片冷却收缩,两个触片分离,电路自动断开。
在电路突然断开的瞬间,由于镇流器电流急剧减小,会产生很高的自感电动势,方向与原来的电压方向相同,两个自感电动势与电源电压加在一起,形成一个瞬时高压,加在灯管两端,使灯管中的气体开始放电,于是日光灯成为电流的通路开始发光。
日光灯开始发光时,由于交变电流通过镇流器的线圈,线圈中就会产生自感电动势,它总是阻碍电流变化的,这时镇流器起着降压限流的作用,保证日光灯正常工作。
4、日光灯发光原理灯管内部情况:灯管内含有水银蒸汽和少量的惰性气体(氩气),管壁上涂有荧光粉,当电子受到激发的时候原子就会释放出可见光子。
如果你已经知道原子是如何工作的话,那你也就知道电子是围着原子核走来走去的负极电荷粒子。
原子的电子有着不同等级的能量,主要取决几个因素,包括它们的速度和离原子核的距离。
电子不同的能量等级占有不同的轨函数和轨道。
准维教育军队考试网通常来说,有着大能量的电子就会离原子核更远。
当原子得到或失去能量的时候,电子就会从低轨道和高轨道之间移动。
军考大纲解读——军校考试大纲[最新版]物理考点110:洛伦兹力关键词:军校考试张为臻军校考试试题军校考试培训军考大纲军考考点士兵军考1、洛伦兹力运动电荷在磁场中所受到的力称为洛伦兹力,即磁场对运动电荷的作用力。
洛伦兹力的公式为F=QvB。
荷兰物理学家洛伦兹首先提出了运动电荷产生磁场和磁场对运动电荷有作用力的观点,为纪念他,人们称这种力为洛伦兹力。
2、洛伦兹力性质(1)在国际单位制中,洛仑兹力的单位是牛顿,符号是N。
(2)洛伦兹力方向总与运动方向垂直。
张为臻博客(3)洛伦兹力永远不做功。
(有束缚时,洛仑兹力的分力可以做功,但其总功一定为0。
)(4)洛伦兹力不改变运动电荷的速率和动能,只能改变电荷的运动方向使之偏转。
3、洛伦兹力详解(1)在电动力学里,洛伦兹力是运动于电磁场的带电粒子所受的力。
根据洛伦兹力定律,洛伦兹力可以用方程,称为洛伦兹力方程,表达为其中,F是洛伦兹力,q是带电粒子的电荷量,E是电场强度,v是带电粒子的速度,B是磁感应强度。
(2)洛伦兹力定律是一个基本公理,不是从别的理论推导出来的定律,而是由多次重复完成的实验所得到的同样的结果。
感受到电场的作用,正电荷会朝着电场的方向加速;但是感受到磁场的作用,按照左手定则,正电荷会朝着垂直于速度V和磁场B的方向弯曲(详细地说,应用左手定则,当四指指电流方向,磁感线穿过手心时,大拇指方向为洛伦兹力方向)。
准维教育军队考试网洛伦兹力方程的qE项是电场力项,处于磁场内的载电导线感受到的磁场力就是这洛伦兹力的磁场力分量。
洛伦兹力方程的积分形式为其中,V是积分的体积,p是电荷密度,J是电流密度,dr是微小体元素。
(3)经常使用的公式还有洛伦兹力密度f的表达式。
若带电粒子射入匀强磁场内,它的速度与磁场间夹角为0<θ<π/2这个粒子将作等距螺旋线运动(沿B方向的匀速直线运动和垂直于B的匀速圆周运动的和运动)。
螺旋半径,周期和螺距为,,。
高中学历士兵考军校物理专项测试卷电磁感应关键词2021年军考,军考辅导,军考物理,高中学历士兵考军校,师之航军考,军考视频,军考资料,在部队考军校,军考辅导,军考辅导班,军考培训,军考培训班,军考资料,军考视频,大学生当兵考军校,部队考军校,当兵考军校,军考培训,军考真题,考军校辅导,义务兵考军校,武警士兵考军校,士兵考军校辅导师之航寄语:为了给2021年备战军考的解放军/武警战士们扫清学习障碍,现师之航军考特推出历年军考真题精讲系列视频课和备考指南视频课。
大家可download (下载,安装)“军考课堂”Application (简称“APP”)进行观看。
一.选择题(共11小题)1.如图所示,一个矩形线框abcd 放在垂直于纸面向里的匀强磁场中,O 1O 2是线框的对称轴.线框在下列各种运动中,整个线框始终处于磁场之内,能使线框中产生感应电流的是()A .沿纸面向左移动B .以O 1O 2为轴转动C .垂直纸面向里移动D .垂直纸面向外移动2.通电直导线旁放一个金属线框,线框和导线在同一平面内,如图所示.在线框abcd 中没有产生感应电流的运动情况是()A.线框向右移动B.线框以AB为轴旋转C.线框以ad边为轴旋转D.线框以ab边为轴旋转3.