高等桥梁设计理论——钢桥疲劳设计理论
- 格式:pdf
- 大小:962.43 KB
- 文档页数:28
浅析铁路桥梁的钢结构抗疲劳设计摘要:钢结构具有轻质、高强,抗拉、抗压性能强等优势,因而在我国桥梁建设中应用十分广泛,桥梁是为满足交通功能的建筑物,现代桥梁钢结构由结构钢加上单元经焊(栓)连接组成为复杂的受力系统,有明确的承载安全和服役耐久性要求。
钢结构桥梁整体性能的好坏,与其整体设计密切相关。
本文从抗疲劳的设计角度,对桥梁钢结构展开设计提出若干抗疲劳设计的建议措施。
关键词:桥梁钢结构完整性设计损伤容限随着我国国民经济的高速发展,钢结构桥梁的建设与应用起着相当重要的作用。
我国铁路运营的桥梁,钢桥已经达到3800座以上,全长300 km以上。
钢结构桥梁的设计中,焊接应用越来越广泛。
钢桥疲劳断裂是结构失效的一种主要形式,由于疲劳失效的钢结构桥梁,越占失效结构的90%。
疲劳一般从应力集中开始,而焊接结构的疲劳又往往是从焊接接头处产生。
因此,焊接接头疲劳的设计是钢结构桥梁设计的关键技术。
本文着重从构造措施上对桥梁钢结构的抗疲劳设计提出建议。
一、钢结构抗疲劳概述钢材在持续反复荷载下,虽然在其名义应力远低于极限强度,甚至还低于屈服点时,也会发生破坏,这种“积劳成疾”的现象称为钢材的疲劳。
在疲劳破坏之前,钢材构件并不出现明显的变形或局部收缩,和脆性断裂一样,是突然破坏的。
所以对承受持续反复荷载的钢结构必须按其受载次数的多少来决定其强度和安全度。
疲劳的机理是钢材内部及其外表总有杂质和损伤(微观的)存在,在反复荷载下,这些薄弱点形成应力集中,开始产生塑性变形,继而应变硬化,于是在该处首先发生微裂(不是肉眼能见的)。
由于反复应力长期地继续下去,遂使这种微裂逐渐扩大,形成裂纹。
随着裂纹的发展,最后导致断裂。
从疲劳试样的断口上,可以发现裂断情况是一部分呈纤维状(曲线部分),一部分呈晶粒状组织。
纤维状部分,往往是由最外表一点起始,遂渐向内扩张,这一点便是疲劳裂纹的核心。
在试样长期运转下,这一裂口(核心)是一张一合的(受拉张开,受压闭合)。
公路钢结构桥梁的疲劳设计要点摘要:在公路桥梁整个设计阶段,结合桥涵设计指标的具体要求,要从实际情况入手,优化设计形式,执行有效的评价机制,发挥评价系统的最大化作用。
本次研究中以公路钢结构桥梁的疲劳设计为基础,对设计要点进行分析。
关键词:公路;钢结构桥梁;疲劳设计近些年来我国城镇化建设速度不断提升,公路里程不断增加,公路钢结构设计起到重要的作用,钢结构本身存在应力分布不均匀的现象,不同程度的疲劳程度存在差异,因此针对存在的各类安全隐患,必须做好抗疲劳设计。
一、影响公路钢结构桥梁疲劳性能的影响因素基于公路钢结构桥梁施工的具体要求,在后续利用阶段需要从现状入手,及时对影响因素进行分析,考虑到结构形式的具体要求,对其进行合理化应用。
以下将对影响公路钢结构桥梁疲劳性能的影响因素进行分析。
1.钢结构材料特征对于抗疲劳性能结构而言,在设计阶段要从已有特性入手,对各项性能和指标进行分析,避免出现严重的裂纹或者不良反应。
随着钢结构强度的不断增加,抗疲劳性能增强,但是不是所有材料强度都比较高,要对材料表面结构属性进行了解,最大程度提升其应用能力[1]。
2.外部因素基于现有检验指标的属性要求,考虑到变化因素的特殊性,要及时对结构属性因素进行对比。
如果存在昼夜温差大的现象,是和自然因素存在联系,因此需要及时对影响因素和评价指标进行分析,适当减少压力。
外部因素属于不可控制因素,实践表明,焊接常见的疲劳程度和应力幅度存在联系,需要结合强度和应力值指标对其进行完善设计。
