紫外光激光加工盲孔的工艺研究
- 格式:pdf
- 大小:300.33 KB
- 文档页数:5
微孔加工方法及微孔结构微孔加工是一种将材料表面或内部形成微小孔洞的加工技术。
微孔结构常见于光学器件、微流体芯片、生物传感器等领域,它们具有高精度、高密度、低成本等优势。
本文将从微孔加工的方法和微孔结构的特点两个方面进行探讨。
一、微孔加工的方法1. 激光打孔法激光打孔法利用激光束对材料进行加工,通过光与物质相互作用,产生高温或高能量,使材料发生蒸发、熔化或溶解而形成微孔。
激光打孔法灵活性强,可用于加工各种材料,适用于微孔的精密加工。
2. 雷射微镜法雷射微镜法是利用光束的非线性光学效应,在被加工物体的表面或内部产生微孔结构。
该方法可以实现非接触加工,并具有高加工速度和精度,适用于金属、陶瓷等材料的微孔加工。
3. 电解加工法电解加工法是利用电解液对材料进行腐蚀的方法,通过控制电极与工件之间的距离和加工电压,以及电解液的成分和温度等参数,控制微孔的形成。
电解加工法能够实现高精度的微孔加工,适用于金属和陶瓷等导电材料。
4. 等离子体刻蚀法等离子体刻蚀法是利用等离子体产生的精细能束,通过物理或化学反应去除材料表面或内部的材料,形成微孔。
这种方法对于刻蚀深度、形状和尺寸有较好的控制能力,可用于加工高精度和高密度的微孔结构。
二、微孔结构的特点1. 高精度微孔加工能够实现亚微米级的孔径和亚微米级的位置精度,通常在纳米级别。
这种高精度的特点使得微孔在光学、电子和微纳加工等领域有着重要的应用。
2. 高密度微孔加工可以在有限的空间内形成大量的微孔结构,从而实现高密度的排列。
这种高密度的特点能够提高器件的功能性和性能。
3. 低成本相比传统的制造方法,微孔加工具有成本更低的优势。
微孔加工所需设备较少,加工过程简便,能够大规模生产微孔结构,因此成本相对较低。
4. 多样性微孔加工可以通过调整加工参数和使用不同的加工方法,实现不同形状、尺寸和材料的微孔结构。
这种多样性的特点为不同领域的应用提供了更大的灵活性。
总结:微孔加工是一种重要的加工技术,可以通过激光打孔法、雷射微镜法、电解加工法和等离子体刻蚀法等方法来实现。
FPCPCB高精度激光钻孔
随着市场上对小型化手持式电子设备需求的持续增长,电子器件封装、电路板的集成度越来越稠密、多层,这就要求电路板上通孔尺寸更小、更
精确,典型的孔径要<65μm。
高精度紫外激光钻孔技术的引入为PCB,
FPC以及倒装芯片封装上面盲孔、通孔加工不但带来了极高的精密度与加
工质量,也带来了最低的制造成本与最高的产能。
Spectra-PhyicPuleo系列激光器是PCB、FPC加工导通孔和其他切割
成型的完美工具。
Puleo激光器既有532nm波长也有355nm波长,对于大
多数被加工的材料这两种波长吸收率都是相当高的,尤其是紫外波长。
Puleo激光器的超短脉冲、高峰值功率以及高重复频率等优势可为加工工
艺带来:清洁、碎屑极少;通孔圆度高;生产效率高以及对工件最小的热
效应损伤等诸多益处。
Spectra-Phyic激光加工FPC通孔的细节特征,入口(左),出口(右)。
柔性电路板(8μmCu/24μmPolyimide/8μmCu)上面激光钻孔,孔径小,圆度高,周围材料人损伤小。
高性能高可靠性的Spectra-PhyicPuleo系列激光器
重复频率(nominal)产品型号波长峰值功率平均功率脉冲宽度
Puleo532-34Puleo355-20Puleo355-
10532nm~13kW>34W<30nat120kHz120kHz355nm~10kW>20W<23nat100kHz100k Hz355nm~5kW>10W<23nat90kHz90kHz。
激光加工论文题目:激光加工技术专业:电子科技班级:08-1学号:************ *名:**激光加工技术摘要:激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等。
用激光束对材料进行各种加工,如打孔、切割、划片、焊接、热处理等。
激光能适应任何材料的加工制造,尤其在一些有特殊精度和要求、特别场合和特种材料的加工制造方面起着无可替代的作用。