将一段导线绕成图甲所示的闭合电路,并固定在水平面(纸面)内,回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆形区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图象如图乙所示.用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图象是()A.B.C.D.4.半径为r带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d,如图1所示.有一变化的磁场垂直于纸面,规定向内为正,变化规律如图2所示.在t=0时刻平板之间中心有一重力不计,电荷量为q的静止微粒,则以下说法正确的是()A.第2秒内上极板为正极B.第3秒内上极板为负极C.第2秒末微粒回到了原来位置D.第3秒末两极板之间的电场强度大小为5.如图甲所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈A中通以如图乙所示的变化电流,t=t2时电流的方向为顺时针(如图中箭头所示),在t1~t2时间内,对于线圈B,下列说法中正确的是()A.线圈B内有顺时针方向的电流,线圈有扩张的趋势B.线圈B内有顺时针方向的电流,线圈有收缩的趋势C.线圈B内有逆时针方向的电流,线圈有扩张的趋势D.线圈B内有逆时针方向的电流,线圈有收缩的趋势6.如图所示,abcd为水平放置的平行“⊂”形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计,已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好).则()A.电路中感应电动势的大小为B.电路中感应电流的大小为C.金属杆所受安培力的大小为D.金属杆的热功率为7.如图所示,相距为d的两条水平虚线L1、L2之间是方向水平向里的匀强磁场,磁感应强度为B,正方形线圈abcd边长为L(L<d),质量为m,电阻为R,将线圈在磁场上方高h处静止释放,cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,则线圈穿越磁场的过程中(从cd边刚进入磁场起一直到ab边离开磁场为止),则以下说法中不正确的是()A.感应电流所做的功为2mgdB.线圈下落的最小速度一定为C.线圈下落的最小速度可能为D.线圈进入磁场和穿出磁场的过程比较,所用的时间不一样8.如图所示,在置于匀强磁场中的平行导轨上,横跨在两导轨间的导体杆PQ 以速度v向右匀速移动,已知磁场的磁感强度为B、方向垂直于导轨平面(即纸面)向外,导轨间距为l,闭合电路acQPa中除电阻R外,其他部分的电阻忽略不计,则()A.电路中的感应电动势E=IlBB.电路中的感应电流I=C.通过电阻R的电流方向是由a向cD.通过PQ杆中的电流方向是由Q向P9.如图所示,匀强磁场的方向垂直于光滑的金属导轨平面向里,极板间距为d 的平行板电容器与总阻值为2R0的滑动变阻器通过平行导轨连接,电阻为R0的导体棒MN可在外力的作用下沿导轨从左向右做匀速直线运动.当滑动变阻器的滑动触头位于a、b的中间位置、导体棒MN的速度为v0时,位于电容器中P点的带电油滴恰好处于静止状态.若不计摩擦和平行导轨及导线的电阻,重力加速度为g,则下列判断正确的是()A.油滴带正电荷B.若将上极板竖直向上移动距离d,油滴将向上加速运动,加速度a=C.若将导体棒的速度变为2v0,油滴将向上加速运动,加速度a=2gD.若保持导体棒的速度为v0不变,而将滑动触头置于a位置,同时将电容器上极板向上移动距离,油滴仍将静止10.如图所示,在一均匀磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd 上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则()A.ef将减速向右运动,但不是匀减速,最后停止B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动11.如图所示,间距为L、电阻不计的足够长平行光滑金属导轨水平放置,导轨左端用一阻值为R的电阻连接,导轨上横跨一根质量为m、电阻也为R的金属棒,金属棒与导轨接触良好.