3.内部因素很多结构内部因素直接对公路桥梁疲劳性能造成影响,由于疲劳形象出现变化,因此在结构设计过程中要对钢构件连接形式、公路桥梁结构以及构造细节等进行掌握,以现有焊接技术为标准,采用不同设计形式,能减少钢结构承载力,进而提升其应用优势。
二、公路钢结构桥梁抗疲劳计算1.全寿命周期设计考虑到现有设计形式的特殊要求,在利用阶段,必须综合对车辆荷载力进行分析。
桥梁应用过程中受到其他因素的影响,对施工、运营和维修管理等有严格的要求,在设计过程中,考虑到后期维护系统的可行性和代价等因素要求,需要对结构的替换周期进行分析,以现有的抗疲劳设计指标为例,对公路结构的抗疲劳工程采用分类设计形式,能最大程度减少造价,实现全寿命周期和设计理念的有效结合[2]。
钢梁混凝土桥梁的疲劳性能研究随着交通工具的不断发展和交通运输的日益繁忙,桥梁建设已经成为现代化城市发展的重要组成部分。
而桥梁建设中的关键问题之一就是如何确保桥梁的安全性和耐久性。
在桥梁的设计中,钢梁混凝土结构是常用的一种结构形式。
本文将围绕着钢梁混凝土桥梁的疲劳性能进行研究,对其相关内容进行探究。
一、疲劳性能的定义和影响因素疲劳性能是指材料或结构在交变载荷作用下表现出来的抵抗力。
任何一个结构体系,都会受到外部载荷的作用,并且在长期使用过程中不断受到反复的载荷作用,导致结构的疲劳损伤。
因此,疲劳性能是衡量一个结构体系寿命的重要指标之一。
影响钢梁混凝土桥梁疲劳性能的主要因素包括:材料的强度、承载能力、几何形状、工程施工质量等。
二、疲劳性能的试验研究为了研究钢梁混凝土桥梁的疲劳性能,一般需要进行试验研究。
其中,大样本试验是研究钢梁混凝土桥梁疲劳性能的常用方法。
大样本试验是指将钢梁混凝土桥梁的完整结构放置在特制试验台上,通过反复施加载荷来模拟实际工况下的载荷作用。
试验结果可以评估钢梁混凝土桥梁的耐久性和疲劳寿命。
另外,还可以使用小样本试验方法来研究钢梁混凝土桥梁的疲劳性能。
该方法利用试验材料进行破坏试验,通过测试结果来研究材料内部的断裂机制和疲劳破坏形态。
这种方法的优点是可以通过多次破坏试验来获得更多的数据,得到较准确的试验结果。
但是,其不足之处在于仅限于研究材料的疲劳性能,无法考虑结构复杂情况下的影响因素。
三、桥梁疲劳的修复和加固方法由于桥梁的使用过程中,往往会受到不同程度的疲劳损伤,因此,对于具有一定历史的桥梁来说,必须进行定期检测和修复。
桥梁的修复方法主要包括焊接、强化、防震等措施。
其中,钢板强化是提高桥梁疲劳寿命的常用技术。
通过在桥梁梁上设置加强板,可以提高钢梁混凝土桥梁的整体承载能力,改善其疲劳性能。
此外,对于新建桥梁来说,也可以采取预应力技术、金属脱氧和高强度钢筋等措施来加固桥梁的疲劳性能。
钢结构桥梁抗疲劳设计的解析摘要:随着我国的经济的快速发展,公路桥梁建设项目越来越多。
公路钢结构桥梁具有跨径大、自重轻等特点,由于长期承受自重和车辆荷载循环作用的影响,由于钢结构桥梁应力分布不均,各部分具有不同的疲劳强度,除此以外还有桥梁自身的截面发生突变以及焊接连接的部分和反复应力等等情况造成的裂纹,久而久之会导致桥梁断裂的发生。
由于上述的原因,不同的安全隐患存在于桥梁的服役期间,因此在进设计考虑的时候应当从全局上来进行桥梁结构的设计。
对于疲劳设计而言,在我国现行公路桥梁钢结构设计规范中相对落后,从公路的疲劳问题来看,我们现有的研究认知还不是很全面,因此能够对公路以及桥梁的疲劳进行设计是一项十分必要的工程。
为了降低钢结构桥梁出现疲劳问题的几率,在制订抗疲劳设计方法时,就需要先对影响钢结构桥梁疲劳的因素进行仔细研究。