关键词:加工原理、发展前景、强化处理、微细加工、发展前景。
一、激光加工的起源和原理随着科学技术的发展和社会需求的多样化,产品的竞争越来越激烈,更新换代的周期也越来越短。
为此,要求不但能根据市场的要求尽快设计出新产品,而且能在尽可能短的时间内制造出原型,从而进行性能测试和修改,最终形成定型产品。
而在传统制造系统中,需要大量的模具设计、制造和调试等工作,成本高,周期长,已不能适应日新月异的市场变化。
为了提高研发和生产速度,快速而精确地制作出高质量、低成本的模具和产品,能对市场变化做出敏捷响应,人们作了大量的研究和探索工作。
随着工业激光器价格的不断下降和工业激光加工技术的日益成熟,给模具制造和产品生产工艺带来了重大变革激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。
由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。
由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。
二、激光加工的特点激光具有的宝贵特性决定了激光在加工领域存在的优势:①由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。
②它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。
③激光加工过程中无“刀具”磨损,无“切削力”作用于工件。
激光加工原理激光加工是将激光束照射到工件的表面,以激光的高能量来切除、熔化材料以及改变物体表面性能。
由于激光加工是无接触式加工,工具不会与工件的表面直接磨察产生阻力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音。
由于激光束的能量和光束的移动速度均可调节,因此激光加工可应用到不同层面和范围上。
目前,公认的激光加工原理是两种:分别为激光热加工和光化学加工(又称冷加工)。
激光热加工指当激光束照射到物体表面时,引起快速加热,热力把对象的特性改变或把物料熔解蒸发。
热加工具有较高能量密度的激光束(它是集中的能量流),照射在被加工材料表面上,材料表面吸收激光能量,在照射区域内产生热激发过程,从而使材料表面(或涂层)温度上升,产生变态、熔融、烧蚀、蒸发等现象。
光化学加工指当激光束加于物体时,高密度能量光子引发或控制光化学反应的加工过程。
冷加工具有很高负荷能量的(紫外)光子,能够打断材料(特别是有机材料)或周围介质内的化学键,至使材料发生非热过程破坏。
这种冷加工在激光标记加工中具有特殊的意义,因为它不是热烧蚀,而是不产生“热损伤”副作用的、打断化学键的冷剥离,因而对被加工表面的里层和附近区域不产生加热或热变形等作用。
例如,电子工业中使用准分子激光器在基底材料上沉积化学物质薄膜,在半导体基片上开出狭窄的槽。
第一版激光加工简介激光加工是激光系统最常用的应用。
根据激光束与材料相互作用的机理,大体可将激光加工分为激光热加工和光化学反应加工两类。
激光热加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接、激光切割、表面改性、激光打标、激光钻孔和微加工等;光化学反应加工是指激光束照射到物体,借助高密度高能光子引发或控制光化学反应的加工过程。
包括光化学沉积、立体光刻、激光刻蚀等。
由于激光具有高亮度、高方向性、高单色性和高相干性四大特性,因此就给激光加工带来一些其它加工方法所不具备的特性。
紫外光刻技术紫外光刻技术是一种用于制造微电子器件的核心技术,也被广泛应用于光学元件、液晶显示器、生物芯片等领域。
本文将从先容紫外光刻技术的基本原理、工艺流程,再到当前的应用现状进行详细介绍,以便读者更为深入地了解该项技术。
一、基本原理在紫外光刻技术中,首先需要准备一块光刻板(photomask),其上绘制了所需的电路图案。
随后将其置于样品表面,经过紫外光的照射,在光刻板上的图案模式就会被投射至样品表面。
同时,光刻胶(photoresist)也会被暴露在光线下。