整个装置处于竖直向上、磁感应强度为B的匀强磁场中.现使金属棒以初速度v沿导轨向右运动,若金属棒在整个运动过程中通过的电荷量为q.下列说法正确的是()A.金属棒在导轨上做匀减速运动B.整个过程中金属棒在导轨上发生的位移为C.整个过程中金属棒克服安培力做功为mv2D.整个过程中电阻R上产生的焦耳热为mv2二.填空题(共19小题)12.如图所示,两根电阻不计的光滑金属导轨ab、cd竖直放置,导轨间距为L,上端接有两个定值电阻R1、R2,已知R1=R2=2r.将质量为m、电阻值为r的金属棒从图示位置由静止释放,下落过程中金属棒保持水平且与导轨接触良好.自由下落一段距离后金属棒进入一个垂直于导轨平面的匀强磁场,磁场宽度为h.金属棒出磁场前R1、R2的功率均已稳定为P.则金属棒离开磁场时的速度大小为,整个过程中通过电阻R1的电量为.(已知重力加速度为g)13.如图所示,虚线区域内有垂直于纸面向里的匀强磁场,一单匝正方形导线框垂直磁场放置,框的右边与磁场边界重合.现将导线框沿纸面垂直边界拉出磁场,则此过程中穿过导线框的磁通量(填“增加”或“减少”);若这一过程磁通量变化了0.05Wb,所用时间为0.1s,导线框中产生的感应电动势是V.14.如图所示,两根相距为L的竖直平行金属导轨位于磁感应强度为B、方向垂直纸面向里的匀强磁场中,导轨电阻不计,另外两根与上述光滑导轨保持良好接触的金属杆ab、cd质量均为m,电阻均为R,若要使cd静止不动,则ab杆应向运动,速度大小为,作用于ab杆上的外力大小为.15.在磁感应强度B为0.4T的匀强磁场中,让长为0.2m,电阻为1Ω的导体ab 在金属框上以6m/s的速度向右移动,如图所示.此时感应电动势大小为V.如果R1=6Ω,R2=3Ω,其余部分电阻不计.则通过ab的电流大小为A.16.一个500匝的线圈,其电阻为5Ω,将它与电阻为495Ω的电热器连成闭合电路.若在0.3s内,穿过线圈的磁通量从0.03Wb均匀增加到0.09wb,则线圈中产生的感应电动势为V,通过电热器的电流为A.17.如图所示,一个匝数为n、面积为S的闭合线圈置于水平面上,若线圈内的磁感应强度在时间t内由竖直向下大小为B1减少到零,再反向增加到大小为B2,则线圈内磁通量的变化量为,这段时间线圈内平均感应电动势为.18.一个200匝、面积为20cm2的线圈,放在磁场中,磁场的方向与线圈平面成30°角,若磁感应强度在0.05s内由0.1T增加到0.5T.在此过程中穿过线圈的磁通量的变化是Wb;磁通量的平均变化率是Wb/s;线圈中的感应电动势的大小是V.19.穿过单匝闭合线圈的磁通量随时间变化的Φ﹣t图象如图所示,由图知0~5s线圈中感应电动势大小为V,5s~10s线圈中感应电动势大小为V,10s~15s线圈中感应电动势大小为V.20.有一面积为150cm2的金属环,电阻为0.1Ω,在环中100cm2的同心圆面上存在如图(b)所示的变化的磁场,在0.1s到0.2s的时间内环中感应电流为,流过的电荷量为.21.如图所示,线圈内有理想边界的磁场,当磁场均匀增加时,有一带电粒子静止于平行板(两板水平放置)电容器中间,则此粒子带电(填“正”或“负”),若线圈匝数为n,平行板电容器板间距离为d,粒子质量为m,带电量为q,则磁感应强度的变化率为(设线圈面积为S).22.一个200匝,面积0.2m2的均匀圆线圈,放在匀强磁场中,磁场方向与线圈垂直.若磁感应强度在0.05s内由0.1T增加到0.5T,则在此过程中,磁通量的变化率是=Wb/s,线圈中的感应电动势为E=V.23.如图所示,长度L=0.4m,电阻R ab=0.1Ω的导体ab沿光滑导线框向右做匀速运动,运动的速度v=5m/s.线框中接有R=0.4Ω的电阻.整个空间有磁感应强度B=0.1T的匀强磁场,磁场方向垂直于线框平面,其余电阻不计.电路abcd中相当于电源的部分是;相当于电源的正极,金属杆ab两端间的电压为V,导体ab所受安培力的大小F=N,电阻R上消耗的功率P=W.24.如图所示,在光滑绝缘的水平面上,一边长为10cm、电阻为1Ω、质量为0.1kg的正方形金属线框abcd以m/s的速度向一有界磁场滑去,磁场方向与线框平面垂直,磁感应强度大小为0.5T,当线框全部进入磁场时,线框中已放出了1.8J的热量.