关键词:钢结构桥梁;抗疲劳设计方法;研究1影响钢结构桥梁疲劳的因素1.1 钢结构材料特性钢结构材料特性的好坏是会直接影响到公路以及桥梁的抗疲劳强度的,其特性所受的影响比较多,除了材料本身的性能之外,钢结构的大小也对其抗疲劳强度造成一定的影响,在起初只有一点点的小裂纹出生,随着时间的推移,之前产生的小裂纹会越来越大,其疲劳的性能也会随之增加,除此以外钢结构的强度增强也会使得其疲劳性能增加,由于这样的原因,还是应当使用强度较为合适的材料。
一般的情况下我们能够总结出,当钢结构表面具有比较高的应力的时候,钢结构的表面在之前一般都会产生裂纹。
1.2钢结构内部和外部因素会对公路结构桥梁疲劳性能而言,钢结构内部因素和外部因素也会对其造成影响,疲劳的性能会因此而发生一定的变化。
公路桥梁的建设结构以及每一个钢构件之间的连接形式都是钢结构构造的一个方面,影响钢结构应力分布的因素包括焊接技术、钢结构制造、焊接处理方法、设计方法等。
钢结构自身缺陷也会影响疲劳性能,除此以外钢结构疲劳的产生还会受到其他外部环境因素的影响,外部影响因素一般包括自然环境发生变化、昼夜温差变化过大、外界施加给桥梁的压力、强冻强高温等。
钢桥的疲劳分析范文引言:钢桥是一种重要的交通基础设施,承担着车辆和行人的通行。
长期以来,由于交通流量的增加和重载车辆的增多,钢桥疲劳已成为桥梁设计和维护的重要问题。
本文将对钢桥的疲劳问题进行分析,探讨其原因、影响因素以及相应的解决方案。
一、疲劳问题的原因1.动力因素:钢桥在承受车辆荷载的同时还要面对自身的自重和震动荷载。
长期以来,车辆荷载和震动荷载的频繁作用会导致钢桥的材料疲劳,进而导致桥梁的损坏和断裂。
2.环境因素:钢桥承受了来自自然环境的多种因素的影响,如气候变化、温度差异和湿度等。
这些因素会导致桥梁材料的膨胀和收缩,从而产生内部应变,加速钢桥的疲劳破坏。
3.施工因素:钢桥的施工质量将直接影响其使用寿命和疲劳性能。
如果施工质量不达标,如焊接不牢固、连接部位强度不足等,将使钢桥易受疲劳破坏。
二、疲劳破坏的影响因素1.轴重:车辆荷载是引起桥梁疲劳破坏最主要的因素之一、大型重型车辆以及超限荷载的频繁通行将极大地加速钢桥的疲劳损伤。
2.荷载频率:荷载频率指的是钢桥受到车辆荷载的作用频率。
频繁通行以及车流量大的地区会导致高频率的荷载作用,进而加速疲劳破坏的发生。
3.震动荷载:震动荷载是指由于地震、强风和行人等外来因素引起的钢桥振动荷载。
频繁的震动荷载会对钢桥产生影响,从而影响其疲劳性能。
4.桥梁结构设计:桥梁的结构设计将直接影响其抗疲劳能力。
合理的结构设计可以减少桥梁的应力集中和疲劳问题的发生。
三、疲劳分析和解决方案1.疲劳分析方法:采用有限元方法对钢桥进行疲劳分析,模拟不同荷载条件下的桥梁应力分布。
通过数值计算和模拟试验,对桥梁的疲劳性能进行评估,找出潜在的疲劳破坏部位。
2.组织检测和监测:通过常规的检测方法,如无损检测和应力监测,定期对钢桥进行结构健康检测。
及时发现和修补疲劳破坏的部位,可以提高钢桥的抗疲劳性能。
3.结构优化:通过改进桥梁结构的材料和几何形状,降低桥梁的应力集中和疲劳问题的发生。
采用较短的跨度和更好的材料可以有效地提高桥梁的抗疲劳能力。
公路钢桥抗疲劳设计概述摘要:基于疲劳与断裂是钢构件失效的最可能原因,应对疲劳设计给于相当的重视。
本文对我国公路桥梁疲劳设计问题进行了简述,并对国外规范进行了总结。
提出了我国疲劳验算的缺陷和制定与完善公路钢桥疲劳规范的迫切性。