一旦完成光刻过程,样品表面便会残留下经过光刻胶保护的部分。
随后,经过化学腐蚀或物理蚀刻的处理,被保护的部位便会被保留下来,形成微小的电路元件。
紫外光刻技术就是这一切成功的核心所在。
二、加工工艺流程紫外光刻技术的加工工艺流程非常精细,主要可分为以下几个步骤:1.选择适合的光刻胶:根据加工的需要,选择适合的光刻胶类型和厚度,其中两种主要的光刻胶分别是正型和负型。
2.涂覆光刻胶:将光刻胶涂敷在样品表面,并通过旋转、滚涂等方式均匀地分布在整个样品表面。
一旦涂覆完成,需要进行烘烤干燥,将基板上的溶剂挥发掉。
3.曝光光刻板:将光刻板与样品表面校准好。
通过紫外光的照射,将光刻板上所需电路图案投射到样品表面上。
这是整个加工流程的关键步骤。
4.显影:在曝光后,样品表面上的光刻胶只在暴露的部分进行了固化,未暴露的地方则未固化。
现在需要将未固化的部分显影掉,仅保留需要的电路元件,形成稳定的电路元件形状。
5.腐蚀:通过化学腐蚀或物理蚀刻,将未被光刻胶保护的部分去除。
这个过程非常精细,需要掌握好腐蚀时间、温度等参数,来达到理想的效果。
6.清洗:完成腐蚀后,需要将样品表面进行清洗。
主要是清除化学腐蚀剂、水分、碎片等,以保证样品表面的干净整洁。
三、应用现状紫外光刻技术多年来一直被广泛应用于微电子器件制造等领域。
其主要优势包括高精度、高效率和低成本等特点。
目前,紫外光刻技术的发展方向主要是向着以下方面进行深入研究:1.高精度加工:随着微电子技术的不断发展,需要越来越高的加工精度。
吾 《电子电路与贴装 2002年第2期 海 乐
高信息世纪的发展,使以高信息电子设备的多 功能化、轻量化和高速化体现的现代化通讯手段。 这些电子设备中所搭载的电器什要求高度集成化 和高速化。所采用的半导体的封装形式也由原来的 oFP变化到微型化和多引线化的BGA或CSP。为 此,所采用的组装基板一印制板也必须是细线化、 高精度化和高密度化 为满足电子设备的高速化和 多功能化的要求,必须研制出高精度高密度多层 板,而积层板却成为搭载微型器什的新品:此种类 型的蕞板主要特征就微孔、布线密度高、轻量化、超 漳化。而其中的微导通孔(包括盲孔或埋孔)的加T 却是关键。高密度微孔的形成的T艺方法很多,口 前常用的有四种类型钻孔技术:数控机械钻孔技 术、等离子成孔技术、光敛成孔技术和激光钻孔技 术..今义就形成微导通孔用激光钻孔技求加以再沦 述。 一.激光的种类和特征 在多层积层板的制造过程中,微导通孔的加T 是关键,凶为积层板的重要特征就是几何尺寸比较 小、布线密度高、孔径小,采用常规的数控钻孔T艺 是很难奏效的,它 但钻孔精度难以保{止,而且效 率极低,冈而加工成本极高。为此,研制出新的微孔 加工技术是确保产品质鼍的重要前提 使用激光钻 孔技术是积层板制造工艺的最理想的出路:当前实 用阶段的激光种类有三种类型 红外二氧化碳激 光钻孔技术、紫外YAG激光钻孔技术和准分子激 光钻孔技术 激光钻孔的基今原理就是依据有机材 料对波长的吸收能 ,利用红外或紫外光的波长的 长短与能量,当有机材料吸收后产生热效应,他有 机材料熔化、燃烧和一挥发或是破坏有机材料分子 键(如共价键)、金属晶休等形成悬浮 粒或原子 困、分子困或原子、分子而逸散离去而形成所需要 的微导通孔。 这 种类型的激光钻孔技术各有所K,充分利 用其中优越性,就能扬 避短,存多层积层板上钻 更高精度的微导通孔。最先他用的CO:激光钻孔 技术,就是利用有机材料埘红外光波长吸收后产生 热效应而使有机材料内部温度卜升,达到有机材料 的熔化或燃烧温度后,使有机材料熔化、燃烧形成 气体而挥发后形成微导通孔一冈此,采用该技术其 成孔的速度比较高。紫外ND:YAC激光技术,它的 最大特点就是具有高能量和能量集中,而波长很 短,当有机材料吸收后能很快地将有机物分子键、 金属键等破坏掉.使其形成悬浮颗粒或原子团、分 子团或原子、分子而逸散离出而形成精确的微导通 孔。它最重要的特,征就是直接能穿透铜箔,但加工 速度相对慢 淮分子激光钻孔技术它最大的优点就 是能存所有有机材料上加工高板厚/4L径比的微导 通孔。但是它最大的缺点就是加工速度慢。根据它 加T的微导通孔精度较高,经过改进后其生产效率 有着明 的提高。