则当线框ab边刚出磁场的瞬间,线框速度大小为m/s;线框中电流的瞬时功率为W.25.如图所示,电阻R ab=0.1Ω的导体ab沿光滑导线框向右做匀速运动线框中接有电阻R=0.4Ω,线框放在磁感应强度B=0.1T的匀强磁场中,磁场方向垂直于线框平面,导体的ab长度l=0.4m,运动速度v=10m/s.线框的电阻不计.(1)电路abcd中相当于电源的部分是,相当于电源的正极是端.(2)使导体ab向右匀速运动所需的外力F′=N,方向(3)电阻R上消耗的功率P=W.26.如图所示,一质量m=0.1kg的金属棒ab可沿接有电阻R=1Ω的足够长的竖直导体框架无摩擦地滑动,框架间距L=50cm,匀强磁场的磁感应强度B=0.4T,方向如图示,其余电阻均不计.若棒ab由静止开始沿框架下落,且与框保持良好接触,那么在下落的前一阶段,棒ab将做运动,当棒ab运动达到稳定状态时的速度v=.(g=10m/s2)27.两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面.质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,回路总电阻为2R.整个装置处于磁感应强度大小为B、方向竖直向上的匀强磁场中.当ab杆在平行于水平导轨的拉力作用下以速度v1沿导轨匀速运动时,cd杆也正好以速度v2向下匀速运动.重力加速度为g.则回路中的电流I=;μ与υ1大小的关系为μ=.28.如图所示,将边长为l、总电阻为R的正方形闭合线圈,从磁感强度为B的匀强磁场中以速度v匀速拉出(磁场方向,垂直线圈平面)(1)所用拉力F=.(2)拉力F的功率P F=.(3)线圈放出的热量Q=.29.如图,一宽度为L=0.4m的光滑金属导轨水平放置,导轨左端连接电阻R1=2Ω,右端连接电阻R2=1Ω和电容C=0.3μF,垂直于轨道面向下的匀强磁场B=0.1T,导体棒AD垂直于导轨放置且与导轨接触良好,导轨和导体棒的电阻均不计.当导体棒以5m/s速度向右匀速运动时,导体棒的端电势高,电容器上所带电量为C.30.如图所示,水平面上有两电阻不计的光滑金属导轨平行、固定放置,间距d 为0.5m,右端通过导线与阻值为4Ω的小灯泡L连接.在CDFE矩形区域内有竖直向上的匀强磁场,CE长为2m,CDFE区域内磁场的磁感强度B随时间t的变化如图.在t=0s时,一阻值为1Ω的金属棒在恒力F作用下由静止从AB位置沿导轨向右运动,当金属棒从AB位置运动到EF位置过程中,小灯泡的亮度没有发生变化.则恒力F的大小为N,金属棒的质量为kg.三.多选题(共1小题)31.如图所示的情况都是线框在磁场中做切割磁感线运动,其中线框中有感应电流的是()A.B.C.D.电磁感应参考答案与试题解析一.选择题(共11小题)1.如图所示,一个矩形线框abcd放在垂直于纸面向里的匀强磁场中,O1O2是线框的对称轴.线框在下列各种运动中,整个线框始终处于磁场之内,能使线框中产生感应电流的是()A.沿纸面向左移动B.以O1O2为轴转动C.垂直纸面向里移动D.垂直纸面向外移动【分析】产生感应电流的条件是:穿过闭合回路的磁通量发生变化.因此无论线圈如何运动,关键是看其磁通量是否变化,从而判断出是否有感应电流产生.【解答】解:A、由于磁场是匀强磁场,把线圈向右拉动,或向上拉动,或垂直纸面向外运动,其磁通量均不变化,均无感应电流产生,故ACD错误;B、当线圈以O1O2为轴转动时,其磁通量发生变化,故有感应电流产生,故B正确.故选:B【点评】本题考查感应电流产生的条件;解题时把握问题实质,关键是看闭合线圈中的磁通量是否变化,与运动形式无关.2.通电直导线旁放一个金属线框,线框和导线在同一平面内,如图所示.在线框abcd中没有产生感应电流的运动情况是()A.线框向右移动B.线框以AB为轴旋转C.线框以ad边为轴旋转D.线框以ab边为轴旋转【分析】由安培定则可确定线圈所处磁场的分布,当闭合回路中磁通量发生变化时,回路中就会产生感应电流.根据楞次定律即可判断出感应电流的方向.【解答】解:A、当保持M边与导线平行线圈向右移动时,穿过线圈的磁通量发生减小,则线圈中产生顺时针方向的感应电流;B、线框以导线为轴加速转动,穿过线圈的磁通量不变,则不可以产生感应电流;C、线框以ad边为轴旋转,穿过线圈的磁通量发生变化,则线圈中产生感应电流.D、导线框以ab边为轴旋转,穿过线圈的磁通量发生变化,则线圈中产生感应电流;本题选择不能产生感应电流的;故选:B.