关键词:公路钢桥;疲劳设计;荷载模型abstractbased on fatigue and fracture is the most likely reason in failure of steel members. this paper, resumed the design of highway bridge fatigue problems in our country, and summarized foreign standard. puts forward the defects of fatigue calculation in our country and the urgency to formulate and perfect highway steel bridge fatigue specification.key words: highway steel bridge; fatigue design; load model 中图分类号:u448.14文献标识码: a 文章编号:1疲劳研究的必要性公路钢桥的疲劳是指在车辆荷载的反复作用下构件在低于钢材屈服强度的情况下发生的脆性破坏。
[1]钢结构构件最常遇到三种破坏形式:拉构件强度破坏、压构件失稳破坏、反复拉压构件疲劳断裂。
其中疲劳与断裂是钢构件失效的最可能原因。
据美国1982统计结果,80%-90%钢桥的破坏与疲劳断裂有关,1967年美国西弗吉利亚州的point pleasant大桥在没有任何征兆的情况下突然倒塌,造成46人死亡,调查结果显示是由于一拉杆下缘产生解理断裂。
警醒下,各国对疲劳给于了相当的重视,随着工程实践和研究的加深,规范也在不断的修订和更新。
钢结构桥梁的疲劳与耐久性钢结构桥梁作为现代化交通基础设施的重要组成部分,承担着极其重要的交通运输任务。
然而,长期以来,由于恶劣的环境条件和高度的交通负荷,钢结构桥梁容易受到疲劳和腐蚀的影响,降低其使用寿命。
因此,对钢结构桥梁的疲劳与耐久性进行研究和保护具有重要的科学意义和现实意义。
1. 桥梁疲劳的基本知识1.1 疲劳破坏的特点疲劳破坏是指在受到交变载荷作用下,材料在应力低于其屈服强度的情况下,经过一定次数的载荷循环后出现的裂纹扩展和最终破坏。
疲劳破坏具有突发性、难以察觉和扩展性的特点。
1.2 疲劳裂纹的形成在钢结构桥梁中,疲劳裂纹的形成主要受到动载和静载的作用。
其中,动载是指交通荷载的作用,静载是指无车荷载的作用。
动载和静载会在桥梁结构中产生应力集中,从而导致裂纹的形成。
2. 提高桥梁疲劳性能的措施2.1 加强结构设计合理的结构设计是提高桥梁疲劳性能的基础。
在设计阶段,应充分考虑交通荷载的特点和变化规律,合理确定结构形式和截面尺寸,以提高桥梁的疲劳承载能力。
2.2 优化材料选择选择合适的材料对于提高桥梁的疲劳性能至关重要。
目前,常用的材料包括低合金高强度钢和耐久性好的复合材料等。
这些材料具有较高的强度和抗疲劳性能,能够有效延长桥梁的使用寿命。
2.3 加强施工质量控制在桥梁施工过程中,必须严格控制施工质量,避免由于施工不规范而引发的结构缺陷。
同时,还需加强对焊接工艺和焊接质量的监督,确保焊缝的质量符合设计要求。
3. 提高桥梁耐久性的措施3.1 防腐措施桥梁在使用过程中容易受到大气中的腐蚀物质侵蚀,从而导致结构的损坏。
为了提高桥梁的耐久性,应采用合适的防腐措施,如涂层保护、防腐涂料等,减少腐蚀对结构材料的侵蚀。
3.2 做好结构养护桥梁的日常养护工作对于延长桥梁使用寿命具有重要意义。
养护工作主要包括定期巡检、维修保养和局部加固等,通过及时发现和修复结构缺陷,降低桥梁受损的风险。
3.3 加强环境监测定期对桥梁的环境进行监测,及早发现可能对结构产生影响的因素,对桥梁的可持续使用性进行评估和预测。
midasfea_钢桥疲劳分析midas FEA Training Series钢桥的疲劳分析⼀. 概要1. 分析概要钢桥的疲劳裂纹⼀般是由焊接缺陷、结构的⼏何形状引起的应⼒集中、结构的应⼒变动幅度以及重复加载等原因引起的。