【点评】该题将安培定则与楞次定律相结合,要先根据安培定则判断出电流周围的磁场才方向与特点,然后在使用楞次定律判定感应电流的方向.3.将一段导线绕成图甲所示的闭合电路,并固定在水平面(纸面)内,回路的ab边置于垂直纸面向里的匀强磁场Ⅰ中.回路的圆形区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B随时间t变化的图象如图乙所示.用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图象是()A.B.C.D.【分析】当线圈的磁通量发生变化时,线圈中才会产生感应电动势,从而形成感应电流;当线圈的磁通量不变时,则线圈中没有感应电动势,所以不会有感应电流产生.由楞次定律可知电流的方向,由左手定则判断安培力的方向.【解答】解:分析一个周期内的情况:在前半个周期内,磁感应强度均匀变化,磁感应强度B的变化度一定,由法拉第电磁感应定律得知,圆形线圈中产生恒定的感应电动势恒定不变,则感应电流恒定不变,ab边在磁场中所受的安培力也恒定不变,由楞次定律可知,圆形线圈中产生的感应电流方向为顺时针方向,通过ab的电流方向从b→a,由左手定则判断得知,ab所受的安培力方向水平向左,为负值;同理可知,在后半个周期内,安培力大小恒定不变,方向水平向右.故B正确.故选B【点评】本题要求学生能正确理解B﹣t图的含义,故道B如何变化,才能准确的利用楞次定律进行判定.根据法拉第电磁感应定律分析感应电动势的变化,由欧姆定律判断感应电流的变化,进而可确定安培力大小的变化.4.半径为r带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d,如图1所示.有一变化的磁场垂直于纸面,规定向内为正,变化规律如图2所示.在t=0时刻平板之间中心有一重力不计,电荷量为q的静止微粒,则以下说法正确的是()A.第2秒内上极板为正极B.第3秒内上极板为负极C.第2秒末微粒回到了原来位置D.第3秒末两极板之间的电场强度大小为【分析】由图可知磁感应强度的变化,则由楞次定则可得出平行板上的带电情况;对带电粒子受力分析可知带电粒子的受力情况,由牛顿第二定律可知粒子的运动情况;根据粒子受力的变化可知粒子加速度的变化,通过分析可得出粒子的运动过程.【解答】解:0~1s内情况:由楞次定律可知,金属板上极板带负电,金属板下极板带正电;若粒子带正电,则粒子所受电场力方向竖直向上而向上做匀加速运动.1~2s内情况:由楞次定律可知,金属板上极板带正电,金属板下极板带负电;故A正确;若粒子带正电,则粒子所受电场力方向竖直向下而向上做匀减速运动,2s末速度减小为零.2~3s内情况:由楞次定律可知,金属板上极板带正电,金属板下极板带负电;故B错误;若粒子带正电,则粒子所受电场力方向竖直向下而向下做匀加速运动.两极板间的电场强度大小,故D错误;3~4s内情况:由楞次定律可知,金属板上极板带负电,金属板下极板带正电;若粒子带正电,则粒子所受电场力方向竖直向上而向下做匀减速运动4s末速度减小为零,同时回到了原来的位置.故C错误;故选A.【点评】本题属于综合性题目,注意将产生感应电流的部分看作电源,则可知电容器两端的电压等于线圈两端的电压,这样即可还原为我们常见题型.5.如图甲所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈A中通以如图乙所示的变化电流,t=t2时电流的方向为顺时针(如图中箭头所示),在t1~t2时间内,对于线圈B,下列说法中正确的是()A.线圈B内有顺时针方向的电流,线圈有扩张的趋势B.线圈B内有顺时针方向的电流,线圈有收缩的趋势C.线圈B内有逆时针方向的电流,线圈有扩张的趋势D.线圈B内有逆时针方向的电流,线圈有收缩的趋势【分析】根据安培定则确定电流与磁场的方向关系,再根据楞次定律知,感应电流的磁场总是阻碍引起感应电流的磁通量的变化.当磁通量增大时,感应电流的磁场与它相反,当磁通量减小时,感应电流的磁场与它相同.【解答】解:在t1~t2时间内,对于线圈A的顺时针方向电流增大,导致线圈B 磁通量增大,感应电流的磁场与它相反,根据安培定则可知,线圈A在线圈B 内部产生磁场方向垂直纸面向里,则线圈B内有逆时针方向的电流.此时线圈B 的电流方向与线圈A电流方向相反,由异向电流相互排斥,可知线圈间有相互排斥,所以线圈B有的扩张的趋势.故A、B、D错误,C正确.故选:C【点评】解决本题的关键掌握安培定则、楞次定律的内容,知道感应电流的磁场总是阻碍引起感应电流的磁通量的变化.同时注意t=t2时电流方向为顺时针,而在t1~t2时间内电流方向为顺时针.6.如图所示,abcd为水平放置的平行“⊂”形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计,已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好).则()A.电路中感应电动势的大小为B.电路中感应电流的大小为C.金属杆所受安培力的大小为D.金属杆的热功率为【分析】由导体切割磁感线公式可求得感应电动势的大小,由安培力公式F=BIL 可求得安培力以;由P=FV即可求得功率;注意公式中的l均为导轨间的距离.【解答】解:A、电路中感应电动势的大小E=Blv;公式中的l为切割的有效长度,故电动势E=Blv;故A错误;B、感应电流i==;故B正确;C、导线与磁场均垂直且长度为,故安培力的大小F=BIL=;故C错误;D、功率P=FV=;故D错误;故选:B.【点评】本题考查导体切割磁感线中的电动势和安培力公式的应用,要注意明确E=BLv和F=BIL均为导轨宽度,即导线的有效切割长度.7.如图所示,相距为d的两条水平虚线L1、L2之间是方向水平向里的匀强磁场,磁感应强度为B,正方形线圈abcd边长为L(L<d),质量为m,电阻为R,将线圈在磁场上方高h处静止释放,cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,则线圈穿越磁场的过程中(从cd边刚进入磁场起一直到ab边离开磁场为止),则以下说法中不正确的是()A.感应电流所做的功为2mgdB.线圈下落的最小速度一定为C.线圈下落的最小速度可能为D.线圈进入磁场和穿出磁场的过程比较,所用的时间不一样【分析】线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时刻的速度是相同的,又因为线圈全部进入磁场不受安培力,要做匀加速运动.可知线圈进入磁场先要做减速运动.根据线框的运动情况,分析进入和穿出磁场的时间关系.【解答】解:A、根据能量守恒可知:从cd边刚进入磁场到cd边刚穿出磁场的过程:线圈动能变化量为0,重力势能转化为线框产生的热量,产生的热量Q=mgd.cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,所以线圈穿出磁场与进入磁场的过程运动情况相同,线框产生的热量与从cd边刚进入磁场到cd边刚穿出磁场的过程产生的热量相等,所以线圈从cd边进入磁场到cd 边离开磁场的过程,产生的热量Q′=2mgd,感应电流做的功为2mgd,故A正确.B、线圈全部进入磁场时没有感应电流,不受安培力,做匀加速运动,而cd边刚离开磁场与刚进入磁场时速度相等,所以线圈进磁场时要减速,设线圈的最小速度为v m,可知全部进入磁场的瞬间速度最小.由动能定理,从cd边刚进入磁场到线框完全进入时,则有:mv m2﹣mv02=mgL﹣mgd,有mv02=mgh,综上可解得线圈的最小速度为.故B正确;C、线框可能先做减速运动,在完全进入磁场前做匀速运动,因为完全进入磁场时的速度最小,则mg=,则最小速度v=.故C正确.D、cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,故知线圈进入磁场和穿出磁场的过程运动情况相同,所用的时间一样,故D错误.本题选错误的,故选:D.【点评】解决本题的关键根据根据线圈下边缘刚进入磁场和刚穿出磁场时刻的速度都是v0,且全部进入磁场将做加速运动,判断出线圈进磁场后先做变减速运动,也得出全部进磁场时的速度是穿越磁场过程中的最小速度.8.如图所示,在置于匀强磁场中的平行导轨上,横跨在两导轨间的导体杆PQ 以速度v向右匀速移动,已知磁场的磁感强度为B、方向垂直于导轨平面(即纸面)向外,导轨间距为l,闭合电路acQPa中除电阻R外,其他部分的电阻忽略不计,则()A.电路中的感应电动势E=IlBB.电路中的感应电流I=C.通过电阻R的电流方向是由a向cD.通过PQ杆中的电流方向是由Q向P。