重复加载会引起疲劳裂纹发展,严重时会引起结构破坏,因此对抗疲劳较弱的部位应进⾏分析确定其抗疲劳能⼒。
本例题中钢桥采⽤焊接和螺栓连接,分析采⽤S-N 曲线⽅法即应⼒-寿命⽅法确定结构的疲劳寿命和损伤度。
2. 分析步骤疲劳分析的步骤如下:1) ⾸先做结构静⼒分析确定最⼤和最⼩应⼒的绝对值或者计算von Mises 应⼒,从⽽获得应⼒幅。
2) 当作⽤应⼒为变幅时,使⽤可将各应⼒幅组成起来的⾬流计数法(Rain flow counting)和S-N 曲线计算。
3) 考虑平均应⼒的影响确定疲劳寿命和损伤度。
建模→线性静⼒分析→应⼒疲劳分析→确认分析结果3. 疲劳分析的注意事项分析类型应为线性分析,且只对使⽤各向同性弹性材料模型的结构做疲劳分析。
线性分析后,使⽤得到的应⼒再做疲劳分析。
⼆. 疲劳分析的理论背景1. 疲劳分析疲劳是指在⼩于构件的屈服强度的荷载反复作⽤下构件发⽣破坏的现象。
疲劳分析的⽅法有应⼒-寿命法、应变-寿命法。
应⼒寿命法具有计算简单和分析速度快的特点。
midas FEA 中利⽤S-N 曲线使⽤应⼒寿命法进⾏疲劳分析。
2. S-N 曲线S-N 曲线是等幅反复荷载作⽤下的应⼒幅(stress amplitude, S)与构件到达破坏时的循环次数(cycle to failure, N)的关系曲线。
在静⼒分析结果中取最⼤绝对应⼒(maximum absolute stress)和最⼩绝对应⼒(minimum absolute stress)或范梅塞斯应⼒(von Mises stress)计算应⼒幅(stress amplitude),然后使⽤S-N 曲线就可以知道发⽣疲劳破坏时的疲劳寿命和循环次数。
浅谈桥梁疲劳问题的若干基本理论随着桥梁工程设计、施工技术的进步,建设规模越来越大,大型桥梁在国民经济和社会生活中起着举足轻重的作用。
疲劳破坏是桥梁运营期间的一大隐患,桥梁在地震、车辆等动力荷载的反复作用下,初始裂纹扩展产生累计损伤造成构件突然断裂。
由交变循环应力引起的材料力学性能劣化过程称为疲劳损伤。
疲劳破坏实际上是疲劳损伤趋于某个临界值得累积过程。
当损伤累积到临界值时,材料发生疲劳破坏。
正确地描述材料承受循环荷载时的疲劳累积发展过程,是进行材料耐疲劳使用寿命估算,进行合理的结构抗疲设计的基础。
1. 疲劳裂纹1.1 疲劳损伤机理疲劳是造成桥梁损伤,影响桥梁使用年限的主要因素。
目前桥梁钢结构大多使用焊接和铆接工艺,在这些区域,桥梁结构在反复荷载作用下,很容易产生应力,从而在钢结构上产生疲劳裂纹。
在钢桥结构中,由于变形引起疲劳裂纹主要分为两种:一种是腹板的呼吸疲劳,当桥梁腹板的长度比、高厚比超过一定限度时,在大于屈曲荷载的面内的荷载作用下,腹板将产生更宽的面外位移,而这个面外位移又将反过来在焊接板的边缘形成较高的弯曲应力。
长次以往,在反复荷载的作用下,将产生疲劳裂纹,最终使得钢结构提前失去效应。
另一种疲劳裂纹是由于桥梁设计时没有料想到横向与纵向构建之间相互作用而产生的,这种现象一般出现在主梁腹板的间隙节处。
1.2疲劳裂纹的发展过程桥梁钢构件由于反复的变交荷载作用,在缺陷处产生极小的微裂纹,此后逐渐缓慢发展为宏观裂纹。
而在裂纹起始处出现应力集中现象,使构件处于三向拉伸状态,试件截面被严重削弱,当其中反复的反复荷载达到一定的循环次数时,材料最终破坏,从而发生钢构件疲劳断裂。
对于高强度材料,由于屈服强度较高、缺口敏感性大以及构件单元内部夹杂硬颗粒较多,因而往往先沿着夹杂物的截面裂开,直接进入宏观裂纹扩展阶段而没有微观阶段。
在实际工程中,疲劳裂纹造成的构件破坏后,往往会留下比较明显的断口,在这里可以很清晰地观察到疲劳裂纹的发源地以及裂纹扩展的整个过程。