军校考试大纲《物理》考点—磁场之回旋加速器关键词:军校考试张为臻军考培训军考大纲军考物理考点士兵军考1、回旋加速器回旋加速器是利用磁场和电场共同使带电粒子作回旋运动,在运动中经高频电场反复加速的装置。
是高能物理中的重要仪器。
2、回旋加速器的相关理论它的主要结构是在磁极间的真空室内有两个半圆形的金属扁盒(D形盒)隔开相对放置,D形盒上加交变电压,其间隙处产生交变电场。
置于中心的粒子源产生带电粒子射出来,受到电场加速,在D形盒内不受电场力,仅受磁极间磁场的洛伦兹力,在垂直磁场平面内作圆周运动。
绕行半圈的时间为πm/qB,其中q 是粒子电荷,m是粒子的质量,B是磁场的磁感应强度。
如果D 形盒上所加的交变电压的频率恰好等于粒子在磁场中作圆周运动的频率,则粒子绕行半圈后正赶上D形盒上电压方向转变,粒子仍处于加速状态。
由于上述粒子绕行半圈的时间与粒子的速度无关,因此粒子每绕行半圈受到一次加速,绕行半径增大。
经过很多次加速,粒子沿螺旋形轨道从D形盒边缘引出,能量可达几十兆电子伏特(MeV)。
回旋加速器的能量受制于随粒子速度增大的相对论效应,粒子的质量增大,粒子绕行周期变长,从而逐渐偏离了交变电场的加速状态。
进一步的改进有同步回旋加速器。
准维教育军队考试网3、回旋加速器的作用(1)磁场的作用带电粒子以某一速度垂直进入匀强磁场时,只在洛伦兹力作用下做匀速圆周运动,其中周期与速率和半径无关,使带电粒子每次进入D形盒中都能运动相等时间(半个周期)后,平行于电场方向进入电场中加速。
(2)电场的作用回旋加速器的两个D形盒之间的窄缝区域存在周期性的变化的并垂直于两D形盒直径的匀强电场,加速就是在这个区域完成的。
(3)交变电压为了保证每次带电粒子经过狭缝时均被加速,使其能量不断提高,要在狭缝处加一个与粒子运动的周期一致的交变电压。
张为臻博客。
军考大纲解读——军校考试大纲[最新版]物理考点105:磁感线关键词:军校考试张为臻军校考试试题军校考试培训军考大纲军考考点士兵军考1、磁感线磁感线:在磁场中画一些曲线,用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不交叉),这些曲线叫磁感线。
磁感线是闭合曲线。
规定小磁针的北极所指的方向为磁感线的方向。
磁铁周围的磁感线都是从N极出来进入S极,在磁体内部磁感线从S极到N极。
2、磁感线的判断方法条形磁铁和蹄形磁铁的磁感线:相对来讲比较简单,在磁铁外部,磁感线从N极出来,进入S极;反之,在内部由S极到N极。
(1)直线电流磁场的磁感线:在直线电流磁场的磁感线分布中,磁感线是以通电直线导线为圆心作无数个同心圆,同心圆环绕着通电导线。
实验表明,如果改变电流的方向,各点磁场的方向都变成相反的方向,也就是说磁感线的方向随电流的方向而改变。
直线电流的方向跟磁感线方向之间的关系可以用安培定则(也叫右手螺旋定则)来判定:用右手握住导线,让伸直的拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向(2)环形电流磁场的磁感线:流过环形导线的电流简称环形电流,从环形电流磁场的磁感线分布,可以看出,环形电流的磁感线也是一些闭合曲线,这些闭合曲线也环绕着通电导线。
环形电流的磁感线方向也随电流的方向而改变。
研究环形电流的磁场时,我们主要关心圆环轴上各点的磁场方向,这可以用右手螺旋定则来判定:让右手弯曲的四指和环形电流的方向一致,伸直的拇指所指的方向就是圆环的轴线上磁感线的方向。
准维教育军队考试网3、磁感线的物理特点(1)磁感线是闭合曲线,磁铁外部的磁感线是从N极出来,回到磁铁的S极,内部是从S极到N极,外部的磁感线为曲线,而内部的磁感线为直线。
(2)每条磁感线都是闭合曲线,任意两条磁感线不相交。
(3)磁感线上每一点的切线方向都表示该点的磁场方向。
(4)磁感线的疏密程度表示磁感应强度的大小。
军校考试大纲《物理》考点—磁场之质谱仪关键词:军校考试张为臻军考培训军考大纲军考物理考点士兵军考1、质谱仪质谱仪又称质谱计。
分离和检测不同同位素的仪器。
即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。
质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪。
按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。
张为臻博客2、质谱仪的用法分离和检测不同同位素的仪器。
仪器的主要装置放在真空中。
将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。
质谱方法最早于1913年由J.J.汤姆孙确定,以后经F.W.阿斯顿等人改进完善。
现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。
质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。
现代质谱仪的分辨率达105~106量级,可测量原子质量精确到小数点后7位数字。
准维教育军队考试网质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。
测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。
由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。
对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。
质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。
由于化合物有着像指纹一样的独特质谱,质谱仪在工业生产中也得到广泛应用。
士兵军校考试大纲《物理》考点:安培力(2)
关键词:军校考试张为臻军考培训军考大纲士兵军考军考物理考点
受力方向
导线在磁场中力的方向。
根据左手定则:伸开左手,使拇指与其他四指垂直且在一个平面内,让磁感线从手心穿入,四指指向电流方向,大拇指指向的就是安培力方向(即导体受力方向)。
把一段通电直导线MN放在磁场里,当导线方向与磁场方向垂直时,电流所受的安培力最大;当导线方向与磁场方向一致时,电流不受安培力;当导线方向与磁场方向斜交时,电流所受的安培力介于最大值和零之间。
大量实验表明,垂直于磁场的一段通电导线,在磁场中某处受到的安培力的大小F跟电流强度I和导线的长度L的乘积成正比F=BIL
当电流与磁场方向夹角为α时,则用:F=BILsinα。
力的价值
安培力的重要意义在于,一方面进一步指出了电与磁的相互联系;另一方面是应用价值,电动机的工作原理就是基于安培力。
(来源:张为臻博客)
安培力做功的实质:起传递能量的作用,将电源的能量传递给通电直导线,而磁场本身并不能提供能量,安培力做功的特点与静摩擦力做功相似。
士兵军校考试大纲物理篇:电磁驱动
关键词:军校考试张为臻军考培训军考大纲士兵军考军考物理考点
如果磁场相对于导体运动,在导体中会产生感应电流,感应电流使导体受到安培力的作用,安培力使导体运动起来,这种作用就是电磁驱动。
技术原理
在磁场运动时带动导体一起运动,这种作用称为“电磁驱动”作用。
当磁铁转动时,设某时刻磁铁的N极处在金属圆盘的半径Oa处,根据楞次定律此时在圆盘上将产生如图所示的涡流,结果在该半径处形成由a流向O处的感应电流。
该感应电流处于旋转磁场中,将受到磁场的作用力。
此力将产生一个促使金属圆盘按磁场旋转方向发生转动的力矩。
此时从磁铁S极处产生的感应电流所受的力而产生的力矩,同样是促使金属圆盘按磁场旋转的方向发生转动。
结果金属圆盘按磁场的转动方向发生旋转。
但是如果圆盘的转速达到了与磁场转速一样,则两者的相对速度为零,感应电流便不会产生,这时电磁驱动作用便消失。
所以在电磁驱动作用下,金属圆盘的转速总要比磁铁或磁场的转速小,或者说两者的转速总是异步的。
感应式电动机(异步电动机)就是根据这个原理制成的。
(来源:张为臻博客)
电磁驱动作用可用来制造测量转速的电表,这类转速表常称为磁性转速表。
在发电机中为了保证产生的交流电频率f=50秒-1,就必须控制转子的转速。
在其他情况中,为了充分发挥机器
的效率和正确地使用机器,也常需测量其转速,然后进一步加以控制和调节。